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ABSTRACT
In this paper, we propose a fast, memory-efficient, and scal-
able clustering algorithm for analyzing transactional data.
Our approach has three unique features. First, we use the
concept of Weighted Coverage Density as a categorical simi-
larity measure for efficient clustering of transactional datasets.
The concept of weighted coverage density is intuitive and
allows the weight of each item in a cluster to be changed
dynamically according to the occurrences of items. Second,
we develop two transactional data clustering specific eval-
uation metrics based on the concept of large transactional
items and the coverage density respectively. Third, we im-
plement the weighted coverage density clustering algorithm
and the two clustering validation metrics using a fully au-
tomated transactional clustering framework, called SCALE
(Sampling, Clustering structure Assessment, cLustering and
domain-specific Evaluation). The SCALE framework is de-
signed to combine the weighted coverage density measure
for clustering over a sample dataset with self-configuring
methods that can automatically tune the two important pa-
rameters of the clustering algorithms: (1) the candidates
of the best number K of clusters; and (2) the application
of two domain-specific cluster validity measures to find the
best result from the set of clustering results. We have con-
ducted experimental evaluation using both synthetic and
real datasets and our results show that the weighted cov-
erage density approach powered by the SCALE framework
can efficiently generate high quality clustering results in a
fully automated manner.

Categories and Subject Descriptors
I.5.3 [Computing Methodologies]: Pattern Recognition-
Clustering
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1. INTRODUCTION
Transactional data is a kind of special categorical data,

which can be transformed to the traditional row by column
table with Boolean values. Typical examples of transac-
tional data are market basket data, web usage data, cus-
tomer profiles, patient symptoms records, and image fea-
tures. Transactional data are generated by many applica-
tions from areas, such as retail industry, e-commerce, health-
care, CRM, and so forth. The volume of transactional data
is usually large. Therefore, there are great demands for fast
and yet high-quality algorithms for clustering large scale
transactional datasets.

A transactional dataset consists of N transactions, each of
which contains varying number of items. For example, t1 =
{milk, bread, beer} and t2 = {milk, bread} are three-item
transaction and two-item transaction respectively. A trans-
actional dataset can be transformed to a traditional cate-
gorical dataset (a row-by-column Boolean table) by treating
each item as an attribute and each transaction as a row. Al-
though generic categorical clustering algorithms can be ap-
plied to the transformed Boolean dataset, the two key fea-
tures of such transformed dataset: large volume and high
dimensionality, make the existing algorithms inefficient to
process the transformed data. For instance, a market basket
dataset may contain millions of transactions and thousands
of items, while each transaction usually contains about tens
of items. The transformation to Boolean data increases the
dimensionality from tens to thousands, which poses signifi-
cant challenge to most existing categorical clustering algo-
rithms in terms of efficiency and clustering quality.

Recently, a number of algorithms have been developed for
clustering transactional data by utilizing specific features
of transactional data, such as LargeItem [21], CLOPE [23],
and CCCD [22]. However, all of the existing proposals suffer
from one obvious drawback. All proposed clustering algo-
rithms require users to manually tune at least one or two
parameters of the clustering algorithms in order to deter-
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mine the number of clusters to be used by each run of the
algorithm, and to find the best clustering result. For exam-
ple, LargeItem [21] needs to set the support θ and the weight
w, CLOPE [23] has a repulsion parameter r, and CCCD [22]
has a parameter MMCD as threshold on clusters merging.
Unfortunately, the settings of all these parameters are man-
ually executed and are different from dataset to dataset,
making the tuning of these parameters extremely hard. No
existing proposals, to the best of our knowledge, have of-
fered general guideline for adequately setting and tuning
these parameters.

Also there lacks of cluster validation methods to evaluate
the quality of clustering, because clustering is an unsuper-
vised procedure. Some generic measures or the interactive
visualization method [7] have been developed for clustering
numerical data based on statistical and geometrical proper-
ties [14]. Due to the lack of meaningful pair-wise distance
function, entropy-based measure has been widely used as a
generic measure for categorical clustering [5, 18, 8]. How-
ever, such general metrics may not be effective as far as spe-
cific types of datasets are concerned, such as transactional
data. It is recognized that meaningful domain-specific qual-
ity measures are more interesting [17, 14]. Surprisingly, very
few of the existing transactional data clustering algorithms
have developed transaction mining specific clustering vali-
dation measure.

In this paper we present a fast, memory-saving, and scal-
able clustering algorithm that can efficiently handle large
transactional datasets without resorting to manual param-
eter settings. Our approach is based on two unique design
ideas. First, we introduce the concept of Weighted Coverage
Density (WCD) as intuitive categorical similarity measure
for efficient clustering of transactional datasets. The mo-
tivation of using weighted coverage density as our domain-
specific clustering criterion is based on the observation that
association rules mining over transactional data is inherently
related to density-based data clustering [15]. Thus we de-
fine the weighted coverage density based on the concept of
frequent itemsets [3].

Second, we develop two transactional data specific evalu-
ation measures based on the concepts of large items [21] and
coverage density respectively. Large Item Size Ratio (LISR)
uses the percentage of large items in the clustering result to
evaluate the clustering quality. Average pair-clusters Merg-
ing Index (AMI), applies coverage density to indicate the
structural difference between clusters.

We implement the weighted coverage density clustering
algorithm and the two clustering validity metrics using a
fully automated transactional clustering framework, called
SCALE (Sampling, Clustering structure Assessment, cLus-
tering and domain-specific Evaluation). The SCALE frame-
work is designed to perform the transactional data cluster-
ing in four steps, and it can handle transactional datasets
that are small or medium or large in size. In the first step
it uses sampling to handle large transactional dataset, and
then performs clustering structure assessment step to gen-
erate the candidate “best Ks” based on sample datasets.
The clustering step uses the WCD algorithm to perform the
initial cluster assignment and the iterative clustering refine-
ment, until the WCD of the clustering result is approxi-
mately maximized. A small number of candidate clustering
results are generated at the end of the clustering step. In the
domain-specific evaluation step, we apply the two domain-

specific measures (AMI and LISR) to evaluate the cluster-
ing quality of the candidate results produced and select the
best one. We have conducted experimental evaluation using
both synthetic and real datasets. Our results show that the
weighted coverage density approach powered by the SCALE
framework can generate high quality clustering results in an
efficient and fully automated manner.

The rest of the paper is organized as follows. Section 2
gives an overview of some related work. Section 3 details the
definitions of key concepts used in our clustering algorithm,
the algorithm description and complexity analysis. The two
measures AMI and LISR for clustering results evaluation
are presented in Section 4. We briefly introduce the SCALE
framework in Section 5 and report our initial experimental
evaluation results in Section 6. We summarize our contri-
butions in Section 7.

2. RELATED WORK
A number of algorithms have been developed for categor-

ical data clustering in recent years [4, 8, 5, 12, 11, 13, 16,
18]. Some algorithms have studied distance-like pair-wise
similarity measures, such as K-Modes [16] and ROCK [13].
While it is commonly recognized that a pair-wise similarity
(e.g., cosine measure, the Dice and Jaccard coefficient, etc.)
is not intuitive for categorical data, there have been algo-
rithms using similarity measures for a set of records. The
typical set-based similarity measures are based on informa-
tion theory, such as expected-entropy in Coolcat [5], MC [18]
and ACE [8], mutual information based similarity in LIMBO
[4] and information bottleneck in [20], and minimum descrip-
tion length in Cross Association [6]. These algorithms have
been focused on generic clustering structure of categorical
data. Another observation is that most of these categori-
cal clustering algorithms determine the number of clusters
k explicitly. For example, from the earliest k-modes [16] and
ROCK [13] to the latest COOLCAT [5], LIMBO [4] and MC
[18], k is an input parameter of the algorithm. Assuming the
k at the beginning is extremely difficult in practice.

There are also some works on using bipartite graph the-
ory to cluster transactional data [1, 19, 10, 24, 9]. Cluster-
ing algorithms based on partitioning bipartite graph usually
generate co-clustering results, where columns and rows of
the dataset are partitioned at the same time. If they are
applied to transactional data, items and transactions are
clustered simultaneously, which unnaturally splits the clus-
ters that overlap over a few frequent items. Furthermore,
the graph-based algorithms are often memory and time con-
suming, thus inappropriate for clustering large transactional
datasets.

3. WCD CLUSTERING ALGORITHM
In this section, we present the WCD clustering algorithm

for transactional data. The key design idea of the WCD
algorithm is the definition of the “Weighted Coverage Den-
sity” based clustering criterion, which tries to preserve as
many frequent items as possible within clusters and controls
the items overlapping between clusters implicitly.

This section is organized as follows: First, we introduce
the concept of Coverage Density (CD) and Weighted Cov-
erage Density (WCD) as intra-cluster similarity measures.
The coverage density measure approximates the naive uni-
form item distribution in the clusters and is primarily used
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to describe the difference between item distributions, while
the weighted coverage density measure describes the frequent-
itemset preferred item distribution in the clusters and is used
in clustering to preserve more frequent itemsets. We also
compare CD and WCD based on their connection to statis-
tical and information theoretic methods. Finally we define
the WCD based cluster criterion, present an overview of the
WCD clustering algorithm, and provide complexity analysis
of the algorithm.

3.1 Notations
We first define the notations of transactional dataset and

transactional clustering result used in this paper. A trans-
actional dataset D of size N is defined as follows. Let
I = {I1, I2, . . . , Im} be a set of items, D be a set of N
transactions, where transaction tj (1 ≤ j ≤ N) is a set of
items tj = {Ij1, Ij2, . . . , Ijl}, such that tj ⊆ I . Let |tj | be
the length of the transaction. A transaction clustering result
CK is a partition of D, denoted by C1, C2, . . . , CK , where
C1

S · · ·S

CK = D, Ci �= φ,Ci

T

Cj = φ.

3.2 Intra-cluster Similarity Measures
In this section we illustrate the concept of Coverage Den-

sity (CD) and the concept of Weighted Coverage Density
(WCD) as intra-cluster similarity measures. To provide an
intuitive illustration of our development of these concepts,
let us map the transactions of D onto a 2D grid graph.
Let the horizontal axis stand for items and the vertical axis
stand for the transaction IDs, and each filled cell (i, j) rep-
resents the item i is in the transaction j. For example, a
simple transactional dataset {abcd, bcd, ac, de, def} can be
visualized in Figure 1.
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Figure 1: An example 2D grid graph

If we look at the filled area in the graph carefully, two
naturally formed clusters appear, which are {abcd, bcd, ac}
and {de, def} indicated by two rectangles in Figure 1. In
the original graph there are 16 cells unfilled, but only 4 in
the two partitioned subgraphs. The less the unfilled cells are
left, the more compact the clusters are. Therefore, we con-
sider that the problem of clustering transactional datasets
can be transformed to the problem of how to obtain the
minimized unfilled number of cells with appropriate number
of partitions. Here, if we try to use bipartite graph based
co-clustering method to partition the transactions and the
items, the result is shown by two straight lines in the right
most part of Figure 1. Obviously co-clustering will result
in the association loss between item c and item d. This is
one of the reasons why we define our clustering problem as
row clustering not co-clustering in our application context.
This simple example also shows that it is intuitive to visu-
alize the clustering structure of the transactions when they
have already been ordered in the specific way as shown in
the left most of Figure 1. Thus how to order and partition

the transactional dataset properly is one of the key issues of
our algorithm.

Bearing this intuition in mind, we define the first concept,
Coverage Density (CD), for evaluating the compactness of
the partitions in terms of the unfilled cells only. In short,
CD is the percentage of filled cells to the whole rectangle
area which is decided by the number of distinct items and
number of transactions in a cluster.

Given a cluster Ck, it is easy and straightforward to com-
pute its coverage density. Suppose the number of distinct
items is Mk, the items set of Ck is Ik = {Ik1, Ik2, . . . , IkMk

},
the number of transactions in the cluster is Nk, and the
sum occurrences of all items in cluster Ck is Sk, then the
Coverage Density of cluster Ck is

CD(Ck) =
Sk

Nk × Mk
=

PMk
j=1 occur(Ikj)

Nk × Mk
. (1)

The coverage density reflects the compactness of a cluster
intuitively. Generally speaking, the larger the coverage den-
sity is, the higher the intra-cluster similarity among the
transactions within a cluster.

However, the CD metric is insufficient to measure the den-
sity of frequent itemset, since in the CD metric each item
has equal importance in a cluster. Namely, if the cell (i,
j)’s contribution to the coverage density consists of transac-
tional contribution Ti and the item contribution Wj . In CD,
both transactional and item contributions are uniform, i.e.,
Ti = T = 1

Nk
and Wj = W = 1

Mk
. CD can be represented

as Ti × PMk
j=1 occur(Ikj) ×Wj = T ×W × PMk

j=1 occur(Ikj),
treating each cell with the same importance as shown in
Figure 3(a).

Another problem with the CD metric is the situation
where two clusters may have the same CD but different
filled-cell distributions. Consider the two clusters in Figure
2: is there any difference between the two clusters that have
the same CD but different filled-cell distributions? This
leads us to develop a heuristic rule for identifying and se-
lecting a better distribution: we consider the cluster with
the coverage density focused on the high-frequency items to
be better in terms of compactness than the cluster with the
same CD but the filled-cell distribution is somewhat scat-
tered with respect to all items.

We now introduce the concept of Weighted Coverage Den-
sity (WCD) to serve for this purpose.
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Figure 3: illustration

of items contribution

Concretely, we put more “weight” on the items that have
higher occurrence frequency in the cluster. This definition
implies that the weight of each item is not a fixed one during
the clustering procedure and it is decided by the current
items distribution of a cluster. Thus, the item contribution
Wj is no longer uniform as shown in Figure 3(b). Now, the
item contribution Wj is defined as the ratio of occurrences
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of each item to the sum of occurrences of all items, namely,

Wj =
occur(Ikj)

Sk
st.

Mk
X

j=1

Wj = 1 (2)

By Equation (2), and without changing the transactional
contribution T , the Weighted Coverage Density of a cluster
Ck can be defined as follows:

WCD(Ck) = T ×
Mk
X

j=1

occur(Ikj) × Wj

=
1

Nk
×

Mk
X

j=1

occur(Ikj) × occur(Ikj)

Sk

=

PMk
j=1 occur(Ikj)

2

Sk × Nk
(3)

Recall the example in Figure 2, by Equation (3), the
weighted coverage density of the cluster on the left is 9

15
,

while the weighted coverage density of the cluster on the
right is 11

15
. Therefore, the cluster on the right is better,

which is consistent with our heuristic rule.

3.3 Comparing CD and WCD
In the above section we have given the intuitive definition

of CD and WCD. We will show that CD and WCD are
inherently connected to some important statistical concepts.

Let random variable X represent the frequency of an item,
we can consider that the occurrences of items in a cluster
Ck as the sample probability density function (PDF) of X,
denoted by f(X). Therefore, CD and WCD are strongly
related to the first moment (the expectation, E[X]) and the
second moment (E[X2]), i.e.,

CD(Ck) = T × E[X]

WCD(Ck) = T × E[X2]

Since E[X2] = E2[X] + V ar(X), for two clusters that
have the same number of transactions (T) and E[X], our
clustering criterion of maximizing WCD will prefer the clus-
ter having higher V ar(X), i.e., deviating more from the sce-
nario that each item has similar frequency. Let p(X = Ikj)
be the proportion of item occurrences Ikj in all item occur-

rences in cluster Ck.
PMk

j=1 p(X = Ikj) log p(X = Ikj) is the
entropy of this cluster. For Mk number of items, this en-
tropy is maximized when each item frequency is the same,
i.e., V ar(X) = 0, when the variance is minimized. There-
fore, maximizing V ar(X) is remotely related to minimizing
the entropy criterion [5, 18, 8]. We will show that WCD
based criterion is more efficient in clustering transactional
data, while also generating high-quality clustering results
preserving more frequent itemsets.

3.4 Weighted Coverage Density based
Clustering Criterion

We define the WCD-based clustering criterion in this sec-
tion and outline the design of the WCD clustering algorithm
in the next section.

To define the WCD-based clustering criterion, we also
take into account of the number of transactions in each
cluster. For a clustering result CK = C1, C2, . . . , CK where
K < N , we define the following Expected Weighted Coverage
Density (EWCD) as our clustering criterion function.

EWCD(CK) =

K
X

k=1

Nk

N
× WCD(Ck)

=
1

N

K
X

k=1

PMk
j=1 occur(Ikj)

2

Sk
(4)

An EWCD-based clustering algorithm tries to maximize
the EWCD criterion.

However, if EWCD is used as the only metric in clus-
tering procedure, an exception occurs when the number of
clusters is not restricted - when every individual transaction
is considered as a cluster, it will get the maximum EWCD
over all clustering results. Therefore, the number of clusters
needs to be either explicitly given or implicitly determined
by other parameters. To avoid blindly setting k or tuning
complicated parameters, we propose the SCALE framework
in Section 5, where a set of candidate “best Ks” is suggested
by the BKPlot method [8].

3.5 WCD Clustering Algorithm
The WCD clustering algorithm uses a partition-based clus-

tering approach. It scans the dataset iteratively to optimally
assign each transaction to a cluster in terms of maximizing
the EWCD criterion. The entire procedure of the WCD-
based clustering can be divided into three phases: the clus-
tering structure assessment phase, the WCD based initial
cluster assignment, and the WCD-based iterative clustering
refinement phase. We call the first phase the WCD algo-
rithm preparation step, which can be performed by using
an existing algorithm that can find the best K or best can-
didate Ks. We refer to the second and third phases as the
WCD clustering step, which is executed by the WCD algo-
rithm.

Concretely, in the clustering structure assessment phase,
we analyze the given transactional dataset to determine the
candidates of critical clustering structure and generate the
best K or a few candidate best Ks. One of the possible
approaches to perform the first task is to use the Best K
method (BKPlot) we have developed [8] for finding the best
candidate Ks for clustering categorical datasets. The main
idea of the BKPlot method is to examine the entropy differ-
ence between the optimal clustering structures with vary-
ing K and reports the Ks where the clustering structure
changes dramatically. In [8] we developed a hierarchical al-
gorithm that is capable of generating high-quality approx-
imate BKPlots, which can capture the best Ks with small
errors. The algorithm also generates a hierarchical cluster-
ing tree, where the cluster seeds can be found at different
Ks. One can also use other available algorithms that can
find the best K in this phase.

In the initial cluster assignment phase, we take the out-
puts from the clustering structure assessment phase and pro-
duce an initial assignment using the WCD algorithm. Con-
cretely, the WCD clustering algorithm takes the K number
of clusters and the cluster seeds at the best Ks as inputs to
define the initial K clusters. Each seed represents an ini-
tial cluster consisting of a few transactions. Given one of
the best Ks, the WCD algorithm performs the clustering
over the entire dataset. It reads the remaining transactions
sequentially, and assigns each transaction to one of the K
clusters, which maximizes the EWCD of the current cluster-
ing result. Our experiments show that the BKPlot method
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can efficiently help reduce the search space and get high
quality clustering result.

Since the initial assignment produced in the second phase
may not be optimal, in the iterative clustering refinement
phase, the cluster assignment is refined in an iterative man-
ner until no more improvement can be made with respect
to WCD on the clustering result. Concretely, the algorithm
reads each transaction in a randomly perturbed order, and
check if the original cluster assignment is optimal in the
sense that the EWCD metric is maximized. If it is not opti-
mal, the transaction is moved to currently best fitted cluster,
which increases the amount of EWCD the most. Any gen-
erated empty cluster is removed after a move. The iterative
phase is stopped if no transaction is moved from one clus-
ter to another in one pass for all transactions. Otherwise,
a new pass begins. Note that the number of iterations may
vary with respect to different random processing sequence
and different clustering structure. It also depends on the
number of clusters. Our experiments in Section 6 show that
two or three iterations are enough for most well structured
small datasets, while more iterations are often required for
large and noisy datasets.

A sketch of the pseudo code for the WCD algorithm is
given in Algorithm 1.

Algorithm 1 WCD.main()

Input: Dataset file D of transactions; Number of clusters
K; Initial K seeds
Output: K clusters
/*Phase 1 - Initialization*/
K seeds form the initial K clusters;
while not end of dataset file D do

read one transaction t from D;
add t into Ci that maximizes EWCD;
write < t, i > back to D;

end while
/*Phase 2 - Iteration*/
while moveMark = true do

moveMark = false;
randomly generate the access sequence R;
while has not checked all transactions do

read < t, i >;
if moving t to cluster Cj increases EWCD and i �= j
then

moveMark=true;
write < t, j > back to D;

end if
end while

end while

Finding the destination cluster for each transaction is the
key step in both phases, which needs to compute/update
EWCD for each possible assignment. To avoid unneces-
sary access and computation, the WCD clustering algorithm
keeps the summary information of each cluster in main mem-
ory and updates it after each assignment. The summary
information of cluster Ck includes the number of transac-
tions Nk, the number of distinct items Mk, the sum oc-
currences of items Sk, the sum square occurrences of items
S2

k =
PMk

j=1 occur(Ikj)
2, the distinct items set Ik in cluster

Ck, and the occurrences of each item Ik[j].occur.
With the summary information, we are able to incre-

mentally compute EWCD. Concretely, the two functions
DeltaAdd and DeltaRemove can perform the incremental
computing by adding one transaction into a cluster or re-
moving one transaction from it respectively. Since the two

functions are similar, we only provide outline of the function
DeltaAdd in Algorithm 2. Let t.I be the set of items in the
transaction t.

Algorithm 2 WCD.deltaAdd(Ck, t)

float deltaAdd (Ck, t)
{

Sk new = Sk + |t|;
ΔS2

k = 0;
for (i = 0; i < |t|; i + +) {

if t.I [i] not exist in Ik then
ΔS2

k + +;
else

ΔS2
k+ = (Ik[j].ocurr + 1)2 − (Ik[j].ocurr)2;

}
return ((S2

k + ΔS2
k)/Sk new) − (S2

k/Sk);
}

3.6 Complexity Analysis
The space consumption of WCD algorithm is quite small,

since only the summary information of clusters is kept in
memory. Let K stand for the number of clusters, and M
stand for the maximum number of distinct items in a cluster.
A total O(K × M) space is necessary for the algorithm.
For a typical transactional dataset with up to ten thousand
distinct items, several megabytes will be sufficient for the
WCD clustering algorithm.

The most time-consuming part is the update of EWCD
to find the best cluster assignment which involves DeltaAdd
and DeltaRemove. Since each DeltaAdd/DeltaRemove costs
O(|t|), the time complexity of the whole algorithm is O(λ×
N ×K × |t|) , where λ is the number of iterations and N is
the number of transactions in dataset. Usually λ, K and the
length of transaction |t| are much smaller than N , i.e. the
running time is almost linear to the size of datasets. So the
WCD clustering algorithm is ideal for clustering very large
transactional datasets.

4. CLUSTER VALIDITY EVALUATION
We have shown the criterion function EWCD, which is

approximately optimized by the WCD algorithm with the
help of the BKPlot method. In this section, we propose two
quality measures for cluster evaluation of transactional data.

LISR− measuring the preservation of frequent itemsets
Since one of the popular applications of transactional data
clustering is to find localized association rules [2], we propose
a new measure called Large Item Size Ratio (LISR) to eval-
uate the percentage of Large Items [21] preserved by clus-
tering. The more large items are preserved, the higher pos-
sibility the frequent itemsets are preserved in the clusters.
An item is a “Large Item” when its occurrences in a cluster
are above the user-specified proportion of transactions. We
name the user-specified proportion as the minimum support,
which is remotely connected with the “minimum support”
of association rules mining. The LISR computing formula is
LISR =

PK
k=1

Nk
N

× LSk
Sk

, where LSk stands for the total

occurrences of Large Items in cluster Ck and Sk stands for
the total occurrences of all items in cluster Ck. In the above
formula, the number of transactions in each cluster is taken
into account in order to reduce the influence of noise tiny
clusters to the whole clustering result. A large LISR means
high concurrences of items and implies the high possibility
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of finding more Frequent Itemsets [3] at the user-specified
minimum support. In practice, users can provide different
minimum supports they are interested for finding association
rules, and then compare the LISRs of different clustering re-
sults to decide which clustering result is the most interesting
one.

AMI− measuring inter-dissimilarity of clusters
As we have shown previously, WCD measure evaluates the
homogeneity of the cluster and tries to preserve more fre-
quent itemsets, while CD only evaluate the homogeneity.
Below we define the heuristic structural difference based on
the CD measure, which is shown effective in describing the
overall inter-cluster dissimilarity in experiments.

Given a pair of clusters Ci and Cj , the inter-cluster dis-
similarity between the Ci and Cj is:

d(Ci, Cj) =
Ni

Ni + Nj
CD(Ci) +

Nj

Ni + Nj
CD(Cj)

−CD(Ci

[

Cj) (5)

Simplifying the above formula, we get d(Ci, Cj) = 1
Ni+Nj

( Si
Mi

+
Sj

Mj
− Si+Sj

Mij
) = 1

Ni+Nj
(Si(

1
Mi

− 1
Mij

) + Sj(
1

Mj
− 1

Mij
)),

where Mij is the number of distinct items after merging two
clusters and thus Mij ≥ max{Mi, Mj} .

Because of 1
Mij

≤ 1
Mi

and 1
Mij

≤ 1
Mj

, d(Ci, Cj) is a real

number between 0 and 1. Here, Si(
1

Mi
− 1

Mij
) describes the

structural change caused by the cluster Ci. Not surprisingly,
when two clusters have the same set of items, that is Mi =
Mj = Mij , d(Ci, Cj) is zero. For two very different clusters
having little overlapping between the sets of items, merging
them will result in a large d(Ci, Cj). Therefore, we say the
above measure evaluates the structural difference between
clusters.

We propose the Average pair-clusters Merging Index (AMI)
to evaluate the overall inter-dissimilarity of a clustering re-
sult having K clusters.

AMI =
1

K

K
X

i=1

Di,

Di = Min{d(Ci, Cj), i, j = 1, . . . , K, i �= j} (6)

AMI is the average dissimilarity between all clusters. The
larger the AMI is, the better the clustering quality.

Some traditional clustering methods try to optimize the
clustering validity measure by combining intra-cluster sim-
ilarity and inter-cluster dissimilarity [17, 14, 21]. However,
this is extremely difficult in practice since we need some
domain-specific weighting parameters to combine the intra-
cluster similarity and the inter-cluster dissimilarity, and the
setting of such parameters may differ from dataset to dataset.
Thus, in our prototype implementation of the SCALE frame-
work (see next section for detail), we choose to optimize
them separately: we optimize the intra-cluster EWCD mea-
sure with the WCD algorithm at the candidate best Ks,
and use the AMI measure to select the best one. Our exper-
iments show that AMI is an effective measure for indicating
the globally distinctive clustering structure. In addition,
LISR is used as a domain-specific measure in the SCALE
framework. Our experiments in Section 6 show that the
WCD algorithm can generate high quality results reflecting
the domain-specific structure.

5. IMPLEMENTING WCD ALGORITHM
WITH SCALE FRAMEWORK

We implement the WCD clustering algorithm and the two
transactional data specific clustering validity metrics using
a fully automated transactional clustering framework, called
SCALE (Sampling, Clustering structure Assessment, cLus-
tering and domain-specific Evaluation). The SCALE frame-
work is designed to perform the transactional data clustering
in four steps as shown in Figure 4. SCALE uses the sam-
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Figure 4: The SCALE framework

pling step to handle large transactional dataset. Standard
sampling techniques are used in the sampling step to gener-
ate some sample datasets from the entire large dataset. The
framework assumes the primary clustering structure (with
small number of large clusters) is approximately preserved
with appropriate sample size.

In the clustering structure assessment step, SCALE de-
termines the candidates of critical clustering structure and
generates the candidate “best Ks” based on sample datasets.
In our prototype implementation, the candidates of critical
clustering structure are recommended by the Best K method
BKPlot developed at Georgia Tech [8]. BKPlot method
studies the entropy difference between the optimal clustering
structures with varying K and reports only those Ks where
the clustering structure changes dramatically as the candi-
date best Ks, which greatly reduces the search space of find-
ing the domain-specific candidate best Ks. In the SCALE
prototype, we use a hierarchical algorithm proposed in [8]
to generate high-quality approximate BKPlots, which can
capture the candidate best Ks with small errors. The al-
gorithm also generates a hierarchical clustering tree, where
the cluster seeds can be found at different Ks. The cluster-
ing structure assessment step outputs the best Ks and the
cluster seeds at the best Ks to the clustering step.

The clustering step applies the WCD clustering algorithm
to perform initial cluster assignment. The initial assessment
result is then used to guide the WCD clustering over the
entire dataset in an iterative manner until no transaction is
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moved from one cluster to another in one pass with respect
to maximizing WCD. At the end of iterative assignment
refinement, a small number of candidate clustering results
are generated. Now we use the domain-specific measures
(AMI and LISR) to evaluate the clustering quality of the
candidate results produced in the clustering step and select
the best one.

We have conducted experimental evaluation using both
synthetic and real datasets. The details are reported in the
next section. Our results show that the weighted coverage
density approach powered by the SCALE framework can
generate high quality clustering results in an efficient and
fully automated manner.

6. EXPERIMENTS
In this section we evaluate the WCD-based clustering ap-

proach using both synthetic and real datasets. Our exper-
iments show three interesting results: (1) the WCD-based
measures are effective in determining the meaningful struc-
tures of transactional datasets; (2) the WCD algorithm is
fast and also capable of generating high-quality clustering re-
sults in terms of the domain-specific measures, compared to
the existing best-performance transactional data clustering
algorithm, CLOPE [23]; (3) the WCD algorithm is scalable
to large transactional data in terms of the related factors.

Here, we would like to give a brief introduction to CLOPE
[23] at first. CLOPE also maps the item/transaction rela-
tionship to a 2D grid graph. However, it defines the intra-
similarity of a cluster based on the ratio of the average
item occurrences to the number of distinct items. A larger
such ratio means the higher intra-cluster similarity. CLOPE
computes the profit of a clustering result as profitr(C) =
PK

i=1
S(Ci)

W (Ci)r
×|Ci|

P
K
i=1 |Ci| , where S(Ci) is the sum occurrences of

items in cluster Ci, W (Ci) is the number of distinct items
of cluster Ci and |Ci| is the number of transactions in clus-
ter Ci. The optimal result is achieved when the profit is
maximized. The repulsion parameter r is introduced in the
profit computing, implicitly controlling the number of clus-
ters. However, there is no guideline to find the appropriate
setting of r and we also find this setting may be different
from dataset to dataset, which make it difficult to apply
CLOPE in practice.

Before reporting the results of our experiments, we first
introduce the datesets used in the experiments.

6.1 Datasets
Our experiments have used two synthetic datasets:

Tc30a6r1000 2L generated by us and TxI4Dx Series gener-
ated by synthetic data generator used in [3]. In addition, we
used two real datasets: Zoo and Mushroom from the UCI
machine learning repository 1.

Tc30a6r1000 2L dataset is generated with a two-layer clus-
tering structure that is clearly verifiable, as shown in Figure
5. We use the same method documented in [8] to generate
the Tc30a6r1000 2L dataset. We want to use this synthetic
dataset to test how well our WCD approach can perform
when the critical clustering structures of the dataset are
determined correctly at the clustering structure assessment
step. It has 1000 records, and 30 columns, each of which
has 6 possible attribute values. The top layer has 5 clus-

1http://www.ics.uci.edu/m̃learn/MLRepository.html

ters with 200 data points in each cluster, four of which have
two overlapping sub-clusters of 100 data points, respectively.
In Figure 5, blank areas represent the same attribute value
0, while non-blank areas are filled with randomly generated
attribute values ranging from 0 to 5. Since it is a generic cat-
egorical dataset, the attribute values are converted to items
in order to run the WCD and CLOPE algorithms.
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Zoo Real dataset Zoo from the UCI machine learning
repository is used for testing the quality of clustering results.
It contains 101 data records for animals. Each data record
has 18 attributes (animal name, 15 Boolean attributes, 1
numeric with set of values [0, 2, 4, 5, 6, 8] and animal type
values 1 to 7) to describe the features of animals. The animal
name and animal type values are ignored in our transformed
file, while the animal type also serves as an indication of
domain-specific clustering structure.

Mushroom Real dataset Mushroom from the UCI machine
learning repository contains 8124 instances, which is also
used for quality testing. Each data record has 22 categori-
cal attributes (e.g. cap-shape, cap-color, habitat etc.) and
is labeled either “edible” or “poisonous”. The dataset con-
tains 23 species of mushroom according to the literature.
Therefore, we assume the domain-specific clustering struc-
ture could possibly have about 23 clusters. We use these
knowledge to assess the clustering results and the effective-
ness of the domain-specific measures.

Mushroom100k We also sample the mushroom data with
duplicates to generate the mushroom100k of 100,000 in-
stances as a real dataset for performance comparison with
CLOPE.

TxI4Dx Series Data generator in [3] is used to gener-
ate large synthetic transactional datasets for performance
test. We first give the symbols used in order to annotate
the datasets. Three primary factors are the average trans-
action size T , the average size of the maximal potentially
large itemsets I and the number of transactions D. For a
dataset having T = 10, I = 4 and 100K transactions is
denoted as T10I4D100K. The number of items and the
number of maximal potentially large itemsets are always
set to 1000 and 2000. We generate 5 groups of datasets
from T10I4D100K to T10I4D500K by varying the number
of transactions and each group has 10 randomly generated
datasets at same parameters. We also generate 4 groups of
datasets from T5I4D100K to T50I4D500K by setting the
average length of transactions as 5, 10, 25 and 50. Also each
group has 10 randomly generated datasets at same param-
eters.
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6.2 Experimental Results

6.2.1 Results on Tc30a6r1000 2L
The candidate Ks generated for Tc30a6r1000 2L at the

clustering structure assessment step is {3, 5, 9}. So we run
WCD algorithm on K = 3, 5, and 9 for Tc30a6r1000 2L.
In order to compare WCD algorithm with CLOPE, we run
CLOPE with r changing from 1.0 to 3.0 and decide the
appropriate r according to the prior knowledge of this syn-
thetic dataset. Since we know the exact clustering structure
of Tc30a6r1000 2L, we are able to find the CLOPE cluster-
ing results matching the best number of clusters. Without
the help of additional knowledge about the clustering struc-
ture, it would be impossible to determine r solely by CLOPE
documented in [23].

We summarize the quality of clustering results with the
measure AMI (Figure 7) and LISR (Figure 6). For CLOPE
results on Tc30a6r1000 2L, we show the AMI values for r
varying from r = 1.0 to r = 2.5. The best clustering results
include a five-cluster clustering result with r = 2.0 and a
nine-cluster clustering result with r = 2.43. LISR curves
show that CLOPE often gives much worse results at higher
minimum supports. The cluster-class confusion matrix in
Figure 9 also shows that WCD produces better results than
CLOPE. The rows of confusion matrix stand for clusters and
the columns stand for the original class definition given by
the literature.
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6.2.2 Results on Zoo and Mushroom
The candidate Ks generated at the clustering structure

assessment step are {2, 4, 7} for Zoo and {2, 4, 6, 15,
19, 22, 29} for Mushroom. The literature shows the most
likely K for Zoo is 7, and it could be around 23 for Mush-
room. We run the WCD clustering algorithm on the trans-

formed datasets with different Ks and seeds to get the candi-
date clustering results. We also run CLOPE on Mushroom
with parameter r = 2.6 to get 27 clusters, as suggested in
[23]. Since there are no reported results of CLOPE on Zoo
dataset, we try CLOPE with varying r to find the result
that is closest to the domain-specific structure. We find
that CLOPE generates 7 clusters only when r is varied from
2.41 to 2.54, and the clustering result at r = 2.5 is selected
for comparison.

Table 1: AMI for Mushroom
DataSets approach K AMI

Mushroom WCD 2 0.054954
4 0.120967
6 0.116561
15 0.091988
19 0.116521
22 0.081510
29 0.078027

CLOPE (r = 2.6) 27 0.105191
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The AMI values in Figure 8 and Table 1 show that the
WCD results are better than CLOPE’s at the candidate Ks.
To compare over different Ks, the AMI index also suggests
the WCD result at K=7 is the best for Zoo, and WCD results
at K=4, 6, 19 for Mushroom are outstanding.

Figure10 and Figure11 show the comparison of WCD and
CLOPE using the LISR measure for Zoo and Mushroom
datasets. Consistently, the LISR graphs of Zoo (Figure10)
and of Mushroom (Figure11) suggest that the WCD results
at K=7 for Zoo and K=19 for Mushroom are the best re-
sults. In summary, the experimental results on both Zoo
and Mushroom datasets demonstrate that the LISR and
AMI measures can help to find the clustering structures
that are consistent with the documented structures, and
that the WCD approach generates better clustering results
than CLOPE, with the additional advantage of no parame-
ter tuning .

6.2.3 More about AMI

It is interesting for us to find that AMI index is consistent
with the results produced in the clustering structure assess-
ment step using BKPlot on some datasets. Figure 7 and
8 have already shown that the AMI values at the best Ks
suggested by BKPlots for the 2-layer synthetic dataset and
the real zoo dataset. Figure 12 and 13 plot the AMI curves
with varying K for these two datasets, respectively. The
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global peak values (K=5 for Tc30a6r1000 2L and K=7 for
Zoo) always appears at one of the candidate Ks suggested
by BKPlot.

6.2.4 Performance Evaluation on Mushroom100k
We compare the CLOPE and WCD on the running time of

algorithms by varying the number of clusters and by varying
the size of dataset.

First, we run CLOPE by varying r from 0.5 to 4.0 with
step value 0.5. The running seconds and the number of clus-
ters are reported for each r. The number of clusters is 17, 18,
27, 30, 31, 32, 41 and 64 for different r values, respectively.
Correspondingly, we run WCD on these numbers of clusters
and get WCD running seconds. The comparison in Figure
14 shows that the cost of WCD is much less than that of
CLOPE with respect to the number of clusters produced.

Second, we run CLOPE on 10%, 50% and 100% size of
Mushroom100k with r = 2.0 and get the number K of clus-
ters are 22, 23, and 30, respectively. Then we run WCD us-
ing the same numbers of clusters on the same set of datasets.
The results in Figure 15 show that WCD is also much faster
than CLOPE with respect to the size of the dataset.
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6.2.5 Performance Evaluation on TxI4Dx Series
In this section we further study the performance of WCD

on large synthetic transactional datasets. The time com-
plexity of WCD algorithm is O(λ × N × K × |t|). Since
the number of iterations, λ, is not controllable, we study
the other three factors: the number of transactions N , the
number of clusters K, and the average length of transactions
|t|. TxI4Dx series are used in this set of experiments.

We first did experiments on 5 groups of T10I4Dx datasets
with different size from 100K to 500K and set the number of
clusters K = 10, 50, 100 separately. Each group has 10 ran-
domly generated datasets with the same parameter setting
and we average the running time of 10 datasets as the final

running time of each group. Figure 16 and Figure 17 show
that the overall cost is almost linear in terms of the size of
dataset and the number K of clusters.

Then we did experiments on another 4 groups of TxI4D100K
datasets with different average length of transactions and
different number of clusters. Figure 18 shows for small num-
ber of clusters (K ≤ 50), the average length of transactions
is approximately linear to the running time, while for large
K, such as K = 100, it becomes nonlinear. Since we are
more interested in the clustering structure with small num-
ber of clusters (K ≤ 50), the WCD algorithm is also scalable
to the average length of transactions.

7. CONCLUSION
We have presented WCD − a fast, memory-saving and

scalable algorithm for clustering transactional data, includ-
ing two transactional data specific cluster evaluation mea-
sures: LISR and AMI. We implemented the WCD clustering
algorithm and the LISR and AMI clustering evaluation us-
ing SCALE − a fully automated transactional data cluster-
ing framework, which eliminate the complicated parameter
setting/tuning required by existing algorithms for cluster-
ing transactional data. Concretely, the SCALE framework
is designed to perform the transactional data clustering in
four consecutive steps. It uses sampling to handle large
transactional dataset, and then performs clustering struc-
ture assessment step to generate the candidate “best Ks”
based on sample datasets. The clustering step uses the
WCD algorithm to perform the initial cluster assignment
and the iterative clustering refinement. A small number
of candidate clustering results are generated at the end of
the clustering step. In the domain-specific evaluation step,
the two domain-specific measures (AMI and LISR) are ap-
plied to evaluate the clustering quality of the candidate re-
sults produced and select the best one. We have reported
our experimental evaluation results with both synthetic and
real datasets. We show that compared to existing trans-
actional data clustering methods, the WCD approach (the
WCD clustering algorithm powered by the SCALE frame-
work) can generate high quality clustering results in a fully
automated manner with much higher efficiency for wider
collections of transactional datasets.
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