
Detecting the Change of Clustering Structure in Categorical Data

Streams

Keke Chen ∗ Ling Liu †

Abstract

Analyzing clustering structures in data streams can
provide critical information for making decision in real-
time. Most research has been focused on clustering
algorithms for data streams. We argue that, more
importantly, we need to monitor the change of clustering
structure online. In this paper, we present a framework
for detecting the change of critical clustering structure
in categorical data streams, which is indicated by the
change of the best number of clusters (Best K) in the
data stream. The framework extends the work on
determining the best K for static datasets (the BkPlot
method) to categorical data streams with the help of
a Hierarchical Entropy Tree structure (HE-Tree). HE-
Tree can efficiently capture the entropy property of the
categorical data streams and allow us to draw precise
clustering information from the data stream for high-
quality BkPLots. The experiments show that with the
combination of HE-Tree and the BkPlot method we are
able to efficiently and precisely detect the change of
critical clustering structure in categorical data streams.

1 Introduction

With the deployment of wide-area sensor systems and
Internet-based continuous-query applications, process-
ing stream data has become a critical task. As an
important method in data analysis, recently clustering
has attracted more and more attention in analyzing and
monitoring streaming data [19, 2]. The initial research
has shown that clustering stream data can provide im-
portant clues about the new emerging data patterns so
that the decision makers can predict the coming events
and react in near real time. Stream data clustering is es-
pecially important to the time-critical areas such as dis-
aster monitoring, anti-terrorism, and network intrusion
detection. As many of such applications also include a
large amount of categorical data, clustering the categori-
cal data streams becomes an interesting and challenging
problem. Surprisingly, very few [4] have addressed the
problems related to clustering categorical data streams.

∗Georgia Institute of Technology, kekechen@cc.gatech.edu
†Georgia Institute of Technology, lingliu@cc.gatech.edu

Most research has been focused on how to design
online clustering algorithms for data streams. However,
cluster analysis includes not only the clustering phase,
but also the cluster evaluation and validation [24], which
determines the critical clustering structure, such as
the best K number of clusters. For stream clustering,
most algorithms like Coolcat [4] assume that the best
K number of clusters is given, which inappropriately
simplifies the problem. One of the primary goals to
clustering the data streams is to monitor the change of
clustering structure may indicate possible new events.
Therefore, distinguishing the difference between the
clustering structures in different stages of data streams
becomes critical, yet very challenging, to data stream
applications. Surprisingly, none has addressed how to
online evaluate the cluster structure, particularly, the
best K clusters for data streams.

The change of critical clustering structure in data
streams involves three aspects: the drifting of the clus-
ter center caused by the increasing size of cluster, new
emerging clusters, and disappearing clusters caused by
the convergence of growing clusters. We observed that
the the latter two aspects can be indicated by the “Best
K” number of clusters [11]. Monitoring the change of
critical clustering structure is important since it may
correlate to some important events in the applications.
For example, a network attack may correlate to the
change of clustering structure in data streams. In this
context, we are more interested in detecting both the
emerging of clusters and the disappearing of clusters.
The former may indicate some new events (the attacks)
are going to happen, and the later implies two possi-
ble situations: 1) some clusters grow big and become
merged, which may indicate that some correlated event
may become significant and will occur more and more
frequently; 2) the previously identified clusters are ac-
tually part of outliers. Fast detection of the change of
critical clustering structure can eliminate most costly
cluster evaluation work and allow to efficiently moni-
tor the data streams− we only analyze individual clus-
ters when the change of clustering structure is detected.
E.g., we can visualize the new emerging clusters or the
converged clusters, which requires more computational

resource and human interaction in practice.
In this paper, we will focus on detecting the change

of clustering structure for categorical data streams.
Extending the previous work on finding the best K for
static categorical datasets (the BkPlot method [11]),
we propose a method for detecting the change of best
K clusters in categorical data streams. The original
BkPlot method is an optimal method for identifying the
candidate best Ks for a given dataset. Due to the NP-
hard complexity in generating optimal BkPlots, only
approximate BkPlots can be applied in practice. The
ACE algorithm is proposed in paper [11] to generate
high-quality approximate BkPlots. However, due to its
still high complexity O(N2), it is impossible to apply
the algorithm directly on data streams.

The key idea is based on the design of a summa-
rization tree structure, called Hierarchical Entropy Tree
(HE-Tree for short). HE-Tree utilizes a small amount
of memory to summarize the entropy property of the
data streams, and groups the data records into a bunch
of sub-clusters located at the HE-Tree leaf nodes. The
extended ACE algorithm is able to handle the snapshot
sub-clusters (often a few hundreds) and generate an ap-
proximate snapshot BkPlot for identifying the Best K at
certain time interval. The difference between the clus-
tering structures can be conveniently identified by com-
paring the distinctive points on the snapshot BkPlots.

The rest of the paper is organized as follows.
Section 2 sets down the notations and gives the concepts
in entropy-based categorical clustering. Section 3 briefly
introduce the BkPlot for finding the best K in static
categorical datasets. In section 4, we develop the HE-
Tree structure and describe its working mechanism.
In section 5, we propose the framework of detecting
the change of clustering structure in categorical data
streams. The experimental results are shown in section
6. Finally, we review the related work of categorical
clustering and stream clustering, and conclude our
work.

2 Entropy-based Categorical Clustering

Clustering techniques for categorical data are very dif-
ferent from those for numerical data, mainly because
of the definition of similarity measure. Most numeri-
cal clustering techniques have been using distance func-
tions, for example, Euclidean distance, to define the
similarity measure. However, there is no such inherent
distance meaning between the categorical values.

In contrast to the distance-based similarity mea-
sure for pairs of data records, similarity measures based
on the “purity” of a bulk of records seem more intu-
itive for categorical data. Entropy [13] is a well defined
measure for the purity of dataset. Originally from in-

formation theory, entropy has been applied in various
areas, such as pattern discovery [7], numerical cluster-
ing [12] and information retrieval [28]. Due to the lack
of intuitive distance definition for categorical values, re-
cently entropy has been applied in clustering categorical
data [4, 25, 9, 14]. The initial results have shown that
the entropy criterion can be very effective in cluster-
ing categorical data. Paper [25] also proves that the
entropy criterion can be formally derived in the frame-
work of probabilistic clustering models, which strongly
supports that the entropy criterion is a meaningful and
reliable similarity measure, particularly good for cate-
gorical data.

In entropy-based categorical clustering, the quality
of clustering is essentially evaluated by the entropy cri-
terion, namely, the Expected Entropy of clusters [4, 25].
Other variants, such as Minimum Description Length
(MDL) [9] or mutual information [14, 3], turn out to
be equivalent to the entropy criterion, as the paper [25]
shows. We categorize all these approaches as entropy-
based categorical clustering. The main goal of the
entropy-based clustering algorithms is to find a parti-
tion that minimizes the expected entropy for K clusters.
However, minimizing expected entropy is a NP-hard
problem, thus it is computationally intractable even for
a median-sized dataset. A common approach to solving
this problem is approximation. Typically, in approxi-
mation algorithms we have to sacrifice some optimality
to obtain the efficiency. Categorical data streams make
it even harder to balance the two conflicting factors.
With

Below, we first give the notations and definitions
used in this paper, and then describe an important
metric Incremental Entropy, which is used in HE-Tree
construction and extended ACE algorithm.

2.1 Notations and Definitions Consider that a
dataset S with N records and d columns, is a sample set
of the discrete random vector X = (x1, x2, . . . , xd). For
each component xj , 1 6 j 6 d, xj takes a value from the
domain Aj . Aj is conceptually different from Ak(k 6= j).
There are a finite number of distinct categorical values
in domain(Aj) and we denote the number of distinct
values as |Aj |. Let p(xj = v), v ∈ Aj , represent the
probability of xj = v, we have the classical entropy
definition [13] as follows.

H(X) =
d∑

j=1

H(xj)

= −
d∑

j=1

∑

v∈Aj

p(xj = v) log2 p(xj = v)

Since H(X) is estimated with the sample set S, we
define the estimated entropy as Ĥ(X) = H(X|S), i.e.

Ĥ(X) = H(X|S)

= −
d∑

j=1

∑

v∈Aj

p(xj = v|S) log2 p(xj = v|S)

Suppose the dataset S is partitioned into K clusters.
Let CK = {C1, . . . , CK} represent a partition, where
Ck is a cluster and nk represent the number of records
in Ck. The classical entropy-based clustering criterion
tries to find the optimal partition, CK , which maximizes
the following entropy criterion [6, 8, 25].

O(CK) =
1
d

(
Ĥ(X)− 1

N

K∑

k=1

nkĤ(Ck)

)

Since Ĥ(X) is fixed for a given dataset S, max-
imizing O(CK) is equivalent to minimize the item
1

dN

∑K
k=1 nkĤ(Ck), which is named as the “expected

entropy” of partition CK . Let us notate it as
H̄(CK). For convenience, we also name the varying part
nkĤ(Ck) as the “Weighted Entropy” of cluster Ck.

Entropy criterion is especially good for categorical
clustering due to the lack of intuitive distance function
for categorical values. While entropy criterion can also
be applied to numerical data [12] if the numerical data is
appropriately discretized, it is unable to describe most
of the inherent geometric clustering features for the
numerical data.

2.2 Incremental Entropy While expected-entropy
describes the average intra-cluster quality, incremental
entropy is a measure used to describe the similarity be-
tween any two clusters. We begin with the observation
about the change of expected entropy when merging two
clusters. Intuitively, merging the two clusters that are
similar in the inherent structure will not increase the
disorderliness (expected-entropy) of the partition, while
merging dissimilar ones will inevitably bring larger dis-
orderliness. Therefore, this increase of expected entropy
has some correlation with the similarity between clus-
ters. It is, thus, necessary to formally explore the prop-
erty of merging clusters. Let Cp∪Cq represent the mer-
gence of two clusters Cp and Cq, and Cp and Cq have np

and nq members, respectively. Suppose that the num-
ber of clusters is K+1 before the mergence happens.
By the definition of expected entropy, the difference be-
tween NĤ(K) NĤ(K + 1) is only the difference be-
tween the weighted entropies, (np + nq)Ĥ(Cp ∪Cq) and
npĤ(Cp) + nqĤ(Cq). Intuitively, since merging always
increases the entropy, we have the following relation for
the weighted entropies.

Proposition 1. (np + nq)Ĥ(Cp ∪ Cq) > npĤ(Cp) +
nqĤ(Cq)

The detailed proof about above proposition can be
found in [11]. We name Im(Cp, Cq) = (np + nq)Ĥ(Cp ∪
Cq)− (npĤ(Cp) + nqĤ(Cq)) > 0 as the “Incremental
Entropy (IE)” of merging the clusters Cp and Cq. Note
that Im(Cp, Cq) = 0 suggests that the two clusters have
the identical structure – for every categorical value vi

in any arbitrary attribute xj , 1 6 i 6 |Aj |, 1 6 j 6 d,
we have p(xj = vi|Cp) = p(xj = vi|Cq). The larger Im

is, the more different the two clusters are. IE plays an
important role in constructing a hierarchical clustering
scheme, where merging with IE measure is equivalent to
minimize the expected-entropy criterion. We also use IE
as a major measure in HE-Tree operations.

3 BkPlot for Determining the “Best K” for
Categorical Clustering

In order to help understand the entire framework for de-
tecting the change of clustering structure for categorical
data streams, we briefly describe the BkPlot method for
determine the candidate best K for static datasets. For
detailed description and analyze, please refer to paper
[11].

Traditionally, statistical validity indices based on
geometry and density distribution are applied in cluster-
ing numerical data [21]. A typical index curve consists
of the statistical index values for different K number of
clusters. The Ks at the peaks, valleys, or distinguished
“knees” on the index curve, are regarded as the candi-
dates of the optimal number of clusters (the best K).
BkPlot method tries to find such kind of index for cat-
egorical data clustering.

If the neighboring partitions are defined as two clus-
tering results having K and K + 1 number of clusters,
respectively, the basic idea of BkPlot is to investigate
the entropy difference between any two optimal neigh-
boring partitions. Let the expected-entropy of the op-
timal partition notated as H̄opt(CK) = min{H̄i(CK)},
where i is the index of all possible K-cluster partitions.
The curve of H̄opt(CK) is identified as a smoothly de-
creasing curve, i.e., H̄opt(CK) ≥ H̄opt(CL), for K < L,
without any distinguished peaks, valley, or knees, from
which we cannot effectively identify the best K.

However, the special meaning behind the entropy
difference of the neighboring partitions enables us to
explore the best K. Let the increasing rate of entropy
between the optimal neighboring partitions defined as
I(K) = H̄opt(CK)−H̄opt(CK+1). We identify that I(K)
implies two levels of difference between the neighboring
partitions.

• I(K) is the level of difference between the two

o # of clusters

Expected Entropy

....

Figure 1: Sketch of expected en-
tropy curve.

o # of
clusters

I(k)

x
x

The candidates
for best k

x

o

Figure 2: Sketch of ECG graph.

Soybean-small BkPlot, by ACE

-0.05

0

0.05

0.1

0.15

1 2 3 4 5 6 7 8 9 10 11 12

K

D
el

ta2 I

The candidates
for best k

Figure 3: Finding the best k
with BkPlot (for soybean-small
dataset).

neighboring schemes. The larger the difference, the
more significant the clustering structure is changed
by reducing the number of clusters by 1.

• Consider I(K) as the amount of impurity intro-
duced from K + 1-cluster scheme to K-cluster
scheme. If I(K) ≈ I(K + 1), i.e. K-cluster scheme
introduces similar amount of impurity as K+1-
cluster scheme does, the change of clustering struc-
ture follows the “similar pattern, thus we can also
consider that there is no significant difference from
K+2-cluster partition to K-cluster partition.

We define the differential of expected-entropy curve
as “Entropy Characteristic Graph (ECG)” (Figure 2).
An ECG shows that the similar partition schemes with
different K are at the same “plateau”. From plateau
to plateau there are the critical points implying the
significant change of clustering structure, which could
be the candidates for the best Ks.

The common way to automatically identify such
critical knees on ECG is to find the peaks/valleys at the
second-order differential of ECG. Since an ECG consists
of a set of discrete points, we define the second-order
differential of ECG as δ2I(K) : δI(K) = I(K)−I(K+1)
and δ2I(K) = δI(K−1)−δI(K) to make K aligned with
the critical points. These critical points are highlighted
in the second-order differential of ECG, which is named
as “Best-K Plot (BkPlot)”.

Exact BkPlots cannot be achieved in practice, since
I(K) is based on the optimal K-cluster scheme which
involves entropy minimization. However, since we only
pay attention to the peak/valley points, approximate
but accurate BkPlots are possible to acquire. A hierar-
chical clustering algorithm ACE in [11] is proposed to
generate such BkPlots, and we have shown in experi-
ments that ACE is a robust method to generating the
high-quality BkPlots. ACE also has a nice property that
we only need to observe the peaks in the BkPlots gener-

ated by ACE to determine the best Ks. For interested
readers, please find more details in [11].

ACE is initially designed for static datasets and
the O(N2) complexity prevents it working directly on
large datasets or data streams. The extended discussion
[] also shows that ACE can run on samples of large
datasets so that the generated sample BkPlots are
consistent with the original one. However, sampling
approach does not apply for the data stream scenario
since the clustering structure is changing over time. In
the next section, we will design a data summarization
structure with the help of Incremental Entropy, the
result of which can be combined with the extended
ACE algorithm to generate high-quality BkPlots for
data streams.

4 HE-Tree: Capture the Entropy
Characteristics of Categorical Data Stream

In this section, we design the summarization structure
− Hierarchical Entropy Tree (HE-Tree). The basic idea
of HE-Tree is to coarsely but rapidly assign the records
from the data stream onto hundreds of subclusters. Ob-
serving these subclusters will give us a precise estima-
tion of the clustering structure. HE-Tree determines
the subclusters only based on the previously processed
data records, and the clustering structure of the subclus-
ters can automatically adapt to the new coming data
records. The criterion for forming a subcluster is min-
imizing the expected-entropy of the subclusters − cer-
tainly, this minimization is only locally optimal, but it
generates good global approximations. To fast locate
a subcluster for a coming new record, we organize the
subclusters in a tree, i.e., HE-Tree.

A HE-Tree consists of two key components:

1. HE-node structure, which summarizes the entropy
characteristics of a group of records and facilitate
fast processing of stream data items;

2. Incremental-Entropy based lookup/assigning algo-
rithm, which helps to adapt the changing clustering
structure.

Given the fixed height h and fanout f , HE-Tree is
constructed in two stages:

1. growing stage, which happens at the beginning of
processing data stream;

2. absorbing stage, which absorb the new coming
items to the subclusters at the leaf nodes, when
the tree is full.

We first give the structure of the HE-Tree node,
which includes the structures for fast entropy calcula-
tion. After that, we will focus on the construction algo-
rithms of the HE-Tree.

Summary
Table

Pointer
to child

Leaf
Entries

Non-leaf
Entries

I_m table Heap
Summary

Table I_m table Heap

Figure 4: The structure of HE-Tree.

4.1 Structure of HE-Tree Summary Table.
Summary table is used to maintain the fast calculation
of the entropy Ĥ(Ck) and each node in the HE-Tree
maintains one summary table Since computing cluster
entropy is based on counting the occurrences of cate-
gorical values in each column, summary table is used to
keep the counters for each cluster. For each categorical
value vij ∈ Aj , we have an element T [vij] in summary
table as its corresponding counter. Therefore, if the av-
erage column cardinality is m, a summary table keeps
dm counters. Obviously, summary table also has the
following property.

Proposition 2. When two clusters are merged, the
sum of the two summary tables becomes the summary
table for the new cluster.

Nodes in HE-Tree. HE-Tree is a balanced tree
similar to B-tree, where each node has f entries and the
entries in the leaf nodes represents the nc subclusters.
As shown in Figure 4, each entry in leaf node contains
a summary table, and a leaf node also contains a Im

table with (f + 1)2 entries and a heap in size f for fast

locating and merging the entries. Im table keeps the
value Im(i, j) for any pair of entries. Together with
the heap, it is fast to keep track of the minimum Im.
An internal node (non-leaf) in the tree contains only
the aggregation information of its child nodes − each
entry in the internal node points to a child node and its
summary table is the sum of the summary tables in the
child node.

Let a summary table represented with a vector
~s and the entropy characteristic of any internal node
Ci denoted as ECi(ni, ~si), where ni is the number of
records summarized by this node. Let Cij , 1 6 j 6 f
represent the child nodes of Ci. HE-Tree maintains the
following property.

ECi(n,~s) =
f∑

j=1

ECij(nij , ~sij) = ECi(
f∑

j=1

nij ,

f∑

j=1

~sij)

i.e., the parent node represents the mergence of the child
nodes. The key of HE-Tree is to approximately mini-
mize the overall expected entropy by locally minimizing
the expected entropy of the selected branch H̄(Cf

i) in
each insertion of new record. This local minimization is
achieved through the following algorithms in construct-
ing the HE-Tree.

4.2 Constructing HE-Tree The construction of
HE-Tree consists of two phases: the growing phase and
the absorbing phase. The algorithms for construction
are carefully designed to minimize the expected entropy
of the subclusters and adapt to the change of entropy
in data stream.

Growing Phase. In the growing phase, the tree
grows until the number of leaf nodes reaches dnc/fe.
When a new coming record is inserted into the existing
tree, the first subroutine is for locating the target leaf
node for insertion/absorption. Let e denote the inserted
record and ei denote one of the entry in current node.
The search begins at the root node. Since each entry in
the internal node is the summarization of its sub-tree,
we can find the most similar entry to e by finding the
minimum Im among Im(e, ei), i = 1..f , i.e.

et = argminei{Im(e, ei), i = 1..f}
Iteratively, the same criterion is applied to the selected
child node until a leaf node is reached. If the target leaf
node has empty entries and Im(e, ei) 6= 0 for all occupied
entries, the record occupies one empty entry. Otherwise,
the new record is merged to the identical entry. We give
the sketch of the subroutines in Algorithms 1 and 2.

When the target leaf node is full, a split operation is
applied. In split algorithm, we partition the entries into
two groups. First, two pivot entries (er, es) is found in

Algorithm 1 HE-Tree.locate(node, e)
node ← target node, e ← target entry
if node is leaf then

return node
end if
for Each entry ei in node do

Ii
m ← Im(e, ei)

end for
et ← argminei{Ii

m}
return locate(et.subtree, e)

Algorithm 2 HE-Tree.insert(node, e)
e ← inserted entry, node ← target node
for Each entry ei in node do

if Im(e, ei) == 0 then
merge(e, ei), return

end if
end for
if node.have empty entry() then

node.enter(e)
if (node.num entry() == f−1 and (not tree full()
or is internal(node)) then

split(node)
end if

else
leaf-merging(node, e) //fine merging in absorption
phase

end if

the target node that have the maximum Im if merging
them – they are regarded as the most dissimilar pair
among all pairs.

(er, es) = argmaxer,es{Im(er, es), i = 1..f}

The two pivot entries then become the two seed clusters.
The rest entries are sequentially assigned to the two
clusters so that the overall expected-entropy of the
partition keeps minimized. A new node is generated
accommodating one of the two sets of entries. At
the same time, one entry is added into the parent
node pointing to the new node. The insertion/splitting
continues until the number of leaf entries reaches nc.
Algorithm 3 gives the detailed description.

Absorbing Phase. In the second phase, the same
locating algorithm is applied to locate the target leaf
node for the new record. However, we have no insertion
allowed since the entries are all occupied. Instead, in the
leaf node we need to merge the most similar two items
among the f+1 items (micro-merging) – the f entries in
the leaf node plus the new record. This allows the tree
to rapidly adapt to the change of clustering structure

Algorithm 3 HE-Tree.split(node)
node ← target node
(ea, eb) ← argmax(ei,ej){Im(ei, ej)}
partitiona ← ea, partitionb ← eb

for Each entry ei in node do
if Im(partitiona, ei) < Im(partitionb, ei) then

partitiona ← partitiona ∪ ei

else
partitionb ← partitionb ∪ ei

end if
end for
if is leaf(node) and not done then

re-insert(root, entries in partitiona)
else

newnode ← partitiona, remove(node, partitiona)
enew ← summary(newnode), insert(node.parent,
enew)

end if

in the entry level. In each leaf node, we maintain a Im

table and a heap for the f entries. When a new record
comes, only f calculations of incremental entropy are
needed to update the Im table and the heap, before
selecting the most similar two to merge.

The locating algorithm with the Incremental En-
tropy criterion will assign a new record to the approxi-
mately best leaf node and a fine micro-merging will well
adapt the local structural change happening within the
node. Experiments show that the summary entries at
the leaf nodes together can precisely describe the global
clustering structure.

4.3 Setting of Parameters The setting of the two
parameters f and nc can affect the efficiency and quality
of summarization. Let h be the height of the tree
(root is at level 1). For simplicity, we always construct
full trees and allow nc = fh to vary from hundreds
to thousands. For example, for f = 15, we can
either use a two-layer tree, where the number of leaf
entries nc = 225, or a three-layer tree where nc =
3375. In experiment, we show that a smaller f always
results in faster summarization, but can undermine the
quality of summarization when the clustering structure
is changing. A small f may cause more imprecise
mergence to happen in the second phase, since the less
entries the lower level of precision is guaranteed for
absorption. Larger f with the same height of tree will
increase the cost − O(dmf) in absorbing phase. On the
other hand, larger f increases the ability adapting to
the change of clustering structure since we can do more
precise merging in the absorbing phase. To tradeoff the
performance and robustness, we can set the tree to be

2 ∼3 layers, with f = 10 ∼ 20.

4.4 Complexity of HE-Tree The time complexity
of constructing HE-Tree can be divided into two phases.
In the growing phase, about fh records are inserted
into the tree and each record needs at most O(hf)
comparison to locate the target node. In the absorption
phase, besides the cost of locating, each record needs
micro-merging at leaf, which costs O(f) incremental-
entropy calculation. Incremental-entropy involves only
weighted entropy which costs O(dm). Therefore, the
cost is O((h + dm)f). Since f is usually a small value,
e.g. 10 ∼ 20 and h = 2 or 3 in practice. Thus, the total
cost is only dominated by the number of dimensions d
and the average cardinality m of the dataset, i.e. the
factor dm.

There are O(fh) nodes in the tree. Each leaf node
needs approximately O(fdm + f2) space, where the
summary table for each entry needs O(dm) and the
Im table needs O(f2). Each internal node needs only
O(fdm), holding the summary tables and the pointers
to the children nodes. Approximately, a HE-Tree needs
O((dm+f)fh+1) space. With fixed small f and h, again
only the factor dm of the dataset determines the size of
the tree. Except the datasets having very large dm,
e.g. over 10k, HE-Tree usually needs small amount of
memory.

In summary, HE-Tree can efficiently summarize the
entropy characteristics of the data stream with small
amount of time and space cost.

5 Framework for Monitoring the Change of
Clustering Structure

In the last section, we have designed the HE-Tree algo-
rithm for summarizing the data stream. In this section,
we first briefly describe how to take the summary of
data stream and generate an effective BkPlot. Then, we
present the entire framework for detecting the change of
clustering structure.

Extended ACE Algorithm The extended ACE al-
gorithm is a hierarchical clustering algorithm built on
the base clusters generated by the HE-Tree, i.e., the
summary information in the leaf entries of the HE-Tree.
Suppose there are nc sub-clusters generated by the sum-
marization. It consecutively merges the pair of clusters
that minimizes the Incremental Entropy among the re-
maining clusters. With the help of similar structures of
summary table, Im table and heap, as used in the ab-
sorption phase of HE-Tree construction, the extended
ACE algorithm can be optimized to have O(n2

c) Incre-
mental Entropy calculation. Since nc is only several
hundreds in practice, the extended ACE algorithm can

Data Stream

HE-Tree at T1 HE-Tree at T2

Snapshots

dumped

Best K =2

-0.02

0

0.02

0.04

1 2 3 4 5 6 7 8 9 10

K

D
el

ta
2 I

B e s t K = 2 , 3 , 5

-0.01

0.01

0.03

1 2 3 4 5 6 7 8 9 10

K

BkPlots

Time interval t
for snapshots

Figure 5: Framework for detecting change
of clustering structure in categorical data
streams.

be done very quickly. We have shown that the basic
ACE algorithm [11] can generate high-quality BkPlots,
and we will show that the extended ACE algorithm with
the HE-Tree summarization can also effectively identify
the best Ks for categorical data stream.

A Brief Framework With the HE-Tree and the ex-
tended ACE algorithm, we can precisely monitor the
change of clustering structure in the categorical data
stream. The framework is illustrated in Figure 5. The
working mechanism can be described as follows.

1. The records from the data stream are inserted
into the HE-Tree by order. Each insertion costs
O((h + dm)f);

2. At certain time interval ∆t, the summary tables
in the leaf nodes are dumped out (to a piece of
memory or to hard disk). It only costs O(dmnc)
bytes to store each of such snapshots;

3. the extended ACE algorithm are performed on the
snapshot as soon as it is dumped, the result of
which generates a BkPlot. The cost is O(dmn2

c)
[11].

Basically, the cost of first step restricts how many
records the framework can monitor in unit time. As we
have shown, f also affects the precision of summariza-
tion. There is a tradeoff between the precision and the
capacity of monitoring system, tuned by the parame-
ter f . The cost of third step affects how frequently we
can generate a BkPlot. The time interval ∆t in the
second step is directly determined by the cost of gener-
ating BkPlot, i.e., ∆t should be greater than O(dmn2

c).
Reducing nc allows more snapshots to be processed in
unit time, and thus more details about the changes to
be observed. In practice, nc = 400 ∼ 1000 is enough

to generate precise BkPlot, which means O(dmn2
c) is

usually a small number. How often we need to monitor
the change of stream also depends on the application re-
quirement. For example, in monitoring communication
network, we may need to detect the changes between
seconds. However, for real-world traffic monitoring, we
may only need to check the change in every ten minutes.

The neighboring BkPlots are analyzed to see the
difference between the clustering structure. BkPlots
can be represented as a function B(K), where K is the
number of clusters and the distinctive B(K)s indicate
the candidate best Ks. Without loss of generality,
we suppose the first κ distinctive Ks on BkPlots are
Γ = {k1, k2, . . . kκ}. Let Γold and Γnew represent two set
of Ks on the consecutive BkPlots, respectively. There
are two kinds of important differences we need to notice.

1. If Γold and Γnew are not identical, the clustering
structure is dramatically changed, which raises an
“alarm” that we need to analyze the snapshot of
Γnew in detail.

2. If Γold and Γnew are identical, but at certain ki that
|B(knew

i)−B(kold
i)| > θ, where θ is a threshold we

need to notice, we can infer some minor changes in
clustering structure − if B(knew

i) > B(kold
i), i.e.,

ECG curve changes more dramatic at the critical
ki, the clusters grows distinctively; otherwise, the
boundaries between clusters become vague and
some clusters tend to converge.

6 Experimental Results

The goal of the experiments is two-fold. 1) We in-
vestigate the parameter setting of HE-Tree and give
the estimate of appropriate settings; 2) We want to
show that HE-Tree summarization together with the
extended ACE algorithm can provide high-quality mon-
itoring result.

Datasets We construct a synthetic dataset DS1
with the following way, so that the clustering structure
can be intuitively identified and manually labeled before
running the experiments. The synthetic dataset has a
two-layered clustering structure (Figure 6) with 30 at-
tributes and N rows. It has four same-sized clusters in
the top layer. Each cluster has random categorical val-
ues selected from {‘0’,‘1’,‘2’,‘3’,‘4’, ‘5’} in some distinct
set of attributes (the dark area in Figure 6), while the
rest attributes are set to ‘0’. Two of the four clusters
also have clustering structure in the second layer. This
synthetic data has clearly defined clustering structure,
and each record in the dataset distinctly belongs to one
cluster. This dataset is primarily used in exploring the
effect of the parameters of HE-Tree to the precision of
clustering result and the efficiency of summarization.

And later, it is also used to demonstrate a sequence of
monitoring results. We also use a real dataset: “US

C11

r rows

r rows

r rows

0 0

s cols s cols s cols

0 0C3

C4

C12

C21

C22

 0

0

r rows

s cols

C11 C22C21C12

C1 C4C3C2

All data

Figure 6: Clustering structure of DS1

Census 1990 Data ” in the experiment. This dataset is
a discretized version of the raw census data, originally
used by [26]. It can be found in UCI KDD Archive 1.
Many of the less useful attributes in the original data set
have been dropped, the few continuous variables have
been discretized and the few discrete variables that have
a large number of possible values have been collapsed
to have fewer possible values. The total number of pre-
served attributes is 68. The first attribute is the se-
quence number, which is discarded in clustering. This
dataset is very large, containing about 2 million records.
By visualizing its sample dataset, we can observe three
clusters, two of which are close to each other (Figure 7.

C1

C2.1
C2.2

Figure 7: Clustering structure of DS1

Error Rate The cluster labels in the synthetic
dataset DS1 allow us to evaluate the quality of clus-
tering result more accurately by using the Error Rate
measure. Suppose the best K is identified. The Error

1http://kdd.ics.uci.edu/

Rate is defined based on the confusion matrix, where
each element cij 1 6 i, j 6 K represents the number of
points from the labeled cluster j assigned to cluster i
by the algorithm. Let {(1), (2), . . . , (K)} be any per-
mutation of sequence {1, 2, . . . , K}. There is a permu-
tation that maximizes the number of consistent points
mc, which is defined as follows.

mc = max{
K∑

i=1

ci(i), for any {(1), (2), . . . , (K)}}

We define Error Rate as 1− mc

N , N is the total number
of points.

6.1 Parameter Setting for HE-Tree For a full
tree, the fan-out f of tree node and the height of the tree
determine the tree structure. To simplify the investiga-
tion and maximize the quality of the summarization, we
always use full trees in the experiment. Intuitively, for a
fixed f , the higher tree (the larger h), the finer granular-
ity of summarization will be delivered. However, most
likely we care about only the clustering structures hav-
ing less than 20 clusters. Therefore, a short tree, which
generates less than one thousand sub-clusters, is enough
for achieving high-quality BkPlot with ACE clustering
algorithm. The experiments will be focused on the full
short trees (e.g., h = 2) with varying fan-out f from
10 to 30. A set of datasets (20 datasets) in the same
structure shown in Figure 6 are generated, the result is
statistically based on the 20 runs.

Figure 8 shows the cost for HE-Tree summarization
is linear and the cost also varies linearly according to
f , which is consistent with our analysis. Figure 9
shows the effect of different summarization structures
to the quality of final clustering result for “Unordered
DS1”. Unordered DS1 randomly stores the records from
different clusters,i.e., there is little change of clustering
structure in processing the entire data stream. The
result shows some variances between the error rates for
different f , but overall the error rates are similar and
low.

“Ordered DS1” shows a more interesting scenario,
where clustering structure dramatically changes when
time goes by. In such situations, f may significantly
affect the quality of monitoring. Figure 10 shows the
result of sequentially processing the clusters C11 to C4.
A tree with larger f seems more adaptive to the change
of clustering structure. The reason that HE-Tree is
more sensitive to the setting of f when the clustering
structure changes dramatically can be understood as
follows. The initial records from the same cluster
already occupy the slots in the growing stage. When
a new cluster emerges, since there is no entry in the
tree belonging to the new cluster, new slots are given

to the new records by merging other similar entries, or,
some initial records may be absorbed to other clusters
by small chance, which causes the error. It shows that
increasing f from 10 to 20 can considerably reduce the
error, but f = 30 will not significantly improve the
result of f = 20. Balanced with the time cost and
the robustness, f = 20 seems the best for efficiently
adapting the change of structure.

6.2 Robustness of BkPlots by HE-
Tree/Extended ACE In this experiment, we
want to compare the accuracy of BkPlots generated by
ACE on small sample set and by HE-Tree/extended
ACE on large stream data. We run the experiment
on both the synthetic data and the real US Census
data. The small sample size is set to 500 for ACE,
and large samples sizes are 10K and 100K. The sample
sets are uniformly drawn from the original dataset,
therefore, they are supposed to have the same clustering
structure.

BkPlots for DS1

-0.01

0

0.01

0.02

0.03

1 2 3 4 5 6 7 8 9 10 11 12 13 14

K

D
el

ta
2 I

HE-Tree/ACE, N=30K

HE-Tree/ACE, N=10K

ACE, N=500

Figure 11: BkPlots for DS1.

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10 11 12

K

D
el

ta
2

I(K
)

ACE, N=500

HE-Tree/Extended ACE, N=10K

HETree/Extended ACE, N=100K

Figure 12: BkPlots for Census.

Figure 11 for DS1 shows all of the three BkPlots
can identify the primary best Ks: 4 and 6, while a little
noise appears at K=2 when the sample size is large. All
BkPlots for Census data (Figure 12) strongly suggest
the best K=3, while K=2 is probably another candi-
date(which groups the cluster C2.1 and C2.2 together).

Summarization Cost of DS1 with different fanout

0

10

20

30

40

50

60

70

10k 30k 50k 70k 90k
of data records

T
im

e
(s

ec
o

n
d

s)

f=30
f=20
f=10

Figure 8: Cost of HE-Tree sum-
marization with different fanout
f .

Error Rate on Unordered DS1 with Different Fanout

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10k 30k 50k 70k 90k
of data records

E
rr

o
r

ra
te

 (%
)

f=30
f=20
f=10

Figure 9: Error rate of ACE clus-
tering result with HE-Tree sum-
marization on randomly ordered
records

Error Rate on Ordered DS1 with Different Fanout

0

1

2

3

4

5

6

10k 30k 50k 70k 90k
of data records

E
rr

o
r

ra
te

 (%
)

f=30
f=20
f=10

Figure 10: Error rate of ACE clus-
tering result with HE-Tree sum-
marization on ordered records

DS1 Data Stream

C11

C12

T1 T2 T3

C11

C12

C21

C22

C11

C12

C21

C22

C3

Best K =2

-0.02

0

0.02

0.04

1 2 3 4 5 6 7 8 9 10

K

D
el

ta
2 I

Best K=2, 4

-0.02

0

0.02

0.04

1 2 3 4 5 6 7 8 9 10

K

D
el

ta2 I

Best K=2,3,5

-0.01

0.01

0.03

1 2 3 4 5 6 7 8 9 10

K

D
el

ta2 I

Figure 13: Monitoring DS1-stream.

The result confirms that HE-Tree summarization can
preserve the primary clustering structure and thus HE-
Tree combined with ACE method is a robust approach
for monitoring the change of clustering structure.

6.3 Monitoring the Changes We also demonstrate
the progressive monitoring results of the two data
streams: DS1-stream and Census-stream . The DS1-
stream simulates the 4/6-cluster structure shown in
Figure 6. The clusters enter the stream in the sequence
of C11, C12,C21,C22, C3, and C4. Each of the small
clusters have 5K records and each of the large clusters
have 10K records. Snapshots are saved at N=10K, 20K,
and 30K, respectively.

The progressive results for DS1-stream in Figure
13 clearly identify the change of clustering structure.
At T1:N=10K, C11 and C12 have been present at the
stream, thus two clusters are identified. At T2:N=20K,
C21 and C22 emerge and the two-layer structure is

identified (the best K = 2, 4). At T3:N=30K, C3

appears, and the BkPlot detects that the primary two-
layer structure is changed to K=3, 5, while the BkPlot
also suggest an additional layer at K=2, which consists
two cluster (C11, C12, C21andC22) and (C3).

We partition the census dataset into four parts and
mix the parts sequentially so that the special clustering
structures appear in different stage as Figure 14 shows.
At first snapshot, there are clearly two clusters; in the
second one, the third cluster shows vaguely; finally, a
two-layer clustering structure (K=2 and 3) appears in
the third snapshot. Snapshot 2 demonstrates that the
HE-Tree can also capture the fine changes in clustering
structure very well.

7 Related Work

While many numerical clustering algorithms [23, 24]
have been published, only a handful of categorical

Data Evolving

-0.02
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14

1 3 5 7 9 11

K

D
el

ta2
I(

K
)

-0.02

0

0.02

0.04

0.06

0.08

0.1

1 3 5 7 9 11

K

D
el

ta2
I(

K
)

-0.01

0

0.01

0.02

0.03

0.04

0.05

1 3 5 7 9 11

K

D
el

ta2
I(

K
)

Figure 14: Monitoring Census-stream.

clustering algorithms appear in literature. Although
it is unnatural to define a distance function between
categorical data or to use the statistical center (the
mean) of a group of categorical items, there are some
algorithms, for example, K-Modes [22] algorithm and
ROCK [20] algorithm, trying to fit the traditional
clustering methods into categorical data. However,
since the numerical similarity/distance function may
not describe the categorical properties properly and
intuitively, it leaves little confidence to the clustering
result. CACTUS [15] also partly adopts the linkage idea
used in ROCK.

Gibson et al. introduced STIRR [18], an itera-
tive algorithm based on non-linear dynamical systems.
STIRR represents each attribute value as a weighted
vertex in a graph. Starting with the initial conditions,
the system is iterated until a “fixed point” is reached.
When the fixed point is reached, the weights in one or
more of the “basins” isolate two groups of attribute val-
ues on each attribute. Even though they proved this
approach works for some experimental datasets having
two partitions, the user may hesitate in using it due to
the complicated and not intuitive working mechanism.

Coolcat [4] is kind of similar to KModes. However,
Coolcat assigns the item to the cluster that minimizes
the expected entropy. Considering the cluster centers
may shift, a number of worst-fitted points will be
re-clustered after a batch. Li et al [25] proposed a
Monte-Carlo method to minimize the expected entropy,
which is slower than Coolcat but can be more likely
to achieve the sub-optimal results. Cross Association

[9] tries using MDL to partition boolean matrix along
row direction and column direction at the same time.
In fact, MDL is equivalent to entropy criterion as [25]
shows. Some closely related work also borrows concepts
from information theory, including Co-clustering [14],
Information Bottleneck [27] and LIMBO [3]. The results
all show that the entropy related concepts work very
well for categorical data.

Clustering data streams becomes one of the im-
portant technique for analyzing the data streams [19].
In [2], a framework CluStream is proposed for clus-
tering evolving numerical data streams, which mainly
concerns summarizing and storing the sketch of the
data stream. There has been recent work on frame-
works based on velocity density estimation [1]. Clus-
tering categorical data stream was first addressed by
Coolcat[4], but no more related issues such as detect-
ing the change of clustering structure are addressed yet.
Nonparametric testing is used in paper [5], to detect the
changes in data streams, and we propose that monitor-
ing the change of clustering structure is also very useful.
There is also other work using various statistical test-
ing [16, 17] to monitor the changes in data stream, and
change detection in semi-structured data [10].

8 Conclusion

In this paper, we address the problem of detecting
the change of clustering structure in categorical data
streams with a novel framework. The key of the
framework is the combination of BkPlot method and
Hierarchical Entropy Tree (HE-Tree) summarization

structure and algorithms. HE-Tree is designed as a
memory-efficient structure − the tree is usually a short
tree (height = 2 or 3) with small number of leaf nodes,
which store the information of the summarized sub-
clusters. In order to observe the change of clustering
structure, snapshots of the leaf entries of HE-Tree
are dumped in certain time interval, which is then
processed by the extended ACE clustering algorithm to
generate high-quality BkPlots, with which we can easily
identify whether and how the clustering structure in the
stream is changed. Experiments show with HE-Tree and
BkPlot method we can effectively detect the change of
critical clustering structure in categorical data streams.

References

[1] Aggarwal, C. C. On change diagnosis in evolving
data streams. IEEE Trans. on Knowledge and Data
Eng. 17, 5 (2005).

[2] Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S.
A framework for clustering evolving data streams.
Proc. of Very Large Databases Conference (VLDB)
(2004).

[3] Andritsos, P., Tsaparas, P., Miller, R. J., and
Sevcik, K. C. Limbo:scalable clustering of categorical
data. Proc. of Intl. Conf. on Extending Database
Technology (EDBT) (2004).

[4] Barbara, D., Li, Y., and Couto, J. Coolcat:
an entropy-based algorithm for categorical clustering.
Proc. of ACM Conf. on Information and Knowledge
Mgt. (CIKM) (2002).

[5] Ben-David, S., Gehrke, J., and Kifer, D. De-
tecting change in data stream. Proc. of Very Large
Databases Conference (VLDB) (2004).

[6] Bock, H. Probabilistic aspects in cluster analysis.
Conceptual and Numerical Analysis of Data (1989).

[7] Brand, M. An entropic estimator for structure
discovery. In Proc. Of Neural Information Processing
Systems (NIPS) (1998), pp. 723–729.

[8] Celeux, G., and Govaert, G. Clustering criteria
for discrete data and latent class models. Journal of
Classification (1991).

[9] Chakrabarti, D., Papadimitriou, S., Modha,
D. S., and Faloutsos, C. Fully automatic cross-
associations. Proc. of ACM SIGKDD Conference
(2004).

[10] Chawathe, S. S., and Garcia-Molina, H. Mean-
ingful change detection in structured data. Proc. of
ACM SIGMOD Conference (1997).

[11] Chen, K., and Liu, L. The “best k” for entropy-based
categorical clustering. Proc. of Intl. Conf. on Scien-
tific and Statistical Database Management (SSDBM)
(2005).

[12] Cheng, C. H., Fu, A. W.-C., and Zhang, Y.
Entropy-based subspace clustering for mining numeri-
cal data. Proc. of ACM SIGKDD Conference (1999).

[13] Cover, T., and Thomas, J. Elements of Information
Theory. Wiley, 1991.

[14] Dhillon, I. S., Mellela, S., and Modha, D. S.
Information-theoretic co-clustering. Proc. of ACM
SIGKDD Conference (2003).

[15] Ganti, V., Gehrke, J., and Ramakrishnan, R.
CACTUS-clustering categorical data using summaries.
Proc. of ACM SIGKDD Conference (1999).

[16] Ganti, V., Gehrke, J., and Ramakrishnan, R.
Demon: Mining and monitoring evolving data. IEEE
Trans. on Knowledge and Data Eng. 13, 1 (2001).

[17] Ganti, V., Gehrke, J., Ramakrishnan, R., and
Loh, W. A framework for measuring differences in
data characteristics. Journal of Computer and System
Sciences 64, 3 (2002).

[18] Gibson, D., Kleinberg, J., and Raghavan, P.
Clustering categorical data: An approach based on
dynamical systems. Proc. of Very Large Databases
Conference (VLDB) 8, 3–4 (2000), 222–236.

[19] Guha, S., Meyerson, A., Mishra, N., Motwani,
R., and O’Callaghan, L. Clustering data streams:
Theory and practice. IEEE Trans. on Knowledge and
Data Eng. 15 (2003).

[20] Guha, S., Rastogi, R., and Shim, K. ROCK: A
robust clustering algorithm for categorical attributes.
Proc. of IEEE Intl. Conf. on Data Eng. (ICDE) (1999).

[21] Halkidi, M., Batistakis, Y., and Vazirgiannis, M.
Cluster validity methods: Part I and II. SIGMOD
Record 31, 2 (2002), 40–45.

[22] Huang, Z. A fast clustering algorithm to cluster very
large categorical data sets in data mining. Workshop
on Research Issues on Data Mining and Knowledge
Discovery (1997).

[23] Jain, A. K., and Dubes, R. C. Algorithms for
Clustering Data. Prentice hall, 1988.

[24] Jain, A. K., and Dubes, R. C. Data clustering: A
review. ACM Computing Surveys 31 (1999).

[25] Li, T., Ma, S., and Ogihara, M. Entropy-based
criterion in categorical clustering. Proc. of Intl. Conf.
on Machine Learning (ICML) (2004).

[26] Meek, C., Thiesson, B., and Heckerman, D.
The learning-curve sampling method applied to model-
based clustering. Journal of Machine Learning Re-
search 2 (2002), 397–418.

[27] Tishby, N., Pereira, F. C., and Bialek, W. The
information bottleneck method. Proc. of the 37-
th Annual Allerton Conference on Communication,
Control and Computing (1999).

[28] Yang, Y., and Pedersen, J. O. A comparative
study on feature selection in text categorization. Pro-
ceedings of ICML-97, 14th International Conference on
Machine Learning (1997), 412–420.

