
Confidential Boosting with Random Linear Classifiers
for Outsourced User-generated Data

Sagar Sharma, Keke Chen

Data Intensive Analysis and Computing (DIAC) Lab, Kno.e.sis Center,
Wright State University {sharma.74,keke.chen}@wright.edu

Abstract. User-generated data is crucial to predictive modeling in many appli-
cations. With a web/mobile/wearable interface, a data owner can continuously
record data generated by distributed users and build various predictive models
from the data to improve their operations, services, and revenue. Due to the large
size and evolving nature of users data, data owners may rely on public cloud
service providers (Cloud) for storage and computation scalability. Exposing sen-
sitive user-generated data and advanced analytic models to Cloud raises privacy
concerns. We present a confidential learning framework, SecureBoost, for data
owners that want to learn predictive models from aggregated user-generated data
but offload the storage and computational burden to Cloud without having to
worry about protecting the sensitive data. SecureBoost allows users to submit
encrypted or randomly masked data to designated Cloud directly. Our frame-
work utilizes random linear classifiers (RLCs) as the base classifiers in the boost-
ing framework to dramatically simplify the design of the proposed confidential
boosting protocols, yet still preserve the model quality. A Cryptographic Service
Provider (CSP) is used to assist the Cloud’s processing, reducing the complex-
ity of the protocol constructions. We present two constructions of SecureBoost:
HE+GC and SecSh+GC, using combinations of homomorphic encryption, gar-
bled circuits, and random masking to achieve both security and efficiency. For a
boosted model, Cloud learns only the RLCs and the CSP learns only the weights
of the RLCs. Finally, the data owner collects the two parts to get the complete
model. We conduct extensive experiments to understand the quality of the RLC-
based boosting and the cost distribution of the constructions. Our results show
that SecureBoost can efficiently learn high-quality boosting models from pro-
tected user-generated data.

1 Introduction
It is a common scenario in which a data owner delivers services such as search engines,
movie recommendations, healthcare informatics, and social networking to its subscrib-
ing or affiliated users (henceforth referred as users) via web/mobile/wearable applica-
tions. By collecting users’ activities such as clickthroughs, tweets, reviews, and other
information, the data owner accumulates a large amount of user-related data, which are
used to build analytic models aimed at improving the quality of related services and
operations, and increase revenues. However, due to the ever-growing size of data and
associated computation complexities, data owners often rely on easily available public
cloud services (Cloud) to outsource storage and computations.

The reliance on Cloud for the massive collection of user data along with build-
ing powerful big data analytic models raise great concerns of user privacy and intel-
lectual property protection. First, the Cloud’s infrastructures, if poorly secured, can
be compromised by external hackers which damages the data owner’s reputation and
users’ privacy. Recent data breach incidents involved Target, Ashley Madison, and
Equifax [27,33]. Second, the potential threat of unauthorized retrieval, sharing, or mis-
use of sensitive data by insiders [7, 10] are difficult to detect and prevent. The data
owners have a great responsibility for protecting the confidentiality of the sensitive data
collection and analytics in Cloud. Thus, confidential data mining frameworks for out-
sourced data are highly desirable to data owners. Note that differential privacy does not
fully address the problem, as it does not protect intellectual property and not prevent
model-inversion attacks [13, 32] as models are exposed to adversaries.

Naive applications of the well-known cryptographic primitives such as the fully ho-
momorphic encryption (FHE) scheme [17], garbled circuits (GC) [34], and secret shar-
ing [9] in building confidential computing frameworks prove too expensive to be prac-
tical [26, 29]. A few recent studies [9, 28–30] started blending multiple cryptographic
primitives and adapted to certain privacy architectures to work around the performance
bottlenecks. These “hybrid” constructions mix different cryptographic primitives to im-
plement the key algorithmic components of a protocol with reasonable overheads.

While the hybrid approach is promising, it does not fundamentally address the basic
complexity of building a confidential version of a learning algorithm. We believe it is
more critical to modify the original algorithm or adopt a “crypto-friendly” alternative
algorithm to significantly reduce the associated complexity. However, the current so-
lutions are mostly focusing on translating the original algorithms to confidential ones,
from simple linear algorithms such as linear classifiers and linear regressions [18,28,30]
with weak prediction power, to powerful yet enormously expensive models such as shal-
low neural networks [28].

1.1 Scope of Work and Contributions
While deep learning methods [25] have dominated the image and sequence-based learn-
ing tasks, boosting is among the most powerful methods such as SVM and Random
Forest [5] for other prediction tasks. For example, it has also been a popular method
(e.g., XGBoost [8]) in learning to rank [6] and a top choice of many Kaggle competi-
tion winners. Surprisingly, no work has sufficiently explored the power of boosting in
confidential learning.

The core idea of our SecureBoost approach is to fully utilize the powerful boosting
theory [14] that requires only weak classifiers (e.g., each classifier’s accuracy is only
slightly exceeding 50% for two-class problems) to derive a powerful prediction model.
This flexibility allows us to revise the original boosting algorithm (i.e., AdaBoost [14])
that use non-crypto-friendly decision stumps to adopt crypto-friendly random linear
classifiers as the base classifiers. We consider our work as the first step towards develop-
ing confidential versions for other boosting algorithms such as gradient-boosting [15].

In the popular AdaBoost framework for classification [14], decision stumps (DS)
have been used as the weak classifiers for their simplicity and fast convergence of boost-
ing. Although the training algorithm for a decision stump is quite simple, it is expensive
to implement its confidential version due to the associated complexity of secure com-

2

parisons. Our core design of confidential boosting is to use random linear classifiers
(RLCs) as the weak classifiers. For a linear classifier f(x) = wTx, where x is the fea-
ture vector and w is the parameter vector to learn, an RLC sets w to be random using
a specific generation method independent of training data. This random generation of
the classifier dramatically simplifies the training step and it only requires to determine
whether the random classifier is a valid weak classifier (e.g., accuracy > 50%). In ex-
periments, we found that our random RLC generation method works satisfactorily -
for every 1-2 random tries we can find a valid weak classifier. The resulting boosting
models are comparable to those generated by using decision stumps as base classifiers,
although it converges slower. The use of RLC also allows us to conveniently protect
feature vectors and labels and to greatly reduce the costs of other related steps.

We have designed two secure constructions to implement the RLC-based boosting
framework to understand the effect of different cryptographic primitives on the asso-
ciated complexities and expenses. The constructions are based on the non-colluding
honest-but-curious Cloud-CSP setting that has been used by recent related work [28–
30]. CSP is a cryptographic service provider that will be responsible to manage en-
cryption keys and assist Cloud with the intermediate steps of the boosting framework.
Cloud takes over the major computation and storage burden but is not interested in pro-
tecting user privacy. Both of our protocols result in models with distributed parameters
between the Cloud and the CSP: the Cloud holding the RLCs’ parameters and the CSP
holding the base classifier’s weights of the boosted models. An alternate setting (i.e.,
our SecSh setting) is that two servers take an equal share of computation and storage.
For simplicity, we unify the two settings to Cloud-CSP.

We carefully analyze the security of the constructions, based on the universally
composable (UC) security paradigm [3, 4], and show that no additional information
is leaked except for CSP knowing a leakage function. Both the constructions of Se-
cureBoost expose a leakage function to CSP - the correctness of RLC’s prediction on
training examples. We analyze the leaked information of the function and show that it
is safe to use under our security assumption.

We summarize the unique contributions as follows:
– We propose to use random linear classifiers as a crypto-friendly building block to

simplify the implementation of confidential boosting.
– We develop two hybrid constructions: HE+GC and SecSh+GC, with the combi-

nation of GC, SHE, Secret Sharing, AHE, and random masking to show that the
RLC-based boosting can be elegantly implemented.

– Our framework provably preserves the confidentiality of users’ submitted data, in-
cluding both feature vectors and their associated labels, and the generated boosting
models from both curious Cloud and CSP.

– We conduct an extensive experimental evaluation of the two constructions with both
synthetic and real datasets to fully understand the costs and associated tradeoffs.

2 Preliminary
We use lowercase letters for vectors or scalars; capital letters for matrices and large
integers; and single indexed lowercase or capital case letters for vectors.

Boosting. Boosting is an ensemble strategy [20] that generates a high-quality clas-
sifier with a linear combination of τ weak base classifiers (whose prediction power is

3

slightly better than random guessing). Specifically, given training examples {(xi, yi), i =
1 . . . n}, where xi are feature vectors and yi are labels, it learns a model H(x) =∑τ
t=1 αtht(x), where ht is a weak classifier that outputs the prediction ŷ for the ac-

tual label y and αt is the learned weight for ht. Algorithm 2 in Appendix A.1 outlines
the boosting algorithm for the two-class problem. The most popular weak classifier has
been the decision stump [14], which is merely based on conditions like if Xj < vj ,
output 1; otherwise, -1, whereXj is a certain feature andXj < vj is some optimal split
that gives the best prediction accuracy among all possible single-feature splits for the
training dataset.

Additive Homomorphic Encryption. For any two integersα and β, an AHE scheme
allows the additive homomorphic operation: E(α + β) = f(E(α), E(β)) where the
function f works on encrypted values without decryption. For example, Paillier en-
cryption [31] is one of the most efficient AHE implementations. Conceptually1, with
one operand, either α or β, unencrypted, we can derive the pseudo-homomorphic mul-
tiplication, e.g., E(αβ) = E(

∑β
i=1 α). Similarly, we can derive pseudo-homomorphic

vector dot-product, matrix-vector multiplication, and matrix-matrix multiplication, as
long as one of the operands is in plaintext.

RLWE Homomorphic Encryption. The RLWE scheme is based on the intractabil-
ity of the learning-with-error (LWE) problem in certain polynomial rings [2]. It allows
both homomorphic addition and multiplication. RLWE allows multiple levels of mul-
tiplication with a rising cost. For details, please refer to Brakerski et al. [2]. Message
packing [2] was invented to pack multiple ciphertexts into one polynomial, greatly re-
ducing the ciphertext size - e.g., we can pack about 600 encrypted values (slots) into
one degree-12,000 polynomial. With message packing, vector dot-products and matrix-
vector multiplication can be carried out efficiently as shown by [19].

Randomized Secret Sharing. The randomized secret sharing method [9] protects
data by splitting it into two (or multiple) random shares, the sum of which recovers the
original data, and distributing them to two (or multiple) parties. Several protocols have
been developed to enable fundamental operations such as addition and multiplication
based on distributed random shares, producing results that are also random shares, such
as the multiplicative triplet generation method [9, 28].

Garbled Circuits. Garbled Circuits (GC) [34] allow two parties, each holding an
input to a function, to securely evaluate a function without revealing any information
about the input data. The function is implemented with a circuit using a number of basic
gates such as AND and XOR gates. The truth table of each gate is encrypted so that no
information is leaked during the evaluation. One party creates the circuit and the other
one evaluates it. All inputs are securely encoded as labels and passed to the evaluator via
the 1-out-of-2 Oblivious Transfer (OT) [1] protocol. During the recent years, a number
of optimization techniques have been developed to minimize the cost of GC, such as
free XOR gates [23], half AND gates [35], and OT extension [1].

3 Framework
Figure 1 shows the SecureBoost framework and the involved parties: the data owner, the
cloud service provider (Cloud), the users who contribute their personal data for model

1 Paillier encryption allows more efficient multiplication. .

4

training, and the Cryptographic Service Provider (CSP). The learning protocol consists
of multiple rounds of Cloud-CSP interactions, which builds a boosted model on the
global pool of user-contributed training data. Ultimately, Cloud learns the parameter
of each base classifier but no additional knowledge about the protected user data; and
CSP learns the weights of the base classifiers and a certain type of leakage information
that does not help breach the confidentiality of protected user data. The learned models
can be either downloaded and reconstructed by the data owner for local applications
or used by data owner by submitting encrypted new records to Cloud and undergoing
Cloud-CSP evaluation.

Cloud Crypto-Service
Provider (CSP)

Parallel Processing
Protocol

Interactions

Users
HE submissions

Crypto Operations

SecSh submissions

Model split 1 Model split 2

Data Owner
Model split 1 Model split 2

Fig. 1. SecureBoost Framework.

Data owner designates a cloud provider to collect user-generated data in encrypted
form and undertake the major storage cost and the major computation-intensive com-
ponents of the confidential learning protocol. CSP is a party with limited resources. It
mainly assists Cloud in intermediate steps, e.g. encrypting or decrypting intermediate
results and constructing garbled circuits. CSP is allowed to learn some leakage function
but remains oblivious to users’ data or the models learned. The concept of CSP has
been used and justified by other approaches [29, 30] as a practical semi-honest setting
to release data owner from complex interactions. If using randomized secret sharing,
the users upload shares of their submissions to both Cloud and CSP as depicted by the
dotted lines in Figure 1.

3.1 SecureBoost Learning Protocol
In this section, we describe the rationale and benefits of using RLCs as the base classi-
fiers, the major components of the SecureBoost protocol, and the security goals.

RLCs as Base Classifiers The original boosting framework has used decision stumps
as the base classifiers. RLCs are overly ignored due to its slower convergence rate.
However, it is expensive to implement decision stumps on encrypted data due to the
O(kn log n) comparisons in the optimal implementation, where n is the number of
records and k is the dimensionality. It is known that comparison on encrypted data is
expensive for both homomorphically encrypted data [26] or garbled circuits [24]. To
eliminate the cost of comparison, we use randomly generated linear classifiers (RLC)
instead. An RLC generates a classification plane in the form of h(x) = wTx + b with
randomly selected w and b, which can be done by one party, i.e., Cloud. Thus, no
comparison is needed in base-classifier generation.

5

However, blindly selectingw and b is not efficient. As Figure 2 shows, the generated
plane needs to shatter the training data space into two partitions of significant sizes. For
this purpose, we require the submitted data to be normalized so that the training vectors
are distributed around the origin. In practice, with the standardization procedure, i.e.,
each dimension Xi is normalized with (Xi − µi)/σi, where µi is the mean and σi is
the standard deviation of the dimension Xi, most dimensional values should be in the
range [−2, 2]. Thus, we can choose b, the intercept, in the range [−2, 2], while each
element of w is chosen uniformly from [-1, 1]. Note that µi and σi can be roughly
estimated with low-cost sampling and aggregation protocols from users’ submissions.
For clarity, we ignore the details of these simple protocols. With this setting, we find
in our experiments that a valid random linear classifier can be found in about 1-2 tries.
We have also verified with our experiments that boosting with RLCs can generate high-
quality models comparable to those with decision stumps.

�� �

��

�
�������	�
����

����������

�����������	�
����

������������
������

��	���
����
����������

Fig. 2. Effective Random Linear Classifier Generation

RLCs have extra advantages. First, they allow learning with both the feature vectors
and labels protected. We can transform the training data as x← (x, 1) and w ← (w, b),
with which the hypothesis function simply changes to h(x) = wTx. For a two-class
problem with labels y ∈ {−1, 1}, if the result h(x) gives a correct prediction, i.e., the
same sign as the label y, we always get h(x)y = wTxy > 0; otherwise wTxy ≤ 0.
Note that xy stays together in the evaluation, and thus users can submit the encrypted
version of xy, E(xy), protecting both feature vectors and labels. Second, they simplify
the learning of base classifiers. As w is randomly generated, there is no need for Cloud
to consider sample weights during learning. Meanwhile, the learning of the αt weights
can be individually done by CSP. Finally, this process allows only the CSP to learn the
weights of base models, and Cloud to learn the base classifiers, preventing either party
learning the final model.

SecureBoost Protocol The SecureBoost learning protocol is defined with a 4-tuple:
SB-Learning = (Setup, BaseApply, ResultEval, Update). Algorithm 1 depicts the
use of these components in the boosting framework. For a boosted model H(x) =∑τ
t=1 αtht(x), Cloud learns the base models {ht(x) = wTt x, t = 1..τ}, and CSP

learns the model weights {αt, t = 1..τ}.
(K,E(Z), {wi, i = 1..p}, δ1) ←Setup(1k, τ , p): (1) The key K is generated by

a certain party or parties (CSP, Cloud, or both) as required, with the desired security
level 1k and all public keys are published. (2) CSP initializes δ1 with 1/n. (3) The
training data Z of n instances contains row vectors zi = xiyi, which is protected with
either a public-key encryption scheme or random masking (e.g., in the secret-sharing
construction) to generate E(Z). (4) Data owner sets the desired number of classifiers,

6

Algorithm 1 SecureBoost Framework
1: (K,E(Z), {wi, i = 1..p}, δ1)←Setup(1k, τ , p);
2: for t← 1 to p do
3: {E(ht(xi)), i = 1..n} ← BaseApply(K, E(Z), wt);
4: It ← ResultEval(K, {E(ht(xi), i = 1..n});
5: (δt+1, αt, et)← Update(K, δt, It); //by CSP only
6: if τ effective base models have been found then
7: stop the iteration;
8: end if
9: end for

τ , and instructs Cloud to generate a pool of prospective RLCs with parameters wt for
t = 1 . . . p, where p is the pool size proportionally larger than τ , e.g., p = 1.5τ .
{E(ht(xi)), i = 1..n} ← BaseApply(K, E(Z), wt): With the encrypted train-

ing data E(Z) and a model parameter wt, the procedure will output the model ht’s
encrypted prediction results on all training instances.

It ← ResultEval(K, {E(ht(xi)), i = 1..n}): With the encrypted prediction re-
sults, ResultEval allows CSP (not Cloud) to learn the indicator vector It of length n,
indicating the correctness of ht’s prediction for each training instance.

(δt+1, αt, et)←Update(δt, It): CSP takes It, δt to compute the weighted error rate
et = ITt δt and if ht is a valid base classifier i.e. accuracy > 50%, updates its weight
αt = 0.5ln((1 − et)/et) and computes δt+1 for the next iteration with sample weight
updating formula.

In the end, Cloud learns {wt, t = 1..p} and CSP learns {αt, t = 1..p}. A two-party
function evaluation protocol can be easily developed for Cloud to apply the model for
classification, which, however, is not the focus of this paper. The data owner can simply
download the model components from the two parties and reconstruct the final model
for local application. The design of leaking It represents a careful balance between
security and efficiency. While it is possible to hide It, the complexity of Cloud and CSP
processing will be dramatically increased. We have carefully studied the implication of
It in Section 7 and found its impact on security is minimal.

3.2 Security Model
We make some relevant security assumptions here: (1) Both Cloud and CSP are honest-
but-curious parties, i.e., they follow the protocols exactly and provide services as ex-
pected. However, they are interested in the users’ data. (2) Cloud and CSP do not col-
lude, (3) The data owner owns data and models thus is a fully trusted party, (4) All
infrastructures and communication channels are secure. While the integrity of data and
computation is equally important, we consider it orthogonal to our study. We are mainly
concerned with the confidentiality of the following assets.

– Confidentiality of training data. User-generated training data may include per-
sonal sensitive information. We consider both feature values and the labels sen-
sitive. For example, a user’s fitness activity dataset may contain sensitive features
such as heart rate and locations, while the labels, i.e., the type of activity, may imply
their activity patterns and health conditions.

7

– Confidentiality of prediction models. The learned models are proprietary to the
data owner and can link to confidential users’ data. Therefore, the model parameters
are split and distributed between Cloud and CSP. No single party can learn the
complete model.
We adopt the universally composable (UC) security [3, 4] to formally define the

protocol security. We consider an ideal protocol π implementing the ideal functionality
F corresponding to a SecureBoost protocol, involving Cloud and CSP. In the Real
world, an honest-but-curious adversaryA can corrupt any of the parties and gain access
to all the inputs and outputs of that party. We say that π securely realizes F (or π is UC-
secure) if for any A in real world there exists an ideal-process simulator S in ideal
world running probabilistic algorithms in polynomial time (i.e., PPT), such that for any
environment Z and inputs m = (mZ ,mA/S ,mCloud/CSP),

|Pr(Realπ,A,Z(k, z,m) = 1)− Pr(IdealF,S,Z(k, z,m) = 1)| = negl(k),

where negl(k) is a negligible function [22]. In Section 7, we propose two theorems that
can be proved to show that SecureBoost protocols are UC-secure.

4 Construction with HE and GC
In this section, we present the homomorphic encryption (HE) and GC based construc-
tion of SecureBoost. With the HE encrypted data, the BaseApply procedure is essen-
tially the homomorphic operation E(Z)wt that is allowed by both Paillier [31] and
RLWE [2] cryptosystems. We use a garbled-circuit based protocol to allow only CSP
to learn the indicator vector It, without leaking any other information to the parties. In
the following, we first describe the construction of the protocol components and then
discuss several key technical details.

Setup. CSP generates the HE public and private key and distributes the public key to
the users and Cloud. The private key accessible to the data owner when necessary. Users
encrypt their submissions. Cloud generates the pool of p prospective weak classifier
vectors, {wt, t = 1..p}.

BaseApply. With the matrix-vector homomorphic operations enabled by HE, Cloud
computes {E(ut) = E(Zwt), t = 1..p}. As this step can be done locally by Cloud,
Cloud may choose to conduct this work offline before the protocol interactions start.

ResultEval. The problem setting is that Cloud holds E(ut) and CSP securely iden-
tifies the sign of each element of ut, i.e., Zwt > 0 implying correct prediction by the
RLC, which sets the corresponding element of It to 1; otherwise to 0. The sign of ele-
ment is related to the specific integer encoding, which we will elaborate more. With our
encoding scheme, we only need to check a specific bit to determine whether Zwt > 0
is true. To satisfy all the security goals, we decide to use a GC protocol for this step that
will be discussed in more detail.

As the last step Update does not involve crypto operations, we can skip its discus-
sion. Figure 3 (a) depicts all the associated Cloud- CSP interactions in this construction.

4.1 Technical Detail
Now, we discuss the key problems mentioned in the sketch of the construction above.

Choice of HE Schemes. We consider two choices of HE: Paillier [31] and RLWE
[2] in our evaluations. Paillier scheme provides a large bit space allowing to preserve

8

E1 Zwt + 𝜆𝑡 	
(𝐺𝐶, 𝑖𝑛𝑝𝑢𝑡	𝑤𝑖𝑟𝑒	𝑙𝑎𝑏𝑒𝑙𝑠)

𝐸2	(𝐼𝑡)

CSPCloud
Learns:
Zwt + 𝜆𝑡, 𝐼𝑡 ,
for t = 1 . . τ

Learns:
E(Z), 𝜆𝑡	, wt
for t = 1 . . τ

n many
[2b+ log2k+1] bit

Subtractors: ut,0 - ut,1

ut,1 = ƛt ut,0=ut + ƛt

It = msb(ut)

Cloud CSP

CSP

(a) (b)
Fig. 3. (a) Cloud-CSP interactions in HE+GC construction. E1 represents HE encryptions
whereas E2 represents GC labels for the GC outputs. (b) GC-based sign checking protocol.

more precisions in floating-integer conversion. Our evaluation shows that with message
packing, all RLWE operations including encryption, decryption, addition and one-level
multiplication are much faster than Paillier, although the ciphertext size might be larger
than that of Paillier.

Integer Conversion. The HE schemes work on integers only. For a floating-point
value x, x ∈ R, to preserve m-digit precision after the decimal point upon conver-
sion and recovery, we have: v = b10mxc mod q, where q is a large integer such that
10mx ∈ (−q/2, q/2). Let the modulo operation map the values to [0, q), in such a way
that the negative values are mapped to the upper range (q/2, q). It is easy to check that x
is recoverable: if v > q/2, x ≈ (v−q)/10m; otherwise, x ≈ v/10m. The modulo addi-
tions and multiplications preserve the signs and are thus recoverable. Furthermore, this
encoding simplifies the evaluation of the RLC base classifiers, which involves checking
the sign of ht(x). Let b be the total number of bits to represent the values in [0, q). It is
trivial to learn that if the b-th bit of a value in the range [0, q) is 1, then the value is in the
range (q/2, q), which is negative; otherwise, the value is positive. With large enough q
we can accommodate the desired multiplication and addition results without overflow.
An n-bit plaintext space that allows one multiplication followed by α additions, as used
in our protocol, spares (n− α)/2 bits to encode the original value. For easier process-
ing, we normalize the original real values in the same dimension of training data before
converting them to b bit integers.

Secure Matrix-Vector Multiplication. The core operation E(Zwt) involves en-
crypted E(Z) and Cloud generated random plaintext wt. Thus, both AHE and SHE
schemes can be applied.

Securely Checking Signs ofE(ut). CSP needs to check the result of base classifier
prediction, E(ut) = E(Zwt) to learn the correctness of prediction on each instance, so
that the error rate, the model weight, and the sample weight update can be computed.
With the described integer conversion encoding method, the sign checking ut,i < 0? is
determined by a specific bit in the result. Note that letting CSP know ut directly may
reveal too much information significantly weakening the security. To balance between
security and efficiency, we decide to let CSP only learn the signs indicating if the base
classifier ht correctly classified the training instances, and nothing else is leaked. Lu
et al. [26] have proposed a comparison protocol based only on RLWE, however, it is
extremely expensive to be adapted to our framework. Therefore, we rely on a noise
addition procedure to hide the decrypted ut from CSP and a GC-based de-noising and
bit extraction procedure to let CSP learn the specific bit for sign checking. We give the
details of these procedures next.

9

To hide the plaintext ut from CSP, we use a noise addition method that can be easily
implemented by Cloud on the encrypted vector with homomorphic addition: E(ut,0) =
E(ut) + E(λt), where λt is a noise vector generated by the pseudo-random number
generator G. Then, CSP can decryptE(ut,0) to learn the noisy result. Let ut,1 = λt held
by Cloud. Now the problem is turned to using a GC to securely compute ut = ut,0−ut,1
and return the specific bit of each element of ut.

Figure 3 (b) shows the GC based de-noising and bit extraction protocol. CSP’s input
to the circuit is the binary form of u′t elements whereas Cloud’s inputs are the binary
form of λt elements. With associated oblivious transfer (OT) protocol and wire label
transfers, the circuit can securely evaluate u′t − λt and extract the most significant bit,
msb(ut,j), j = 1..n, of the result without leaking anything else. Cloud evaluates the
circuits and returns the extracted encrypted bits (represented as output labels in GC) to
CSP. CSP can then decrypt (re-map) the labels to generate the indicator vector It.

5 Construction with SecSh and GC
Alternatively, we design our framework with a mixture of secret sharing and garbled
circuit techniques. We call this construction “SecSh + GC”. A somewhat similar ap-
proach was taken by [28] in constructing confidential gradient-descent based learning.
It differs from the HE based construction in two aspects: 1) user data protection uses
secret sharing, and 2) matrix-vector multiplication happen over secret random splits of
training data held by Cloud and CSP.

Instead of encryption, users randomly split their training data into two shares, one
for Cloud and the other for CSP. The sum of shares recovers the original values. Any
intermediate results that need protection are also in the form of random shares dis-
tributed between Cloud and CSP. As a result, multiplication of two values, say, a and b,
each as random shares (e.g., Cloud holds a0 and b0 while CSP holds a1 and b1, where
a0 + a1 = a and b0 + b1 = b), needs the help of AHE encryption to compute each
party’s random share for ab. As for sign checking, we reuse the GC protocol designed
earlier for HE+GC.

Setup. Each user splits their data Z into a random matrix Z0 and Z1, where Z1 =
Z − Z0, and securely distributes Z0 to Cloud and Z1 to CSP. Cloud also generates a
key pair for a chosen AHE scheme and shares the public key with CSP.

BaseApply. With Cloud holding Z0 and wt, and CSP holding Z1, BaseApply will
generate random shares of the result ut = Zwt = ut,0 − ut,1: ut,0 and ut,1 held by
Cloud and CSP, respectively. This is implemented with a special matrix-vector multi-
plication algorithm, which we will describe later.

ResultEval. With the random shares: ut,0 and ut,1 held by Cloud and CSP respec-
tively, we can apply the same GC protocol presented in the last section for computing
u = ut,0 − ut,1 and extracting the specific bits.

5.1 Technical Detail

The SecSh+GC construction reuses the integer conversion and the GC-based sign check-
ing components. Here, we focus on the major difference: the protocol for computing
matrix-vector multiplication with random shares.

Random-Share-Based Matrix-vector Multiplication. To initiate, Cloud and CSP
respectively hold the two shares Z0 and Z1 of user data in plaintext, and Cloud also

10

Table 1. BigO estimation for SecureBoost constructions
Construction Party Encryption Decryption Enc. Mult/Add Enc. Comm. GC Comm. Storage

HE+GC
User O(nk) - - O(nk) - -

Cloud O(pn) - O(pnk) O(pn) O(pnb) O(nk)
CSP - O(pn) - - - -

SecSh+GC
User - - - - - -

Cloud O(pk) O(pn) - O(p(n+ k)) O(pnb) O(nk)
CSP O(pn) - O(pnk) - - O(nk)

holds wt in plaintext. The goal is to derive random shares of Zwt and each party learns
only one of the shares.

Cloud computes the part Z0wt in plaintext by itself. The challenge is to collect the
other part Z1wt without CSP knowing wt and no party knowing the complete result,
Zwt. We use the following procedure to achieve this security goal. (1) Cloud encrypts
wt with an AHE scheme and sends E(wt) to CSP so that CSP can apply pseudo-
homomorphic multiplication to compute E(Z1wt) = Z1E(wt). (2) CSP generates a
random vector λt with the pseudo-random number generator G, encrypts it with the
public key provided by Cloud, and apply homomorphic addition to get E(Z1wt + λt),
which is sent back to Cloud. (3) Cloud decrypts it and sums up with the other part Z0wt
to get Zwt + λt. In the end, Cloud gets ut,0 = Zwt + λt and CSP gets ut,1 = λt. At
this point, Cloud and CSP use the GC protocol for sign checking in Section 4.

6 Cost Analysis
Table 1 summarizes the associated big-O estimation of communication and compu-
tation broken down into different operations/components. The notations are the same
as defined. In summary, we observe that HE+GC constructions demand no CSP stor-
age and CSP only needs to conduct decryptions and GC constructions. In contrast,
in SecSh+GC, the workload and storage are almost equally distributed to Cloud and
CSP. However, as user-generated data is not encrypted but split into random shares in
SecSh+GC, users’ costs and overall storage costs are much lower.

7 Security Analysis
According to the security model outlined in Section 3.2, we focus on the subcompo-
nents of the protocols that involve both Cloud and CSP and implement a specific ideal
function F . The security is proved by finding a simulator S in the ideal scenario cor-
responding to the adversary A in the real scenario such that the environment Z cannot
distinguish the probabilistic outputs of Ideal and Real.

The major interaction happens in computing the indicator vector It for an iteration
t. The corresponding ideal function is defined as F(mCloud,t,mCSP,t) → It, where
mCloud,t,mCSP,t are Cloud’s and CSP’s inputs to the function and the function’s out-
put is the indicator vector It as defined by our protocols. We present two theorems next,
the proofs which can be read in the extended version of this paper 2.

Theorem 1. If the random number generator G is pseudo-random, and both the HE
scheme and GC are CPA-secure, then the HE+GC construction of SecureBoost is secure
in computing It with an honest-but-curious adversary.

Theorem 2. If the random number generator G is pseudo-random and both the AHE
scheme and GC are CPA-secure, then the SecSH+GC construction is secure in comput-
ing It with an honest-but-curious adversary.

2 https://arxiv.org/abs/1802.08288

11

7.1 Implication of Revealing It to CSP.
CSP learns the indicator function It,i(ht(xi) == yi), for i = 1..n in the iteration
t of SecureBoost. It is clear that this leakage does not help CSP learn the complete
boosted model H(x) as long as Cloud holds {wt, t = 1..τ} as secrets. However, we
must understand if such leakage may help CSP learn anything about the training data.

Recall that an element of indicator vector It(ht(xi) == yi) represent if the base
RLC ht classifies the training instance xi correctly or incorrectly (1 and 0, respectively).
At the end of learning, each record xi gets p prediction results for p base classifiers
ht, t = 1..p, respectively, which is denoted as ci = (ci,1, . . . , ci,p), ci,j ∈ {0, 1}.
Let ci be the characterization vector (CV) for the record xi. The intuition tells that two
similar records (i.e., relatively small Euclidean distance) with the same label will lead to
similar CVs. However, the reverse is uncertain — if the reverse is true then adversaries
can utilize CV similarity to infer record similarity. However, our experiments show that
the reverse is clearly false (Figure 6 in Section 8). In particular, the records having
identical CVs have distances (and their standard deviations) not significantly different
from those having other types of CVs.

8 Experiments
We design our experiment set on both real and synthetic datasets with three goals: (1)
show random linear classifiers are effective weak classifiers for boosting; (2) evalu-
ate associated computation, communication, and storage costs, and their distributions
amongst the users, Cloud, and CSP for both the constructions; and (3) understand the
trade-off between costs and model quality, including a comparison with another state-
of-the-art confidential classification learning framework.

Implementation. We adopt the HELib library [19] for the RLWE encryption scheme,
implement the Paillier cryptosystem [31] for the AHE encryption scheme, and use the
ObliVM (oblivm.com) library for the garbled circuits. ObliVM has included the state-
of-the-art GC optimization techniques such as half AND gates, free XOR gates, and
OT extention. The core algorithms for data encoding, encryption, matrix-vector multi-
plications, and additive perturbation are implemented with C++ using the GMP library.
Users’ submissions are encoded with the 7-bit floating-integer conversion method (Sec-
tion 4.1). We use the scikit-learn toolkit (scikit-learn.org) to evaluate the model quality
for existing classifier learning methods selected for comparison purpose.

Parameter selection. We pick cryptographic parameters corresponding to 112-bit
security. The RLWE parameters allow 32-bit message-space overall, 1 full vector repli-
cation, and at least 2 levels of multiplication. The degree of the corresponding cyclo-
tomic polynomial is set to φ(m) = 12, 000 and c = 7 modulus switching matrices,
which gives us h = 600 slots for message packing. The Paillier cryptosystem uses
2048-bit key-size to achieve approximately 112-bit security. Our GC-based sign check-
ing protocol accommodates (2b+ log2(k))-bit inputs, where b is the bit-precision (i.e.,
b=7 in experiments) and k is the dimension of the training data. Note that HELib uses
a text format to store the ciphertext which we zip to minimize the costs.

Datasets. We test SecureBoost with both the synthetic and real datasets. Table 2
summarizes the dataset properties. Datasets are selected to cover a disparate range of
dimensions and number of instances. All selected datasets contain only two classes
to simplify the evaluation. The real datasets come from the UCI Machine Learning

12

Repository [12]. The synthetic dataset is deliberately designed to generate non-linearly
separable classes. It is used to conveniently explore and understand the behaviors of
RLC-based boosting and the quality of non-linear classification modeling methods.

Table 2. Dataset statistics.
Dataset Instances Attributes Adaboost Accuracy Number of decision stumps

ionosphere 351 34 92.02% +/- 4.26% 50
credit 1,000 24 74.80% +/- 3.50 % 100

spambase 4,601 57 92.31 % +- 4.40 % 75
epileptic 11,500 179 86.95 % +- 3.40 % 200
synthetic 150,000 10 89.51 % +-2.10 % 75

8.1 Effectiveness of RLC Boosting
The performance of boosting is characterized by the convergence rate and the final accu-
racy. The speed of convergence is directly related to the overall cost of the SecureBoost
protocols. We look at the number of base classifiers (τ) needed to attain a certain level
of accuracy. As a randomly generated RLC may fail (i.e., RLCs having≈ 50% accuracy
for the two-class datasets) and be discarded in some of the rounds, we also assess the
actual number (p) of RLCs that are tried to generate the final model. All the accuracy
results are for 10-fold cross-validation. The following results can be reproduced and
verified with the scripts we have uploaded to https://sites.google.com/site/testsboost/.

101 102 103
40%

60%

80%

100%

Number of Base Classifiers τ

A
vg

.A
cc

ur
ac

y

ionosphere credit spambase
epileptic synthetic

101 102 103

40%

60%

80%

Number of Base Classifiers τ

A
vg

.A
cc

ur
ac

y

Boosting w. DS
Boosting w. LMC
Boosting w. RLC

ionosphere credit
spambase

epileptic
synthetic

0%

20%

40%

60%

80%

100%

Datasets

A
vg

.A
cc

ur
ac

y

Boosting w. DS Boosting w. RLC

5 9 15 real

70%
75%
80%
85%
90%
95%

Precision bits (b)
A

vg
.A

cc
ur

ac
y

ionosphere credit spambase
epileptic synthetic

(a) (b) (c) (d)
Fig. 4. (a) Convergence of boosting with RLCs. (b) Convergence of boosting with RLCs, LMCs,
and DSes for the synthetic dataset. (c) Model quality: boosting with RLCs vs. boosting with
DSes. (d) Bit precision vs. model accuracy

Figure 4(a) analyzes the convergence of RLC-based boosting for each dataset. We
observe that overall only about 200 base classifiers are sufficient to reach a stable model
accuracy level for the considered datasets. Figure 4(b) compares boosting with different
base classifiers: RLC, decision stumps (DS), and linear means classifiers (LMC) when
learning on the synthetic dataset. Clearly, DS has the advantage of converging faster
in about 75-80 rounds. On the other hand, boosting with LMC does not reach the de-
sired accuracy, because the centers of class (i.e., the “means”) that are used to define
the classification plane stay stable even with changed sample weights. The result is a
bunch of highly similar base classifiers in the final boosting model, which does not take
advantage of the boosting framework.

Figure 4(c) shows the final model quality produced by RLC boosting and the DS
boosting (i.e., the default boosting method). We use 200 RLCs and varying number
of DSes as shown in Table 2 as the base classifiers for the datasets. In every case,
both methods generate models with almost identical accuracy. All of the above results
suggest that RLC boosting is robust and generates high-quality classification models.

Encoding Bits. The number of bits for encoding affects the cost of GC-related
components and the precision in floating-integer conversion, which in turn affects the

13

final model quality. Figure 4 (d) shows the effect of preserved bits on model accuracy.
It seems preserving 7 bits is sufficient to get optimal quality models.

Cost comparison with DS. As there is no DS learning algorithm on encrypted
data (possibly due to its high expense), we develop a DS learning protocol that fits our
framework to estimate the costs as shown in Appendix A.2.

8.2 Cost Distribution
We now inspect the associated costs for each involved party in the two constructions.
Table 3 shows the parameter settings for different datasets that led to the desired model
quality. τ is the number of base classifiers in the final boosting model. p represents
the total number of RLCs that are tried in the modeling process, which determines the
actual protocol costs. Overall, in about 1-2 tries on average, we can find a valid RLC
(with accuracy > 50%).

Table 3. Parameter setting for cost evaluation. τ and p - number of desired and tried RLCs
Dataset τ p Accuracy

ionosphere 200 226 91.5% +/- 3.1%
credit 200 342 73.4 % +/- 2.4 %

spambase 200 229 87.4 % +/- 4.8 %
epileptic 200 331 84.41% +/-2.9 %
synthetic 200 244 87.91% +/-3.2 %

User’s Costs. A user’s costs depend on the size of training data, i.e. the number
of training records n, and the number of dimensions k per record. The Paillier+GC
construction requires each user to encrypt their submission element-wise in streaming
or batched manner. The RLWE+GC construction requires each user to batch her sub-
missions and encrypt them as a column-wise matrix E(Z) with message packing (see
Section 2). For the SecSh+GC construction, users simply apply the one-time padding
method to generate the masks and distribute the splits to Cloud and CSP, respectively.

Table 4. User’s cost for a batch of 600 records
Dataset HE+GC (RLWE / Paillier) SecSh+GC

Enc. (secs) Upload (MB) Upload. (MB)
ionosphere 1.54 / 235.83 38.50 / 10.25 0.04

credit 1.09 / 168.45 27.50/ 7.32 0.03
spambase 2.54 / 390.80 63.80/ 16.99 0.07
epileptic 7.91 / 1,212.84 198.0 / 52.73 0.09
synthetic 0.48 / 74.12 12.1 / 3.22 0.05

Table 4 depicts the user’s costs in encrypting and submitting one batch of records
with the batch size h = 600. The HE+GC constructions are more expensive than
SecSh+GC in all aspects, but still quite acceptable in most cases. RLWE+GC results
in larger ciphertext but far less computations than Paillier+GC.

Cloud and CSP cost distribution. As Cloud’s and CSP’s costs are highly inter-
related in the SecureBoost constructions we discuss them together. Note: We use the
Paillier cryptosystem in SecSh+GC as the required AHE scheme. Table 5 sums up the
costs for all the components. For the smaller datasets, the RLWE+GC construction does
not show much benefit over the other two. For datasets with the larger number of records
such as the synthetic dataset, both Cloud and CSP take less computational time with
RLWE+GC construction in comparison with the other two. For datasets with larger
dimensions such as the epileptic dataset, RLWE+GC is more onerous to the Cloud
whereas beneficial to the CSP in terms of computation cost. As for storage and commu-
nication costs, Paillier+GC and SecSH+GC are favorable across the board. We provide
further cost breakdown and analyze cost growth for Cloud and CSP with an increasing
number of records and dimensions in Appendix A.3.

14

Table 5. Overall Cloud and CSP Costs: Storage, Comp. (computation), Comm.(communication)

Dataset
HE+GC (RLWE / Paillier) SecSh+GC

Storage(MB) Comp. (minutes) Comm. (MB) St.(MB) Comp. (minutes) Comm.(MB)
Cloud Cloud CSP Cloud CSP Cloud CSP

ionosphere 38.5 / 6.0 13.5 / 21.1 3.5 / 16.3 286.2 / 81.0 2.6 2.6 17.8 19.6 84.8
credit 55.0 / 12.2 28.0 / 83.2 12.9 / 70.5 1,119.2 / 537.2 8.1 8.1 72.1 81.6 541.3

spambase 510.4 / 130.3 129.5 / 358.6 33.3 / 268.6 3,842.6 / 1,876.6 76.4 76.4 271.8 355.3 1,885.1
epileptic 3,960.0 / 1,010.7 932.2 / 1,453.0 128.2 / 777.0 12,291.6 / 6,868.3 653.4 653.4 788.1 1,441.8 6897.4
synthetic 3,025.0 / 805.7 1,414.7 / 8,147.3 1,175.4 / 7,424.0 106,891.1 / 57,662.2 383.9 383.9 7,424.5 8,146.8 57,663.5

8.3 Comparing with Other Methods
In this section, we compare SecureBoost with the recently developed SecureML method
[28]. It implements the stochastic gradient-descent (SGD) learning based on secret shar-
ing [9], which is then used for logistic regression (LR) and neural network (NN) [20].
We tried different shapes of inner hidden layers and found the minimum-cost setting
for satisfactorily handle the non-linearly separable synthetic dataset. SGD is conducted
with a mini-batch size of 128 records in training. Both algorithms are run enough itera-
tions until convergence.

ionosphere credit spambase epileptic synthetic40%

60%

80%

100%

A
vg

.A
cc

ur
ac

y

Logistic NeuralNet SecureBoost

0

2

4

6

·104

Ti
m

e
(m

in
ut

es
)

RLWE+GC Paillier+GC SecSh+GC
SecureML LR SecureML NN

0

1

2

3
·105

B
an

dw
id

th
(M

B
)

(a) (b)
Fig. 5. (a) Comparison of model accuracy: Secure-Boost vs. SecureML - Logistic Regression and
Neural Network. (b) Overall cost comparison: SecureBoost constructions vs. SecureML neural
network and SecureML logistic regression for the synthetic dataset.

Figure 5 (a) shows that SecureBoost and SecureML-NN perform similarly, while
SecureML-LR due to its inherent linearity [20] underperforms significantly on the non-
linearly separable data. This result can also be reproduced and verified with the scripts
we have uploaded online 3. Figure 5 (b) shows that SecureBoost constructions are
more efficient than SecureML neural network. The cost patterns will vary for differ-
ent datasets due to the varying number of training epochs. For this specific dataset,
SecureBoost takes 200 iterations, while SecureML NN takes 20 epochs to converge.
Logistic regression converges quickly within 10 epochs but gets stuck on a non-optimal
result. It appears the per-iteration cost of SecureML NN is much higher.

8.4 Effect of Releasing It
We want to verify if similar characterization vectors infer similar training records to
understand the leaked information by It. Figure 6 measures the average Euclidean dis-
tances between the training record pairs corresponding to the characteristic vectors dif-
fering by k bits. It is evident that the similarity of characterization vectors does not infer
the similarity of training records.

9 Related Work
The current implementations of FHE are still too expensive to apply on complex func-
tions. ML Confidential [18] shows that simple linear models can be learned by a semi-
honest Cloud from FHE-encrypted data with acceptable costs. However, these simple

3 https://sites.google.com/site/testsboost/

15

Av
er

ag
e

D
is

ta
nc

e
k

0 10 20 30 40 50

1.00

0.50

0.00

Av
er

ag
e

D
is

ta
nc

e

k
0 10 20 30 40 50

1.50

1.00

0.50

0.00

k
0 5 10 15 20 25

2.0
1.5

1.0

0.5

0.0Av
er

ag
e

D
is

ta
nc

e

k
0 20 40 60 80 100 120

2.0
1.5

1.0

0.5

0.0Av
er

ag
e

D
is

ta
nc

e

Fig. 6. Avg. distance between record-pairs generating characterization vectors differing by k-bits.

models are unable to handle non-linearly separable datasets. Lu et al. [26] show that
PCA and linear regression can be implemented on FHE encrypted data with reason-
able costs for a strictly small number of iterations in the algorithms. Moreover, the
comparison operation based on FHE is very expensive [26], which hinders the FHE’s
application in many algorithms.

Despite new optimization of GC with techniques, such as free XOR gates [23], half
AND gates [35], and OT Extension [1], its adaptation in confidential frameworks is
still costly. Nikolaenko et al. [29, 30] use FastGC [21] and AHE to implement matrix
factorization and linear ridge regression solutions. Use of GCs in the expensive opera-
tions led these protocols to suffer from unbearable communication costs between CSP
and Cloud. In our designs, we carefully craft the primitive operations to minimize the
performance impact of the GC-related operations.

Demmler et al. [9] have shown that basic matrix operations can be implemented
on random shares held by different parties when using secret sharing secure multi-
party computations. SecureML [28] utilized these operations and GC to implement the
gradient-descent learning method with a two-server model. However, we note that these
models are more expensive than ours to achieve the same level of model quality.

Users may also submit locally perturbed data that satisfy locally differential privacy
(e.g., RAPPOR [11]). However, the model quality is significantly affected by the re-
duced data quality, and the models are also exposed to model-inversion attacks [13,32].

Gamb’s et al. [16] proposed algorithms enabling two or more participants to con-
struct a boosting classifier, however, their goal is to train a combined model without
sharing the horizontally partitioned training data with one another, not outsourcing it.

10 Conclusion
We develop the SecureBoost protocol for data owners to learn high-quality boosted
classification models from encrypted or randomly partitioned users’ data using public
Cloud. The key idea is to use random linear classifiers as the base classifiers to simplify
the protocol design. Two constructions: HE+GC and SecSh+GC have been developed,
using a novel combination of homomorphic encryption, garbled circuits, and random-
ized secret sharing to protect the confidentiality and achieve efficiency. We formally
analyze the security of the protocol and show that SecureBoost constructions satisfy the
universally composable security for multiparty computation. Our experimental evalua-
tion examines the intrinsic relationships among the primitive selection, cost distribution,
and model quality. Our results show that the SecureBoost approach is very practical
in learning high-quality classification models. Our constructions are the first batch of
boosting protocols with practical costs, compared to the expenses of the start-of-the-art
implementation of other major predictive modeling methods (e.g., Neural Networks by
SecureML). We will extend the study to explore the effect of sub-sampling the training
data and differentially private release of the leakage function in the future. Similarly, we
will extend the work to multi-class classification problem and other types of boosting.

16

A Appendix
A.1 Boosting Algorithm

Algorithm 2 Boosting(T , τ)
input: training data samples T = {(xi, yi), i = 1 . . . n, where xi ∈ R and yi ∈ {1,−1}},
number of base classifiers: τ
Initialize the sample weights δ1i ← 1/n for i = 1 . . . n;
for t← 1 to τ do

learn a weak classifier ht(x) with sample weights δt,i,i = 1 . . . n;
for i← 1 to n do
et,i = 1 if ht(δt,ixi) == yi else 0;

end for
error =

∑n
i=1 et,iδt,i;

αt = ln((1− error)/error);
δt+1,i = δt,i exp(αiet,i) for i = 1 . . . n;
δt+1 = δt+1/|δt+1|;

end for
Output: H(x) =

∑τ
t=1 αtht(x)

A.2 Confidential Decision Stump Learning
As there is no confidential DS learning algorithm reported, we present our initial de-
sign of DS learning that fits our boosting framework. Learning DS involves finding
the optimal split for each feature in the training data with maximum information gain.
The original algorithm takes O(n log n) comparisons to sort the values for each fea-
ture. However, sorting the dimensions may reveal the ordering information and breach
data confidentiality, therefore, sorting may not be used in the confidential version of DS
learning. Instead, we use a fixed binning scheme - i.e., partitioning the domain of each
normalized dimension (e.g., (-4, 4)) into s bins and enumerate all possible decision
stumps - for two-class problems and k dimensions, there are 2sk such stumps (each
split value gets two conjugate stumps: e.g., Stump 1: if Xj < vj return 1 else return 0,
Stump 2: if Xj ≥ vj return 1 else return 0). We will describe the HE+GC construction
for DS learning here.

The users encrypt their recordsE(xi) and labelsE(yi), with yi ∈ {0, 1}, separately
with the public key distributed by the CSP. (1) Cloud will start to evaluate each of the
sk decision stumps for every record with a slightly modified version of GC described
in Section 4. Specifically, for each instance (xi, yi), it will securely check whether the
class label yi matches the classifier output, e.g., if Xj < vj return 1 else return 0.
Similarly, the evaluation of each DS will give an indicator vector Ir, r = 1..sk, where
1 represents prediction error, reverse to the indicator vector described in Section 3.1,
Ir is known to both Cloud and CSP. We can flip the indicator vector for the conjugate
DS. (2) CSP starts a base classifier selection process, and computes the weight αt for
each selected DS ht(x). Specifically, with training sample weights (initialized to 1/n),
wi, at iteration i, CSP will find one of the sk DSes that minimizes the weighted error,
argminr (̇Ir, wi), for r = 1..sk. In the end, CSP only knows the index of the DS. It

17

does not know the base classifier parameters, i.e. neither Xj nor vj . Note that this step
does not involve decryption and encryption. (3) The indices of the selected DSes and
αi are submitted by CSP to Data Owner. Data Owner can retrieve the actual DSes from
Cloud.

Therefore, the overall cost is dominated by the sk rounds of evaluation in stage (1),
not subject to the number of selected base classifiers. To get results close enough to the
DS-based boosting model, we may need to take finely divided bins, e.g., s=100. For a
10-dimension dataset, the cost is about equivalent to trying 1000 base classifiers in the
RLC protocol. Furthermore, CSP takes a significant amount of storage and computing
burden — it will need to keep all the sk indicator vectors for DS selection, the size of
which is much larger than the original data, and conduct skτ dot products on plaintext
if the final model contains τ base classifiers.

A.3 Cloud and CSP cost Breakdown and Scaling

First, we analyze the shared GC components for the selected real and synthetic datasets
in Table 2. Then, we analyze the cost growth of the constructions for with increasing
number of records and dimensions.

As all the constructions share the same GC component for sign checking, we list
the GC costs together in Table 6. The number of AND gates represents the size of
GC. The computational and communication costs include the total of both Cloud’s and
CSP’s. GC’s associated costs are linear to n and bit precision b. By comparing Table
5 in Section 8.2 and Table 6, it is clear that the GC-component dominates the overall
communication cost of our protocols.

Table 6. Costs of the GC component: Computation (comp.) and Communication (Comm.)
Dataset AND Gates Comp.(m) Comm.(MB)

ionosphere 2,016,846 5.1 43.1
credit 8,840,000 20.3 371.2

spambase 37,268,100 47.2 1,202.6
epileptic 87,549,500 101.3 5,009.6
synthetic 695,400,000 927.4 39791.1

Now, we try to understand the relationship between the size of training data and as-
sociated costs using synthetic datasets of several sizes and dimensions. First, we fix the
number of dimensions k = 20 and see how number of records n affects the costs. Figure
7 (a) shows that both Cloud’s and CSP’s costs in RLWE+GC grow much slower than
the other two’s. CSP’s growth rates are almost same for SecSh+GC and Paillier+GC, as
they involve the same number of decryption operations.

0 0.2 0.4 0.6 0.8 1
·105

0

500

1,000

1,500

Number of Records n

Ti
m

e(
s)

Cloud’s Cost
RLWE+GC
Paillier+GC
SecSh+GC

0 0.2 0.4 0.6 0.8 1
·105

0

500

1,000

1,500

Number of Records n

Ti
m

e(
s)

CSP’s Cost
RLWE+GC
Paillier+GC
SecSh+GC

10 20 30 40 50
0

50

100

150

200

250

Dimensions k

Ti
m

e(
s)

Cloud’s Cost
RLWE+GC
Paillier+GC
SecSh+GC

10 20 30 40 50
0

50

100

150

200

250

Dimensions k

Ti
m

e(
s)

CSP’s Cost
RLWE+GC
Paillier+GC
SecSh+GC

(a) (b)

Fig. 7. Computation cost. (a) Over increasing records(n) with fixed number of dimensions (k =
20). (b) Over increasing dimensions(k) (bottom) and fixed number of records (n = 10, 000).

18

Figure 7 (b) depicts the effect of increasing the dimensions while fixing the number
of records to n = 10, 000. We observe that RLWE+GC cost for Cloud grows much
faster for the larger dimensions. This is due to the associated dimension-wise RLWE
replication cost in the matrix-vector multiplication. On the other hand, CSP’s cost when
using RLWE+GC is much lower than with the other two constructions, as the RLWE
decryptions are much cheaper than that of Paillier. Both Cloud’s and CSP’s costs when
using Paillier+GC and SecSh+GC stay almost flat as only n dominates the overall cost.

References

1. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer and
extensions for faster secure computation. In 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, pages 535–548, 2013.

2. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Sci-
ence Conference, ITCS ’12, pages 309–325, New York, NY, USA, 2012. ACM.

3. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proceedings 2001 IEEE International Conference on Cluster Computing, pages 136–145.

4. R. Canetti, A. Cohen, and Y. Lindell. A simpler variant of universally composable security
for standard multiparty computation, 2015.

5. R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learning algo-
rithms. In Proceedings of International Conference on Machine Learning (ICML), pages
161–168, New York, NY, USA, 2006. ACM.

6. O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview. Journal of Machine
Learning Research - Proceedings Track, 14:1–24, 2011.

7. A. Chen. GCreep: Google engineer stalked teens, spied on chats. Gawker,
http://gawker.com/5637234/gcreep-google-engineer-stalked-teens-spied-on-chats, 2010.

8. T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In SIGKDD Conference
on Knowledge Discovery and Data Mining, 2016.

9. D. Demmler, T. Schneider, and M. Zohner. ABY–A framework for efficient mixed-protocol
secure two-party computation. In 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015, 2015.

10. A. J. Duncan, S. Creese, and M. Goldsmith. Insider attacks in cloud computing. In 2012
IEEE 11th International Conference on Trust, Security and Privacy in Computing and Com-
munications, 2012.

11. Ú. Erlingsson, A. Korolova, and V. Pihur. RAPPOR: randomized aggregatable privacy-
preserving ordinal response. CoRR, abs/1407.6981, 2014.

12. A. Frank and A. Asuncion. UCI machine learning repository, 2010.
13. M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart. Privacy in pharmacoge-

netics: An end-to-end case study of personalized warfarin dosing. In 23rd USENIX Security
Symposium USENIX Security 14, pages 17–32, San Diego, CA, 2014. USENIX Association.

14. Y. Freund and R. E. Schapire. A short introduction to boosting. In International Joint
Conferences on Artificial Intelligence, pages 1401–1406. Morgan Kaufmann, 1999.

15. J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29(5):1189–1232, 2001.

16. S. Gambs, B. Kégl, and E. Aı̈meur. Privacy-preserving boosting. Data Min. Knowl. Discov.,
14(1):131–170, Feb. 2007.

17. C. Gentry. Fully homomorphic encryption using ideal lattices. In Annual ACM Symposium
on Theory of Computing, pages 169–178, New York, NY, USA, 2009. ACM.

19

18. T. Graepel, K. Lauter, and M. Naehrig. ML confidential: Machine learning on encrypted data.
In Proceedings of the 15th International Conference on Information Security and Cryptol-
ogy, ICISC’12, pages 1–21, Berlin, Heidelberg, 2013. Springer-Verlag.

19. S. Halevi and V. Shoup. Algorithms in HELib. In International Cryptology Conference,
pages 554–571. Springer, 2014.

20. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer-
Verlag, 2001.

21. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using
garbled circuits. In Proceedings of the 20th USENIX Conference on Security, SEC’11, pages
35–35, Berkeley, CA, USA, 2011. USENIX Association.

22. J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman and Hall/CRC,
2007.

23. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications.
In Automata, Languages and Programming, 35th International Colloquium, ICALP 2008,
Reykjavik, Iceland, July 7-11, 2008, pages 486–498, 2008.

24. R. Lazzeretti and M. Barni. Division between encrypted integers by means of garbled cir-
cuits. In 2011 IEEE International Workshop on Information Forensics and Security, pages
1–6, Nov 2011.

25. Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436, 2015.
26. W. Lu, S. Kawasaki, and J. Sakuma. Using fully homomorphic encryption for statistical anal-

ysis of categorical, ordinal and numerical data. IACR Cryptology ePrint Archive, 2016:1163,
2016.

27. S. Mansfield-Devine. The Ashley Madison affair. Network Security, 2015(9):8 – 16, 2015.
28. P. Mohassel and Y. Zhang. SecureML: A system for scalable privacy-preserving machine

learning. In 2017 IEEE Symposium on Security and Privacy (SP), pages 19–38, May 2017.
29. V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh. Privacy-

preserving matrix factorization. In Proceedings of the 2013 ACM SIGSAC conference on
Computer and communications security, pages 801–812, New York, NY, USA, 2013. ACM.

30. V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft. Privacy-
preserving ridge regression on hundreds of millions of records. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, pages 334–348. IEEE Computer Society, 2013.

31. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT, pages 223–238. Springer-Verlag, 1999.

32. R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against
machine learning models. 2016.

33. L. Unger. Breaches to customer account data. Computer and Internet Lawyer, 32(2):14 –
20, 2015.

34. A. C. Yao. How to generate and exhange secrets. In IEEE Symposium on Foundations of
Computer Science, pages 162–167, 1986.

35. S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole. In E. Oswald and M. Fis-
chlin, editors, Advances in Cryptology - EUROCRYPT 2015, pages 220–250, Berlin, Heidel-
berg, 2015. Springer Berlin Heidelberg.

20

