
 

THEME ARTICLE: Healthcare Informatics and Privacy 

Toward Practical Privacy-
Preserving Analytics for 
IoT and Cloud-Based 
Healthcare Systems 

Modern healthcare systems now rely on advanced 

computing methods and technologies, such as 

Internet of Things (IoT) devices and clouds, to collect 

and analyze personal health data at an 

unprecedented scale and depth. Patients, doctors, 

healthcare providers, and researchers depend on 

analytical models derived from such data sources to 

remotely monitor patients, early-diagnose diseases, 

and find personalized treatments and medications. However, without appropriate 

privacy protection, conducting data analytics becomes a source of a privacy nightmare. 

In this article, we present the research challenges in developing practical privacy-

preserving analytics in healthcare information systems. The study is based on 

kHealth—a personalized digital healthcare information system that is being developed 

and tested for disease monitoring. We analyze the data and analytic requirements for 

the involved parties, identify the privacy assets, analyze existing privacy substrates, and 

discuss the potential tradeoff among privacy, efficiency, and model quality. 

A modern healthcare system is a complex data-driven mesh that relies on continuous patient 
monitoring, data streaming and sharing, and use of advanced big data analytics to provide essen-
tial health services to patients. It consumes information from patients’ electronic health records 
(EHRs), including past diagnoses, hospital visits, interactions with the doctors, lab results (e.g., 
x-rays, MRIs, and EEG results), past medications, treatment plans, and post-treatment complexi-
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ties.1 Furthermore, it consumes Internet of Things (IoT) sensor data that track and stream the pa-
tients’ physical attributes such as activity level, heart rate, oxygen saturation, temperature, and 
respiration flow rates in a synchronous manner. A modern healthcare system stores and analyzes 
the collected data to build analytic models that provide a myriad of health services to the pa-
tients, such as real-time monitoring for identifying health anomalies.2 

Easily available IoT devices and a plethora of diverse datasets have opened the doors to building 
competitive personalized health analytics models able to detect abnormal changes in one’s 
health, predict the likelihood of a clinical event, and warn about the onset of conditions. The 
types of models and analytics involved vary from simple statistical aggregations to more com-
plex data mining and machine learning, including natural-language processing and even deep 
learning. Patients can now subscribe to monitoring services or emergency detection platforms 
that use data-generated models to detect health anomalies, suggest preventive measures or home 
remedies, and trigger hospital visits on the basis of severity. 

The advantages of data-driven healthcare systems, however, come with a price, an extraordinary 
effort to protect patients’ privacy without compromising the utility of the data and associated 
healthcare services. Like in education and social networking, protecting privacy in healthcare 
systems is urgent and challenging because of the sensitivity of the associated data and the multi-
faceted exposure of the healthcare systems. Unauthorized exposure of sensitive healthcare data 
not only violates the US Health Insurance Portability and Accountability Act (HIPAA) but also 
can have lifelong social, economic, and health-related consequences for the patients. 

Doctors, nurses, lab technicians, emergency responders, and prescription handlers constitute the 
healthcare teams and have access to patients’ data. Similarly, researchers and other model con-
sumers require patients’ data and the generated models for their scientific studies and commer-
cial purposes, including some potentially against patients’ best interests. In addition, the sheer 
amount of data and associated complexity of analytics require healthcare systems to employ 
third-party cloud infrastructure providers for massive-scale parallel processing and data storage. 
These exposures cannot be eliminated because of the critical roles the participating entities play. 

The Privacy Challenges. Preserving data privacy from adversary parties in a healthcare infor-
mation system without affecting data utility, model learning, and data sharing is challenging. An 
ideal privacy situation would require data and models to always be protected outside the data 
contributors’ or the users’ personal devices. Privacy must be maintained throughout the storage, 
processing, and communication phases of an analytic task. 

Such an ideal privacy is almost unachievable. For instance, applying supersecure encryption 
schemes, such as AES-256 encryption, to protect data from potential adversaries seriously jeop-
ardizes computations and services a typical healthcare service provider yearns to provide. On the 
other side, settling with something simpler like data anonymization or order-preserving encryp-
tion proves to be inadequate against privacy breaches and information theft. 

The selection of a data protection method also affects the design of privacy-preserving analytics 
algorithms. As protection techniques provide room for only limited operations on the obfuscated 
data, complex algorithms must be disintegrated to these simpler operations. For example, a 
framework using homomorphic encryption to protect data must express the data-mining algo-
rithms in terms of simple homomorphic additions and multiplications. 

Furthermore, privacy-preserving frameworks incur increased overall communication, storage, 
and computation costs, many times making them hapless in real-world scenarios. For example, 
even the cost-effective additive homomorphic encryption scheme, Paillier encryption, turns a 
floating-point plaintext value into a 256-byte ciphertext with a 1,024-bit security key, and it 
takes about 5 seconds to sum 1,000 such encrypted ciphertexts. Thus, it becomes vital to distrib-
ute the total workload of privacy-preserving frameworks to their participants relative to the re-
sources available to them. A practical framework must ensure that the resource-constrained 
parties perform lighter-complexity tasks, while the expensive tasks are parallelized at the re-
source-abundant party, such as a cloud. 
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Goals. Using the context of kHealth, a mobile digital health monitoring and management system 
currently being evaluated with patients and physicians, we elaborate on the privacy risks, fea-
tures, and challenges of privacy-preserving analytics in IoT- and cloud-based healthcare infor-
mation systems. We focus on the building of privacy-preserving data-mining algorithms relevant 
to healthcare informatics and then analyze the candidate solutions. While discussing these solu-
tions, we will try to understand their intrinsic tradeoffs among privacy, cost, and utility. 

IOT HEALTHCARE FRAMEWORK 
We use an IoT-based health-monitoring system, kHealth (http://knoesis.org/projects/kHealth),3 
to illustrate typical IoT healthcare system frameworks. kHealth uses both personal and physio-
logical observations, sensed with wearable devices on subscribed patients, as well as population-
level (e.g., Twitter and a weather service) and public-level (e.g., US Centers for Disease Control 
and Prevention- and hospital-provided) data, to generate personalized predictive models. 

The IoT sensors track and stream to the kHealth provider readings such as peak respiratory flow 
rate, weight, and activity level, along with the location and other environmental attributes (e.g., 
the outdoor air quality index and pollen, humidity, mold, ozone, hydrocarbon, nitric oxide, car-
bon monoxide, and carbon dioxide levels). In addition to the sensor data, the kHealth provider 
exploits public datasets that provide statistics about the propensity of disease occurrences for 
various demographic and socioeconomic features. kHealth deploys machine-learning and other 
data-mining models, including Semantic Web technology, to analyze and identify the status of a 
patient’s condition and to send cautions or alarms indicating the need for immediate medical 
care. 

In summary, kHealth abstracts health signals from wearable devices and other various datasets, 
extracts relevant features, and builds personalized health predictive models for its subscribers 
and authorized researchers or doctors. 

Involved Parties 
A system like kHealth involves several parties: 

• the healthcare system provider (the service provider or SP), 
• patients (the distributed data contributors or users), 
• medical providers (doctors, hospital staff, and nurses), 
• researchers (the model or data consumers), and 
• the cloud on which the healthcare system provider may rely for data processing and 

storage. 

Figure 1 shows the kHealth system, the involved parties, and their interactions. 

 
Figure 1. Left: The kHealth framework for asthma management. Right: The involved parties and 
interactions. Encrypted personal sensor data and electronic health records (EHRs), together with 
public- and population-level data, are collected and analyzed to build and distribute models that aid 
in asthma control and continuous monitoring for asthma outbreaks. The kHealth service provider 
may use a cloud to process data. Personalized models are transferred to the patients’ devices, and 
global models are shared by model consumers. 
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SPs store patients’ data (encrypted, perturbed, or anonymized, and without any personally identi-
fiable information [PII]) and are interested in data-mining and maintaining propriety of the col-
lected data and learned models. An SP may choose to outsource data and computation to a cloud 
provider that delivers infrastructure for storage and analytics. The users or the patients are dis-
tributed individuals who subscribe to an SP’s services. They may possess wearable sensors, 
healthcare-monitoring devices, and smartphones acting as sensors or gateways to the SP. 

The data or model consumers in the framework are the doctors, healthcare providers, or re-
searchers who avail themselves of the data and insights brought by the generated models. The 
doctors are concerned with monitoring the patients and detecting any abnormalities remotely, 
while the researchers are driven to a broader perspective—for example, studying the prevalence 
of a symptom in a control group of patients or performing longitudinal studies. In some scenar-
ios, the doctors and healthcare providers might also contribute patients’ EHRs and lab assess-
ments to be shared with the SP. 

Analytics Components 
Several data-analytic methods are prevalent in digital-health applications. From statistics to ma-
chine learning, there are important real-life applications of these data-mining categories. The 
core of privacy-preserving analytics is to develop the privacy-preserving versions of these algo-
rithms that work with different systems and security assumptions. 

Statistical Summarization. Statistical summarization of an individual’s data provides valuable 
knowledge about his or her medical condition. Statistical measure of global, population, and per-
sonal observations can be both descriptive and inferential. 

Supervised Learning. Automated classification, regression analysis, and neural networks are 
invaluable components of IoT-based healthcare systems. With domain-expert-labeled examples, 
supervised learning can effectively aid in diagnosing illnesses, identifying disease phenotype at-
tributes from genome-wide association studies, and predicting global outbreaks of diseases. 

Unsupervised Learning. When data lacks class labels and is extremely large and therefore diffi-
cult to manually annotate, unsupervised learning is applied. These methods, such as clustering, 
semantic indexing, and dimensionality reduction, help identify the patterns and trends in 
healthcare data. 

Analytic models learned by a service provider can be of a global or personalized nature. Exam-
ples include a global model that predicts the outbreak of a disease based on collections of patient 
data from different regions and a personalized health alarm system that adapts to an individual’s 
unique health conditions. 

APPLICATION SCENARIOS AND PRIVACY ISSUES 
An IoT- and cloud-based framework as described in the section “IoT Healthcare Framework” 
must address several privacy issues and challenges. Depending on the application scenario and 
variations in the involved parties, their trustworthiness, and the constituting interactions, the pri-
vacy issues and challenges differ. 

In this section, we first discuss the private assets at risk and then examine two important applica-
tion scenarios in typical IoT-based health informatics frameworks: outsourced computation and 
information sharing. Outsourced computation relates to everything that happens to users’ data 
outside the perimeter of their personal devices and home networks. It is vital to examine the ex-
tent of privacy exposure to the involved parties during storage, analytics, communication, and 
intermediate phases in the outsourced scenarios. On the other hand, information sharing enables 
interested parties to learn global models or data or share their data to learn models together. It 
must be ensured that there is no breach to individual privacy while sharing data and models. We 
identify the privacy exposures and discuss ways to mitigate them in both categories. 
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Privacy Assumptions. Typically, when we consider the privacy issues only, we can assume that 
all adversarial parties are “honest but curious.” That is, they perform their tasks obediently—
guaranteeing data and model integrity and following the provided protocols exactly. However, 
they might surreptitiously snoop for information to benefit from. We assume all infrastructures 
and communication channels are secured from external hacking, co-resident attacks, or active 
breaching with strong security means. Research on infrastructures and communication security 
together with data and model integrity checking is orthogonal to this article’s objectives. 

Private Assets at Risk 

User Data 
An SP collects diverse data from the users, including EHRs and sensor data. In the proposed 
kHealth framework, the collected data may be of a personal and sensitive nature. Direct observa-
tion or inferences from attributes such as activity levels, location, respiratory flow rate, weight, 
and heart rate may reveal an individual’s health conditions, activity patterns, location traces, and 
life choices. Adversaries might be interested in the values of specific data records such as the 
feature attributes, the frequencies, and the group associations or the class labels. 

Generated Models 
An SP generates several statistical, data-mining, and machine-learning models to serve the needs 
of patients, the doctors, and itself. The global models must not be biased toward an individual or 
a certain group; i.e., they should not aid in distinguishing one individual from another. The per-
sonalized models must be delivered to only the authorized individuals—for example, a patient’s 
doctor—in a private manner. 

An adversary can examine a model and test it to probe into an individual’s private information. 
This is a critical problem when the adversary knows the type of model being generated or the 
approximate subjects of data collection. For example, a disease detection model based on sub-
jects’ physical, racial, and spatial attributes, when leaked, allows an adversary to plug individu-
als’ visible attributes into the model to infer their health condition. 

Intermediate Results 
The intermediate results of model learning can reveal information about both the model and the 
training data. The adversary should not be able to gather any relevant user information from such 
results. Although knowing some of the intermediate results—e.g., the number of iterations, the 
convergence of a model, the size of a model, and the elapsed time—might be essential for accu-
rate model learning, care must be taken so that no additional knowledge is revealed to an adver-
sary besides what is already known. 

Outsourced Computation 
Outsourced computation has become common with the development of cloud computing and 
popular use of mobile and IoT devices. Protecting privacy in outsourced computation involves 
two typical scenarios: outsourcing tasks by SPs to untrusted cloud providers for resource-inten-
sive processing, and resource-restricted users outsourcing to untrusted SPs. 

Trusted Service Providers Outsourcing to an “Honest but Curious” 
Cloud Provider 
A fully trusted SP gathers subscribed patients’ data, then analyzes the data to construct predic-
tion models. No privacy risk is suspected from the SP, its associates, or any third party involved. 
As kHealth is a research product of a reputed university and government funding, we can safely 
establish it as a trusted SP. Often, a trusted SP must depend on public-cloud infrastructures for 
storage and computing elasticity. One immense advantage of such a setup to the SP is that it can 
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outsource heavier computations to the cloud provider without having to maintain expensive in-
house infrastructures. 

The SP needs to shield all the privacy assets from the cloud provider, as the curious cloud may 
use the assets to derive its own models for its commercial gain. This mandates that data be en-
crypted or perturbed by the SP or its subscribing users before submission to the cloud. Mean-
while, introducing privacy to the framework should preserve the benefits of cloud computing: 
the heavier storage and higher-complexity computations should be carried out by the cloud pro-
vider and the SP, or the users must be minimally involved. Thus, frameworks like kHealth must 
ensure that the cloud takes over the complex data-mining algorithms working with encrypted or 
perturbed data while minimizing the patients’ and the SP’s involvement. An example of such a 
framework is presented in “Privacy-Preserving Spectral Analysis of Large Graphs in Public 
Clouds.”4 That paper proposes a framework that protects all privacy assets from the cloud pro-
vider while achieving the objective of outsourcing storage and spectral analysis to a public cloud. 

Users Outsourcing to an “Honest but Curious” Service Provider 
This is an extreme scenario where the users do not trust the SP itself; i.e., the SP might be com-
mercially motivated or not credible enough to win users’ faith. The users, however, are allured 
by the services the SP offers. When an SP is not a reputed organization or a government entity—
for example, a commercial-activity-tracking analytics provider—it can be considered an honest-
but-curious party. All the privacy assets must be protected from such an SP and any third party it 
collaborates with, including the cloud. The privacy constraints obligate the SP to provide its us-
ers with a mechanism to submit encrypted or protected data and to develop algorithms that gen-
erate analytic models using the obfuscated datasets. 

This is a particularly tricky situation as complex data analytics becomes very expensive, if not 
impossible, over encrypted data without intermediate decryption or unmasking. A possible rem-
edy is to introduce another honest-but-curious party, called a cryptographic service provider 
(CSP), which will manage secret keys, decrypt intermediate results, and assist the SP to finish 
the modeling task. The CSP’s workload should be appropriate (i.e., the heavy processing must be 
done by the cloud or the SP). Most important, the CSP must be held accountable to the users and 
cannot collude with the SP. Researchers have proposed CSP-based frameworks to build privacy-
preserving ridge regression and matrix factorization.5 Figure 2 depicts a framework where the SP 
and CSP learn models over encrypted or masked data and the generated models are decodable by 
only the individual users. 

 
Figure 2. Predictive models are collaboratively generated by an honest-but-curious cryptographic 
service provider and the service provider (the healthcare system provider) with preserved privacy. 

47March/April 2018 www.computer.org/internet



 

 HEALTHCARE INFORMATICS AND PRIVACY 

Information Sharing 
Healthcare analytics and data must be shared from time to time with both trusted and semitrusted 
parties, including researchers, medical providers, insurance companies, pharmacies, lab techni-
cians, etc., to allow them to learn global trends or models without breaching individual privacy. 
For example, in the kHealth framework, researchers wish to access the users’ datasets to analyze 
global patterns or test new algorithms. The kHealth provider must take care of the individuals’ 
privacy when sharing the private data with the model consumers or other health service provid-
ers. 

Broadly, information sharing happens in three ways: 

• An interactive manner. An SP provides a query interface to the data consumers who 
submit statistical queries. 

• A noninteractive manner. An SP publishes curated datasets with users’ identities and 
virtual identifiers removed, for researchers or consumers to explore. 

• A collaborative manner. Multiple parties (e.g., several SPs) collaboratively generate 
models from combined or shared data without revealing raw private data. 

The interactive setting is considered the easiest to apply privacy walls in, as an SP may strictly 
define the types and numbers of queries allowed through its interfaces via mechanisms like dif-
ferential privacy.6 The noninteractive setting opens doors to a more severe form of privacy leak-
age, as there is no control on types of attacks, and model consumers can learn from the public 
datasets. Collaborative model learning by multiple parties—for example, two or more hospi-
tals—from the union of their datasets without revealing the data to one another is addressed by 
secure multiparty computation (SMC) using protocols such as Shamir’s secret sharing.7 

CANDIDATE PRIVACY-PRESERVING BUILDING 
BLOCKS AND TRADEOFFS 
In this section, we outline the fundamental building blocks of privacy-preserving frameworks 
and their tradeoffs among multiple factors. Any healthcare informatics platform that falls under 
the application scenarios that we described in the section “Application Scenarios and Privacy 
Issues” needs to use one or more of these building blocks to ensure privacy-preserving analytics. 
It is crucial to be familiar with these methods and comprehend their advantages and disad-
vantages. A fine balance among the tradeoffs of cost, privacy, and data utility may be possible 
when these methods are well understood and applied to the privacy-preserving analytic frame-
works. 

Methods and Tradeoffs for Outsourced Computation 

Expressive but Expensive Methods 
The two well-known generic approaches for privacy-preserving computation on untrusted plat-
forms are fully homomorphic encryption (FHE) and Yao’s garbled circuit (GC) together with 
oblivious transfer (OT). FHE allows an arbitrary number of additions and multiplications on en-
crypted data without decryption. GC provides basic logic gates such as AND, XOR, and OR, 
with which more complex circuits can be implemented. Conceptually, these techniques can be 
used to construct any data-mining algorithm. However, the schemes are very expensive in stor-
age, communication, and computation. The ciphertext resulting from FHE schemes8 becomes 
several magnitudes larger than plaintext data, placing an excessive burden on storage and com-
munication. Likewise, the best optimized GC implementation incurs impractical communication 
costs between the participating parties.5 Moreover, building and implementing complex algo-
rithms with GCs is a challenging task. 
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Efficient but Less Expressive Methods 
If both the highest privacy preservation (e.g., semantic security) and practicality are desired, the 
best hope is the use of somewhat homomorphic encryption (SHE) and additive homomorphic en-
cryption (AHE) schemes. The popular SHE schemes include the ring learning with error 
(RLWE)8 and pairing (BGN [Boneh, Goh, and Nissim])9 schemes, which allow an arbitrary 
number of homomorphic additions with one9 or a small number of multiplications (e.g., <5).8 
This limitation restricts the types of data-mining algorithms that can apply SHE schemes to adapt 
to the privacy standards. Moreover, an RLWE cryptosystem suffers from a heavier cipher size, 
which means heavier communication and storage costs. Although efficient methods for message 
packing exist, the cost of manipulating the packed messages is still high. Despite the challenges 
and limitations, the RLWE scheme has been used in the ML Confidential method for classifier 
learning.10 The BGN scheme, on the other hand, suffers from unacceptable decryption perfor-
mance for larger integers (16 or 32 bits), making it impractical in analytics requiring high preci-
sion and involving large datasets. 

The Paillier cryptosystem is a popular AHE scheme, efficient in encryption, decryption, and ho-
momorphic computation, and its cipher size is much smaller than the RLWE scheme. However, 
it requires one of the operands in homomorphic multiplication to be unencrypted, which causes 
privacy leakage. Hence, the use of any AHE scheme must be complemented with methods to 
protect the unencrypted operand. A good example is the PrivateGraph4 approach, designed for 
privately analyzing outsourced graph data in the cloud. It uses the Paillier cryptosystem to en-
crypt data and protects the unencrypted operands in homomorphic multiplications with a novel 
noise-generation mechanism and an efficient noise-recovery mechanism. The approach achieves 
a practical work allocation between the cloud and the data owner—the cloud takes over the 
O(N2) operations that can be further improved with parallel processing, while the data owner’s 
cost is O(N). 

Efficient Methods with Weaker Privacy Notion 
If one can settle for weaker-security notions, data perturbation methods11,12 and order-preserving 
encryption (OPE) schemes13 are the best choices. 

Data perturbation techniques such as additive perturbation, rotation perturbation, random projec-
tion perturbation, geometric perturbation,11 and random space perturbation (RASP)12 transform 
entire datasets with noise injection for outsourcing. Unlike the homomorphic encryption schemes 
discussed earlier, data perturbation normally applies mathematical transformations for floating-
point values directly, and thus is much more efficient. Some techniques such as geometric per-
turbation11 are extremely versatile, as many existing data-mining algorithms, without any modi-
fications, can be applied to the perturbed datasets to learn models. Despite their practicality and 
ease of use, data perturbation techniques are vulnerable when attackers identify from external 
sources the original data distributions. One exception is the RASP mechanism, which proves to 
be resilient to distributional attacks as well.12 

OPE methods preserve the ordering relationship among encrypted values, enabling indexing of 
encrypted values. However, it also assumes adversaries do not know the original data distribu-
tion. 

Methods and Tradeoffs for Information Sharing 
So far, the most accepted scheme for information sharing is differential privacy,6 for its rigorous 
theoretical foundation. Differential privacy requires perturbing the outputs of sensitive functions, 
which affects the quality of models learned from the functional outputs. A tradeoff between 
model quality and privacy may exist if the models are sensitive to the perturbation. Therefore, 
differential privacy may not be ideal for applications requiring the highest-quality models. In ad-
dition, it is difficult to satisfy differential privacy in a noninteractive setting.14 
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Data anonymization methods15 have been used for microdata publishing (i.e., the noninteractive 
setting). However, without rigorous theoretical foundation, they suffer from various background-
knowledge-based attacks. Shamir’s secret sharing7 allows dispersion of secrets among several 
parties such that the secrets can be revealed only when a threshold number of parties agree. The 
parties can also partake in a secure multiparty computation (SMC) interaction to generate collab-
orative models with the shared secrets without revealing the underlying raw data. One disad-
vantage of this scheme is that all the participants need to be intensively involved in the 
computation. 

CONCLUSION 
In this article, we dissected the state of privacy of modern IoT-based healthcare systems that rely 
on patients’ data to produce predictive models beneficial to the patients, medical providers, and 
researchers. A straightforward solution that guarantees privacy together with practical and qual-
ity outcomes is difficult to blend. First, a careful analysis of the involved parties, the privacy as-
sets at risk, the desired algorithms or models and model quality, and the audience of the models 
must be conducted. Depending on the desired analytics and privacy level, an additional party 
such as a cryptographic service provider might need to be introduced to a framework. Privacy 
primitives such as homomorphic encryption schemes, data perturbation, and differential privacy 
may be applied in the healthcare frameworks after ensuring the correctness and balancing the 
associated cost of computation, communication, and storage. 

It might not be possible to implement the best healthcare-modeling algorithms in the privacy 
standard because of numerous tradeoffs and restrictions. However, the drawbacks must be com-
pensated with parallelizable methods such as ensemble learning to generate reliable models. 
Modern healthcare frameworks like kHealth can overcome privacy challenges and yet be practi-
cal if the right privacy building blocks and the applicable scenarios are identified and imple-
mented. When the privacy and practicality aspects of privacy-preserving healthcare informatics 
are balanced, we will see development of fruitful healthcare applications and their fast and effec-
tive adaptation. 
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