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Abstract

With the growing demand on cluster analysis for
categorical data, a handful of categorical clus-
tering algorithms have been developed. Surpris-
ingly, to our knowledge, none has satisfactorily
addressed the important problem for categorical
clustering – how can we determine the bestK
number of clusters for a categorical dataset? Since
the categorical data does not have the inherent dis-
tance function as the similarity measure, the tra-
ditional cluster validation techniques based on the
geometry shape and density distribution cannot be
applied to answer this question. In this paper, we
investigate the entropy property of the categorical
data and propose aBkPlot method for determin-
ing a set of candidate “bestKs”. This method is
implemented with a hierarchical clustering algo-
rithm HierEntro. The experimental result shows
that our approach can effectively identify the sig-
nificant clustering structures.

keywordsCategorical Data Clustering, Entropy, Cluster
Validation

1 Introduction

Data clustering is an important method in data analysis.
Clustering algorithms use the similarity measure to group
the most similar items into clusters [23]. Clustering tech-
niques for categorical data are very different from those
for numerical data in terms of the definition of similarity
measure. Most numerical clustering techniques use dis-
tance functions, for example, Euclidean distance, to define
the similarity measure, while there is no inherent distance
meaning between categorical values.

Traditionally, categorical data clustering is merged to
numerical clustering through the data preprocessing stage
[23], where numerical features are extracted/constructed
from the categorical data, or the conceptual similarity be-
tween data records is defined, based on the domain knowl-
edge. However, meaningful numerical features or concep-
tual similarity are usually difficult to extract at the early
stage of data analysis because we have little knowledge
about the data. It has been widely recognized that clus-
tering directly on the raw categorical data is important for
many applications. Examples include environmental data
analysis [29], market basket data analysis [1], DNA or pro-
tein sequence analysis [8], and network intrusion analysis
[5]. Therefore, there are increasing interests in clustering
categorical data recently [21, 19, 17, 18, 6, 15, 3, 25].

Cluster Validation Different clustering algorithms
hardly generate the same clustering result for one dataset,
and we need the cluster validation methods to evaluate the
quality of the clustering results [27, 22, 20]. Formally, there
are two main issues in cluster validation: 1) how to evalu-
ate the quality of different partition schemes generated by
different clustering algorithms for certain dataset, given the
fixed K number of clusters; 2) how to determine the num-
bers of clusters (the “bestK”), which indicates the inherent
significant clustering structures of the dataset.

For numerical data, the clustering structure is usually
validated by the geometry and density distribution of the
clusters. When a distance function is given for the nu-
merical data, it is also natural to introduce the density-
based methods [16, 4] into clustering. As a result, the dis-
tance functions and density concepts play the unique roles
in validating the numerical clustering result. Various sta-
tistical cluster validation methods and visualization-based
validation methods have been proposed for numerical data
[22, 20, 12] and all are based on the geometry and den-
sity property. The intuition behind the geometry and den-
sity distribution justifies the effectiveness of these cluster
validation methods. A good example commonly seen in
clustering literature is evaluating the clustering result of
2D experimental datasets by visualizing it – the clustering
result is validated by checking how well the clustering re-
sult matches the geometry and density distribution of points
through the cluster visualization.

While lack of the distance meaning for the categorical
data, the techniques used in cluster validation for numer-
ical data are not applicable for categorical data. Without
reasonable numerical feature extraction/construction for a
given categorical dataset, the general distance functions
are usually inapplicable and unintuitive. As a result, no
geometry/density-based validation method is appropriate in
validating the clustering result for categorical data.

Entropy Based Similarity Instead of using distance
function to measure the similarity between any pair of data
records, similarity measures based on the “purity” of a set
of records seem more intuitive for categorical data. Entropy
[14] is such a formal definition for measuring the purity of
partition. Originally from information theory, Entropy has
been applied in both pattern discovery [10] and numerical
clustering [13]. Due to the lack of intuitive distance defini-
tion for categorical values, recently, there have been efforts
in applying the entropy criterion in clustering categorical
data [6, 25]. The initial results show that entropy criterion
can be very effective in clustering categorical data. Li et al
[25] also proved that the entropy criterion can be formally
derived in the framework of probabilistic clustering mod-
els, which further supports that the entropy criterion is a



meaningful and reliable similarity measure for categorical
data.

In entropy-based categorical clustering, the quality of
clustering result is naturally evaluated by the entropy cri-
terion [6, 25], namely, theexpected entropyfor a partition.
However, the other cluster validation problem – determin-
ing the “best K”, has not been sufficiently addressed yet. In
this paper, we present a novel method based on entropy to
address this problem.

Our Approach We first develop an agglomerative hier-
archical clustering algorithm “HierEntro”. The algorithm
works in a bottom-up manner. Beginning with each indi-
vidual record as a cluster, it merges the most similar pair
of clusters in each step, where the similarity is evaluated
with the incremental entropy. An agglomerative hierar-
chical clustering algorithm typically generates a cluster-
ing tree that contains the different clustering structures that
have differentK. We use these clustering structures to an-
alyze the bestK problem.

Based on the intuition behind the merging operation
in HierEntro algorithm, we investigate the relation be-
tween the pairs of neighboring partition schemes (having
K clusters andK + 1 clusters, respectively). We use “En-
tropy Characteristic Graph(ECG) ” to sketch the entropy
property of the clustering structures, and use “Best-K Plot
(BkPlot)”, which is built on ECG, to identify the candidates
of the bestK. The initial experimental result shows that the
proposed validation method, concretely, using the BkPlots
generated by HierEntro to identify the bestKs, works ef-
fectively in finding the significantKs for categorical data
clustering.

The rest of the paper is organized as follows. Sec-
tion 2 sets down the notations and gives the definition of
the traditional entropy-based clustering criterion. Section
3 presents the agglomerative hierarchical clustering algo-
rithm, HierEntro. Section 4 investigates the relation be-
tween the neighboring partitioning schemes with the en-
tropy criterion, and proposes the validation method for in-
dicating the bestKs. We present the experimental result in
section 5 and review the related categorical clustering work
in section 6. Finally, we conclude the paper in section 7.

2 Notations and Definitions

We give the notations used in this paper and then introduce
the traditional entropy-based clustering criterion. Several
basic properties about the entropy criterion will be pre-
sented later.

Consider that a datasetSwith N records andd columns,
is a sample set of the discrete random vectorX =
(x1, x2, . . . , xd). For each componentxj , 1 6 j 6 d,
xj takes a value from the domainAj . Aj is conceptually
different fromAk(k 6= j). There are a finite number of dis-
tinct categorical values indomain(Aj) and we denote the
number of distinct values as|Aj |. Let p(xj = v), v ∈ Aj ,
represent the probability ofxj = v, we have the classical
entropy definition [14] as follows.

H(X) =
d∑

j=1

H(xj)

= −
d∑

j=1

∑

v∈Aj

p(xj = v) log2 p(xj = v)

SinceH(X) is estimated with the sample setS, we de-
fine the estimated entropy aŝH(X) = H(X|S), i.e.

Ĥ(X) = H(X|S)

= −
d∑

j=1

∑

v∈Aj

p(xj = v|S) log2 p(xj = v|S)

Suppose the datasetS is partitioned intoK clusters. Let
CK = {C1, . . . , CK} represent a partition, whereCk is a
cluster andnk represent the number of records inCk.

The classical entropy-based clustering criterion tries to
find the optimal partition,CK , which maximizes the fol-
lowing entropy criterion [9, 11, 25].

O(CK) =
1
d

(
Ĥ(X)− 1

n

K∑

k=1

nkĤ(Ck)

)

Since Ĥ(X) is fixed for a given datasetS, max-
imizing O(CK) is equivalent to minimize the item
1
n

∑K
k=1 nkĤ(Ck), which is named as the “expected en-

tropy” of partition CK . Let us notate it as̄H(CK). For
convenience, we also namenkĤ(Ck) as the “weighted en-
tropy” of clusterCk.

Li et al [25] showed that the minimization of expected-
entropy is equivalent to many important concepts in in-
formation theory, clustering and classification, such as
Kullback-Leibler Measure, Maximum Likelihood [24],
Minimum Description Length [26], and dissimilarity co-
efficients [7]. Entropy criterion is especially good for cat-
egorical clustering due to the lack of intuitive definition of
distance for categorical values. While entropy criterion can
also be applied to numerical data [13], it is not the best
choice since it cannot describe the cluster shapes and other
numerical clustering features of the dataset.

3 HierEntro Categorical Clustering Algo-
rithm

In this section, we define the proposed similarity measure,
incremental entropy, for two clusters. With incremental en-
tropy, we design the algorithm HierEntro. HierEntro and its
working mechanism is the tool used to explore the signifi-
cant clustering structures in the next section.

3.1 Incremental Entropy

We investigate the mergence of two clusters to explore
the similarity between any two clusters. Intuitively, merg-
ing the two clusters that are similar in the inherent struc-
ture will not increase the disorderliness (expected-entropy)
of the partition, while merging dissimilar ones will in-
evitably bring larger disorderliness. Therefore, this in-
crease of expected entropy has some correlation with the
similarity between clusters. It is necessary to formally ex-
plore the property of merging clusters. LetCp ∪ Cq repre-
sent the mergence of two clustersCp andCq, andCp and
Cq havenp and nq members, respectively. By the defi-
nition of expected entropy, the difference betweenĤ(K)
Ĥ(K + 1) is only the difference between the weighted en-
tropies,(np + nq)Ĥ(Cp ∪Cq) andnpĤ(Cp) + nqĤ(Cq).
We have the following relation for the weighted entropies.
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ds1 ds2
1 1 0 1 1 1 0 1
1 1 0 1 0 0 1 1
0 0 1 1
0 0 1 1

Table 1: Identical structure

Proposition 1. (np + nq)Ĥ(Cp ∪ Cq) > npĤ(Cp) +
nqĤ(Cq)

PROOF. The result is quite intuitive and proving it is not
hard (Appendix).

Let Im(Cp, Cq) = (np+nq)Ĥ(Cp∪Cq)− (npĤ(Cp)+
nqĤ(Cq)) be the “incremental entropy” by merging the
clustersCp and Cq. Note thatIm(Cp, Cq) = 0 most
likely suggests that the two clusters have the identical struc-
ture – for every categorical valuevi in every attributexj ,
1 6 i 6 |Aj |, 1 6 j 6 d, we havep(xj = vi|Cp) =
p(xj = vi|Cq). Identical structure implieŝH(Cp ∪ Cq) =
Ĥ(Cp)= Ĥ(Cq) regardless of the size of the clusters. A
simple example in table 1 demonstrates the identical struc-
ture.

Incremental entropy brings the heuristic about the dis-
similarity between any two clusters, i.e., when the two clus-
ters are similar in structure, merging them will not bring
large disorderliness into the partition, thus,Im(Cp, Cq)
will be small; when the two clusters are very differ-
ent, merging them will bring great disorderliness, thus,
Im(Cp, Cq) will be large. Therefore, incremental entropy
intuitively serves as the similarity measure between any
two clusters.

3.2 HierEntro Algorithm

While the traditional hierarchical algorithms for numerical
clustering needs to explicitly define the inter-cluster sim-
ilarity with “single-link”, “multi-link” or “complete-link”
methods [22]. Incremental entropy is a natural cluster-
based similarity measure, ready for constructing a hierar-
chical clustering algorithm. Having incremental entropy as
the measure of inter-cluster similarity, we developed the
following entropy-based agglomerative hierarchical clus-
tering algorithm – (HierEntro).

HierEntro algorithm is a bottom-up process to construct
a clustering tree. It begins with the scenario where each
record is a cluster. Then, an iterative process is followed –
in each step, the algorithm finds a pair of clustersCp and
Cq that are the most similar, i.e.Im(Cp, Cq) is minimum

among all possible pair of clusters. We useI
(K)
m to denot

the Im valude in formingK-cluster partition fromK+1-
cluster partition.

Maintaining the minimum incremental entropy for each
step is the most costly part. In order to efficiently imple-
ment the HierEntro algorithm, we maintain three main data
structures:summary tablefor convenient counting of oc-
currences of values,Im-tablefor bookkeepingIm(Cp, Cq)
of any pair of clustersCp andCq, and aIm heapfor main-
taining the minimumIm value in each step.

Summary table is used to maintain the fast calculation
of cluster entropyĤ(Ck) and each cluster has one sum-
mary table (Figure 1). Since computing cluster entropy is
based on counting the occurrences of categorical values in
each column, a summary table keeps the counters for the
cluster. Apparently, if the average column cardinality is
m, a summary table keepsdm counters. Such a summary
table enables fast merging operation – when merging two
clusters, the two summary tables are added up to form the
summary table for the new cluster.

We useIm-table to keep track of the incremental en-
tropy between any pair of clusters, which is then used to
maintain the minimum-Im for each round of mergence.
TheIm-table is a symmetric table (thus, only a half of en-
tries are used in practice), where the cell(i, j) keeps the
value ofIm(Ci, Cj) Figure 2.

Im heap is used to keep track of the globally minimum
incremental entropy. We define the most similar cluster of
clusteru as

u.similar = arg min
v
{Im(u, v), v 6= u}

and let u.Im represent the corresponding incremental
entropy of mergingu and u.similar. We use <
u, u.Im, u.similar > as thefeature vectorof clusteru.
The feature vectors are inserted into the heap, sorted by
u.Im.

Algorithm 1 shows the sketch of the main procedure.
When mergingu andu.similar happens, their summary
tables are added up to form the new summary table. Con-
sider u as the main cluster, i.e.,u.similar is merged to
clusteru, we need to find the newu.similar and insert the
new feature vector< u, u.Im, u.similar > to the heap.

There is an important procedure for updating the book-
keeping information after merging operation. Letv denote
the oldu.similar. The bookkeeping information forv is
released and any entries inIm-table related tou or v should
be updated. For any clusterc, if the c.similar is changed
due to the update ofIm-table, its location at the heap needs
to be updated too. The detailed update algorithm is de-
scribed in Algorithm 2 and demonstrated by Figure 2.



Algorithm 1 HierEntro.main()
Ts[] ← initialize summary tables
TIm ← initialize Im table
h ← heap
for Each recordu do

h.push(< u, u.Im, u.similar >)
end for
while not empty(h) do

< u, u.Im, u.similar >← h.top()
Ts[u] ← Ts[u] + Ts[u.similar]
update< u, u.Im, u.similar >
h.push(< u, u.Im, u.similar >)
updatingafter merging() //Algorithm 2

end while

Algorithm 2 HierEntro.updatingafter merging()
Ci ←master cluster,Cj ← merged cluster
releaseTs[Cj ]
invalidateIm table entries(Cj , ∗)
updateIm table entries(∗, Ci) and(∗, Cj)
for Each valid clusteru, if u.similar == Ci or Cj do

update< u, u.Im, u.similar >;
relocate< u, u.Im, u.similar > in h

end for

3.3 Complexity of HierEntro

Updating the Im-table is the most costly part, con-
sisting several incremental-entropy calculations. Each
incremental-entropy calculation involves summation of the
two summary tables and computing the weighted entropy
with the merged summary tables. The cost of comput-
ing weighted entropy is O(dm), when an auxiliary array
in length ofN is used to buffer thelog2 values as the fol-
lowing equation shows.

npĤ(Cp)

= −
d∑

j=1

∑
vjk∈Aj

cjk=freq(vjk)|Cp

np
cjk

np
log2

cjk

np

= −
d∑

j=1

∑
vjk∈Aj

cjk=freq(vjk)|Cp

cjk(log2 cjk − log2 np)

The merge operations totally costO(N) incremental-
entropy calculations but the total cost is dominated by up-
dating Im-table after each merging operation which will
needO(N2) incremental-entropy calculations in total in
the worst case. Therefore, the overall time complexity is
O(dmN2). The summary tables requireO(dmN) space,
both thelog2 buffer and the heap costsO(N) space, and
Im-table costsO(N2) space.

We use the HierEntro algorithm as the tool to help un-
derstanding the property of significant clustering structures
in categorical data. Having the expected entropy as the cri-
terion of evaluating clustering quality for a fixedK, we
will focus on the other important validation problem: what
is the bestKs for a particular categorical dataset?

4 Exploring the Significant Clustering
Structures

Traditionally, statistical validity indices based on geometry
and density distribution are applied in clustering numerical
data [20]. The statistical index values according to different
K make an index curve. TheKs at the peaks, valleys, or
distinguished “knees” on the index curve, are regarded as

the candidates of the optimal number of clusters (the best
Ks). Are there index curves indicating the significant clus-
tering structures for categorical data too? LetH̄opt(CK)
denote the expected entropy of the optimal partition ofK
clusters. The first thought might be investigating the curve
of H̄opt(CK).

Our result shows that the curve of optimal expected-
entropies is usually a smoothly decreasing curve without
any distinguished peaks, valley, or knees (Figure 3). How-
ever, we find some special meaning behind the neighbor-
ing partition schemes (withK andK + 1 clusters respec-
tively). The differential of expected-entropy curve, which
we name as “Entropy Characteristic Graph (ECG)” (Figure
4), has substantial meaning indicating the significant clus-
tering structures. An ECG shows that the similar partition
schemes with differentK are at the same “plateau”. From
plateau to plateau there are the critical points implying the
significant change of clustering structure, which can be the
candidates for the bestKs. These critical points can be
highlighted in the second-order differential of ECG, named
“Best-K Plot (BkPlot)”.

4.1 Property of Optimal Partition Schemes

In this section, we first give the Proposition 3 describing
the relation between the optimal expected-entropies with
varying K, which is then used to introduce the “Entropy
Characteristic Graph” and “BkPlot”.

Since the significant clustering structures are the glob-
ally optimal selections, we begin with the investigation of
optimal partitions with varyingK. Given the numberK of
clusters, there is at least one optimal partition minimizing
the expected entropȳH(CK) – we name it as̄Hopt(CK).
There are several properties aboutH̄opt(CK).

First of all,H̄opt(CK) is bounded. It was proved in [25]
thatH̄(CK) is bounded byĤ(X), i.e.

Proposition 2. Ĥ(X) > H̄(CK)

H̄(CK) is maximized whenK = 1 – all data points
are in the same cluster. We also haveH̄(CK) > 0 as
the entropy definition implies. The zero entropȳH(Ck)
is reached atk = N , when each vector is a cluster. There-
fore,H̄opt(CK) is bounded by[0, Ĥ(X)].

Then, for any different number of clusters,K and L,
K < L, we have also have the following property.

Proposition 3. H̄opt(CK) > H̄opt(CL), whenK < L

PROOF. Let someL-cluster partitionCL
0 be formed

by splitting the clusters in the optimalK-cluster partition.
With Proposition 1, we have

H̄opt(CK) > H̄(CL
0 ) > H̄opt(CL)

Proposition 3 shows that the optimal expected-entropy
decreases with the increasing ofK, which meets the intu-
ition well. It is hard to describe the curve with a closed
form function. However, as our experimental result shows,
it is often a negative logarithm-like curve (Figure 3). This
curve implies that, 1) it is highly possible that the bestK is
not unique in terms of entropy criterion, and 2) expected-
entropy curve could not help us to clearly identify the sig-
nificant clustering structures.
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4.2 Understanding the Similarity of Neighboring Par-
tition Schemes

There is some important implication behind the expected-
entropy curve when we consider thesimilarity between the
neighboring partitionson the curve, where the neighboring
partitions refer to theK-cluster partition andK +1-cluster
partition. There are two aspects to capture this similar-
ity. One aspect is the increasing rate of entropy, defined as
I(K) = H̄opt(CK+1) − H̄opt(CK), which indicates how
much the clustering structure is changed. The other aspect
is the difference betweenI(K) andI(K + 1), which in-
dicates whether the consecutive changes to the clustering
structure are similar. Since it is hard to describe the re-
lation between the optimal partitions, we use the cluster
mergence described in HierEntro algorithm to intuitively
illustrate the two aspects of similarity. In the consecutive
partition schemes generated by HierEntro, the increasing
rate is equivalent to incremental entropy:I(K) = 1

NdI
(K)
m .

First, we consider the meaning of small increasing rate
of entropy. As we discussed, merging identical clusters in-
troduces zero increasing rate, which implies that the merg-
ing does not introduce any impurity to the clusters and
the clustering structure is not changed. Similarly, small
increasing rate between two neighboring schemes implies
that the reduction of number of clusters does not introduce
large impurity to the partition and we consider the cluster-
ing structure is not significantly changed.

We can interpret the case of large increasing rate too. If
the expected-entropy increases a lot fromK+1 to K, this
reduction of number of clusters should introduce consid-
erable impurity into the partitions and thus the clustering
structure can be changed significantly. In such cases, we
need to investigate the relative changes in clustering struc-
ture of the neighboring schemes as follows.

ConsiderI(K) as the amount of impurity introduced
fromK+1-cluster scheme toK-cluster scheme. IfI(K) ≈
I(K +1), i.e. K-cluster scheme introduces similar amount
of impurity asK+1-cluster scheme does, we regard that the
clustering structure is notrelatively changed fromK+1-
cluster scheme toK-cluster scheme. An example of “sim-
ilar mergence” in Figure 6 can well demonstrate the simi-
larity of clustering structure atI(K) ≈ I(K + 1). We use
icons to conceptually represent categorical clusters. The
shape and the size of an icon represent the structure and size
of the cluster, respectively. The four clusters (C1 ∼ C4) in
Figure 6 are very similar. They are selected in two consecu-
tive merging operations. Thus, the changes to the resulting
clustering structures are similar and not quite distinguish-
able from each other.

C1 C2 C3 C4

C6

1. Merge C1 and C2
to form K+1 clusters

2. Merge C3 and C4
to form K clusters

C5

3. Merge C3+C4,
and C5 to form

K-1 clusters

Figure 6:I(K) ≈ I(K +1), butI(K − 1) > I(K) signif-
icantly

However, the third merging operation, which merges
C3 ∪ C4 and C5, might change the clustering structure
greatly, and thusI(K − 1) can increase dramatically. This
indicates that the second merge operation results in a rep-
resentative clustering structure for cluster analysis.

In practice, if a dataset has significant clustering struc-
ture, we can find a series of neighboring “stable” schemes,
which have similar increasing rate of entropy, and we may
also find thecritical points where a series of “stable”
schemes become “less stable” – the increasing rate changes
dramatically (Figure 4). Each of such critical points indi-
cates some significant change in clustering structure and
distinguishes a set of “stable” schemes from another set.
All of the critical points should be the candidates for the
bestKs and could be interesting to cluster analysis.

We name theI(K) plot as Entropy Characteristic
Graph (ECG). If a dataset has significant clustering struc-
tures, its ECG should be a curve with some distinguished
“knees”. An ECG curve showing no distinguished knees
implies that the clustering structure is smoothly changed
whenK changes fromN to 1, and thus clustering struc-
tures at allKs have the same importance – in other words,
there is no significant clustering structure.

The common way to mathematically identify such crit-
ical knees on a curve is to find the peaks/valleys at the
second-order differential of the curve. Since an ECG con-
sists of a set of discrete points, we define the second-order
differential of ECG asδ2I(K) – δI(K) = I(K)−I(K+1)
andδ2I(K) = δI(K − 1) − δI(K) to makeK aligned
with the critical points. We can clearly identify the bestKs
at theδ2I(K) plot, and thus name it as the “Best-k Plot
(BkPlot)” (Figure 5).
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4.3 Entropy Characteristic Graph Generated by Hi-
erEntro

ECGs generated by HierEntro have a special property. We
useI

(K)
m to denote theIm value in formingK-cluster parti-

tion fromK + 1-cluster partition. SinceI(K) = 1
NdI

(K)
m ,

it is equivalent to investigate the property ofI
(K)
m . We will

prove thatI(K)
m > I

(K+1)
m , so that the critical points always

happen at the peaks of BkPlot.

Proposition 4. I
(K)
m > I

(K+1)
m

PROOF. Let Im(Co, Cp, Cq) denote the incremental en-
tropy in merging any three clusters. It is trivial to prove
that the sequence of the three clusters does not matter in
calculating theIm and

Im(Co, Cp, Cq) > Im(C(1), C(2)) (1)

whereC(1) andC(2) are any two of the three clusters.
We maintain the ascending list ofIm for each merge op-

eration in HierEntro algorithm. Suppose that the two clus-
tersCp andCq are selected to merge to form theK + 1-

cluster scheme. We haveI(K+1)
m = Im(Cp, Cq). After the

merge operation, the incremental entropy between the pairs
of any clusterCo, o 6= p, q, and the new clusterCp ∪ Cq,
should be updated toIm(Co, Cp, Cq). SinceIm(Cp, Cq)
is the minimum value at the stageK + 1 and relation (1)
shows the updates toIm table only increase the values, the
selectedIm value for stageK will definitely be greater or
equal to that of stageK + 1, i.e. I(K)

m > I
(K+1)
m .

The BkPlots of such ECGs (I(K) > I(K + 1)) always
exhibit the criticalKs at peaks. This could reduce the num-
ber of noisyKs. We will demonstrate that the BkPlots gen-
erated by HierEntro are the most robust and efficient ones,
compare to those generated by other algorithms.

5 Experimental Results
The goal of the experiments is twofold. 1)We want to show
that BkPlot can be used to find the criticalKs. In order
to precisely evaluate the effectiveness of the method, we
design a set of datasets that have well-defined clustering
structure. With these datasets, we can precisely compare
the discovered clustering structures and the inherent clus-
tering structures. 2) We want to show that the BkPlots
generated by HierEntro are the most robust and efficient,
compared to those by another two popular entropy-based
clustering algorithms, Monte-Carlo method (MC) [25] and
Coolcat [6] – all of the three algorithms try to minimize the
expected-entropy defined in section 2.

5.1 Datasets

We construct two types of synthetic datasets with the fol-
lowing way, so that the clustering structure can be in-
tuitively identified and manually labeled before running
the experiments. The first type of datasets has a one-
layered clustering structure (Figure 7) with 30 attributes
and 1000 rows. It has three clusters with the same size.
Each cluster has random categorical values selected from
{‘0’,‘1’,‘2’,‘3’,‘4’, ‘5’ } in a distinct set of attributes, while
the rest attributes are set to ‘0’. The second one has a two-
layered clustering structure also with 30 attributes and 1000
rows. The top layer has four clusters, two of which have
sub-clusters as Figure 8 shows. Both types have clearly de-
fined clustering structure, and each record in a generated
dataset distinctly belongs to one cluster. We generate ten
datasets for each type of structure, named DS1-i and DS2-
i, 1 6 i 6 10, respectively.

We also use three “real” datasets, “Soybean-small”,
“Congressional votes” and “Zoo” in the experiments. All
of the three are from UCI KDD Archive1.

• Soybean-small datais a dataset used to classify the
soybean diseases. The dataset has 47 records and each
record has 35 attributes describing the features of the
plant. There are four classes in the dataset.

• Congressional votesis also a Boolean dataset con-
taining US Congressional Voting Records for the year
1984. The dataset has 435 records. Each record has a
Congressman’s votes on 16 issues (i.e. 16 attributes).
We use the 16 attributes to classify the Congressman
to “Democrat” or “Republican”.

• Zoo datacontains the feature description of the ani-
mals in a zoo. There are 101 animal instances, clas-
sified to 7 categories. Each record has 17 attributes
describing different features of animal, such as hair
and the number of legs, most of which are boolean.

5.2 Compared Algorithms

Literally, any categorical clustering algorithm that employs
the same entropy minimization criterion can generate a
valid BkPlot. However, the quality of the BkPlots can be
easily influenced by the underline algorithms. We briefly
introduce another two algorithms, Monte-Carlo algorithm
and Coolcat algorithm in this section. Both use expected
entropy to evaluate the quality of partition and try to mini-
mize the expected entropy in order to achieve a suboptimal

1http://www.ics.uci.edu/∼mlearn/MLRepository.html



partition. We compare the quality of BkPlots generated by
the two algorithms to that by HierEntro.

Monte-Carlo Method [25] is a top-down partitioning
algorithm. With a fixedK, it begins with all records in one
cluster and follows an iterative process. In each step, the
algorithm randomly picks one record from one of theK
clusters and puts it into another randomly selected cluster.
If the change of assignment does not reduce the expected
entropy, the record is put back to the original cluster. The
algorithm can be summarized as Algorithm 3.

Algorithm 3 Monte-Carlo Clustering
Input:( data records:X, # of clusters:K, # of unchanged steps:s)
Output: cluster assignment

Put all records into one cluster;
Calculate the initial expected entropyH0;
Set the counter of unchanged steps,c ← 0;
while c < s do

Randomly pick a pointx from a clusterA;
Randomly pick another clusterB;
Putx into B, and calculate the new expected entropyH;
if H > H0 then

Putx back toA, c ← c + 1;
else

H0 ← H, c ← 0;
end if

end while

Theoretically, given a sufficiently larges, the algorithm
will eventually terminate at a near optimal solution. We set
s = 5000 for running MC on the synthetic datasets.

To improve the efficiency, we also combine MC algo-
rithm with the Coolcat algorithm, in practice. Instead of
beginning with all records in one cluster, we use Coolcat
algorithm to generate the initial partition, and then use MC
algorithm to polish the partition, further reducing the ex-
pected entropy.

Coolcat [6] algorithm begins with selectingK records,
which maximize theK-record entropy, from a sample of
the dataset as the initialK clusters. It sequentially pro-
cesses the rest records and assigns each to one of theK
cluster. In each step, the algorithm finds the best fitted
one of theK clusters for the new record – adding the
new record to the cluster will result in minimum increase
of expected entropy. The data records are processed in
batches. Because the order of processing points has a sig-
nificant impact on the quality of final clusters, there is a
“re-clustering” procedure at the end of each batch. This
procedure picksm percentage of the worst fitted records in
the batch and re-assigns them to theK clusters in order to
reduce the expected entropy further.

Algorithm 4 Coolcat Clustering
Input:( data records:X, # of clusters:K, re-clustering percent:m )
Output: cluster assignment

Find theK records as the initial clusters from the sample set, which
maximized the entropy of theK records;
for each batchdo

for each recordu in the batchdo
Find the clusterCi, puttingu in which can result in the minimum
incremental entropy;
Placeu in Ci;

end for
Find the worst fittedm percent of records in the batch;
Re-clustering the worst fitted records;

end for

We run the algorithm on each dataset with a large sam-

ple size (50% of the datasets) andm = 20%, which is suffi-
cient for improvement through re-clustering [6]. In order to
reduce the effect of ordering, we run Coolcat 20 times for
each datasets and each run processes the data in a randomly
generated sequence. Finally, we select the result having the
lowest expected entropy among the 20 results.

5.3 Performance Measures

We use four measures to evaluate the quality BkPlots gen-
erated by different algorithms.

• Coverage Rate.We evaluate the robustness of BkPlot
with “Coverage Rate (CR)” – how many significant
inherent clustering structures are indicated by the
BkPlot. There could be more than one significant clus-
tering structures for a particular dataset. For example,
four-cluster and six-cluster structures can be all sig-
nificant for DS2. An robust BkPlot should always in-
clude all of the significantKs.

• False Discovery Rate. There could be someKs,
which are actually not critical but suggested by some
BkPlots. In order to efficiently find the most signifi-
cant ones, we prefer a BkPlot to have less false indica-
tors as possible. We use “False Discovery Rate(FDR)”
to represent the percentage of the noisy indicators in
the BkPlot.

• Expected Entropy.Since the BkPlot is indirectly re-
lated to expected entropy through ECG, it is also rea-
sonable to check the quality of expected entropy for
the partitions generated by different algorithms at the
particularKs. The most reliable BkPlot should be
based on the expected entropy of optimal partitions
for varyingK. Because finding the optimal partitions
is a NP-hard problem, we do approximation in all of
the three algorithms. For a set of datasets in the same
clustering structure, like DS1-i, 1 6 i 6 10, we have
almost same optimal expected entropy for different
datasets at a fixedK. Using the mean-square-error
(MSE) criterion [24] to evaluate the quality of the ap-
proximation result, we can decompose the errors to
two parts: the deviation to the optimal expected en-
tropy, and the variance of the estimated expected en-
tropy. Let ĥ be the estimated expected entropy andh

be the optimal one. LetE[ĥ− h] be the expected bias
andvar(ĥ) is the variance of̂h.

MSE = E2[ĥ− h] + var(ĥ)

Without calculating the optimal expected entropyh,
if an algorithm generates BkPlots with the lowest
expected entropy and minimum variance among the
three algorithms, we can also conclude that this algo-
rithm is the best one of the three.

• Purity. For the real datasets, there is no documented
clustering structure, but the class definition, which
describes the domain knowledge, is given. We use
purity [30] to evaluate the consistency between the
clustering result and the class definition. The purity
of a cluster,P (Ck), measures the extent to which the
cluster contains data points primarily from a single



DS1-i BkPlot, i=1..10, generated by HierEntro
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Figure 10: BkPlots of DS1 by HierEntro

DS2-i BkPlot, i=1..10, generated by HierEntro
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Figure 11: BkPlots of DS2 by HierEntro

DS1-i BkPlot, i=1..10, generated by MC
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Figure 12: BkPlots of DS1 by MC

DS2-i BkPlot, i=1..5, generated by MC
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Figure 13: BkPlots of DS2 by MC

class. The purity of a clustering result is the weighted
sum of the purity of individual cluster, given by

Purity =
K∑

k=1

nk

n
P (Ck)

5.4 Discussion

The BkPlots generated by HierEntro algorithm for DS1
(Figure 10 clearly indicate ‘3’ is the only significantK.
The datasets having the same clustering structure should
have almost the identical BkPlots. The identical BkPlots
on ten different DS1-i, 0 6 i 6 10, shows that HierEntro
is a robust algorithm for generating BkPlot.

The peaks of BkPlots for DS2-i (Figure 11) include
the two inherent significantKs – ‘4’ and ‘6’, but ‘2’ is
also given as the third significantK. However, we no-
tice that the peak values at ‘K=4’ or ‘K=6’ for different
DS2 datasets are almost same, while those at ‘K=2’ have
more variation. This solicits us to consider a more reliable
method to estimate the most significantK for a consider-
ably large dataset. We can generate a bunch of sample sets,
which have the identical clustering structure with the orig-
inal dataset. The most stable peaks in the BkPlots of the
sample sets correspond to the most significantKs.

The BkPlots generated by Monte-Carlo algorithm for
DS1 (Figure 12) also clearly identify that ‘3’ is the best
K with very small variation. However, the BkPlots for
DS2 show large variation onKs. In order to clearly ob-
serve the difference, we only show five BkPlots for DS2-
i, 1 6 i 6 5, respectively. Overall, theKs distribute
from ‘2’ to ‘10’ for different DS2-i. Some BkPlots include
the significantKs - ’4’ and ’6’, while others miss one or

both, which implies that MC algorithm might not be robust
enough for datasets having complicated clustering struc-
ture. The reason is MC algorithm becomes more likely
to trap in local minima with the increasing complexity of
clustering structure and increasing number of clusters.

Coolcat algorithm is the least robust one for generating
BkPlots. It brings large variation for both datasets (Figure
14 and 15). Coolcat algorithm is originally designed for
fast processing of categorical data while the quality of re-
sult is not well guaranteed. Therefore, it is not suitable for
generating robust BkPlots.

We summarize the result with the discussed measures,
Coverage Rate (CR), False Discovery Rate (FDR), and ex-
pected entropy (EE) in Table 2 and 3. The higher the cover-
age rate, the more robust the BkPlot is. The lower the false
discovery rate the more efficient the BkPlot is. The num-
bers are the average over the 10 datasets. For both types of
dataset, HierEntro shows the minimum expected entropy
and minimum standard deviation, as well as the highest CR
and lowest FDR. Therefore, the BkPlots generated by Hi-
erEntro are the most robust and efficient ones.

CR FDR EE
HierEntro 100% 0% 0.732± 0.001

MC 100% 0% 0.733± 0.001
Coolcat 60% 85% 1.101± 0.026

Table 2: Summary for DS1-i
CR FDR EEK = 4 EEK = 6

HierEntro 100% 33% 0.562± 0.002 0.501± 0.001
MC 80% 53% 0.565± 0.009 0.521± 0.008

Coolcat 60% 70% 0.852± 0.023 0.761± 0.021

Table 3: Summary for DS2-i



DS1-i BkPlot, i=1..5, generated by Coolcat
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Figure 14: BkPlots of DS1 by Coolcat

DS2-i BkPlot, i=1..5, generated by Coolcat
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Figure 15: BkPlots of DS2 by Coolcat

dataset N d # class BestKs Purity
soybean-small 47 35 4 {2,4,7} 100%

votes 435 16 2 {2} 83%
zoo 101 17 7 {2,4,7} 93.1%

Table 4: HierEntro result for real datasets

We run experiments on real datasets with HierEntro only
and the results match the domain knowledge very well. We
are not clear about the bestK for the inherent clustering
structure, but we can use the documented number of classes
as the reference number. Interestingly, the BkPlots of Hier-
Entro shows that these numbers are all included in the best
Ks, which implies that the inherent structure is consistent
with the domain knowledge. In fact, the additional bestKs
can be investigated further to explore more hidden knowl-
edge. For example, ‘K=2’ and ‘K=4’ for zoo dataset might
be other meaningful categorizations for the animals. The
high purity also shows that the entropy-based categorical
clustering can generate results highly consistent with the
domain knowledge, which have been supported by other
literatures [6, 25]. The result encourages us to believe that
BkPlots with HierEntro can also work effectively for the
real datasets.

6 Related Work

While many numerical clustering algorithms [22, 23] have
been published, only a handful of categorical clustering al-
gorithms appear in literature. The general statistical analy-
sis of categorical data was introduced in [2]. Although it is
unnatural to define a distance function between categorical
data or to use the statistical center (the mean) of a group
of categorical items, there are some algorithms, for exam-
ple, K-Modes [21] algorithm and ROCK [19] algorithm,
trying to fit the traditional clustering methods into categor-
ical data. However, since the numerical similarity/distance
function may not describe the categorical properties prop-
erly and intuitively, it leaves little confidence to the cluster-
ing result.

Gibson et al. introduced STIRR [18], an iterative algo-
rithm based on non-linear dynamical systems. STIRR rep-
resents each attribute value as a weighted vertex in a graph.
Starting with the initial conditions, the system is iterated
until a “fixed point” is reached. When the fixed point is
reached, the weights in one or more of the “basins” iso-
late two groups of attribute values on each attribute. Even
though they proved this approach works for some experi-
mental datasets having two partitions, the user may hesitate
in using it due to the complicated and not intuitive working

mechanism.
CACTUS [17] adopts the linkage idea from ROCK

and names it “strong connection”. However, the similar-
ity is calculated by the “support”. A cluster is defined
as a region of attributes that are pair-wise strongly con-
nected.Similarly, the concept of “support” or linkage is still
indirect in defining the similarity of categorical data, and
unnecessarily makes the clustering process complicated.

Cheng et al. [13] applied the entropy concept in numeri-
cal subspace clustering, and Coolcat [6] introduced the en-
tropy concept into categorical clustering. Coolcat is kind
of similar to KModes. However, Coolcat assigns the item
to a cluster that minimizes the expected entropy. Consider-
ing the cluster centers may shift, a number of worst-fitted
points will be re-clustered after a batch. Even though Cool-
cat approach introduces the entropy concept into its cate-
gorical clustering algorithm, it did not consider the problem
of finding the optimal number of categorical clusters. Some
closely related work also borrows concepts from informa-
tion theory, including Co-clustering [15], Information Bot-
tleneck [28] and LIMBO [3].

C. Aggarwal [1] demonstrated that localized associa-
tions are very meaningful to market basket analysis. To
find the localized associations, they introduced a categor-
ical clustering algorithm CLASD to partition the basket
data. They defined a new similarity measure for a pair of
transactions. CLASD is still a kind of traditional clustering
algorithm – the special part is only the definition of simi-
larity function for categorical data. Thus, it has the similar
problem we described.

Most of the recent research in categorical clustering is
focused on clustering algorithms. Surprisingly, there is lit-
tle research concerning about the cluster validation prob-
lems for categorical datasets.

7 Conclusion

Most of the recent research about categorical clustering has
only contributed to categorical clustering algorithms. In
this paper, we proposed an entropy-based cluster valida-
tion method for identifying the bestKs for categorical data
clustering. Our method suggests to find the bestKs by ob-
serving the “Entropy Characteristic Graph (ECG)”, which
describes the entropy property of partitions with varying
K and is significant in characterizing the clustering struc-
ture of categorical data. The “Best-K plot (BkPlot)” is
used to find the significant points conveniently from the
Entropy Characteristic Graph. BkPlots generated by dif-
ferent algorithm may have different performance in iden-



tify the significant clustering structures. In order to find the
robust BkPlot, We also develop an entropy-based agglom-
erative hierarchical algorithm HierEntro. Our experiments
show that, HierEntro can generate the most robust BkPlots
for various experimental datasets, compared to the other
two entropy-based algorithms: Monte-Carlo algorithm and
Coolcat algorithm. Meanwhile, HierEntro can also find
high quality clustering results in terms of the entropy cri-
terion. Therefore, BkPlot validation method together with
HierEntro algorithm can serve as an effective tool for an-
alyzing the significant clustering structures of categorical
datasets.
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Appendix:Proof of Proposition 1 We can expand Propo-
sition 1 with the definition of entropy in section 2.

−
d∑

j=1

∑

v∈Aj

(np + nq)p(xj = v|Cp ∪ Cq) ·

log2 p(xj = v|Cp ∪ Cq) >

−
d∑

j=1

∑

v∈Aj

npp(xj = v|Cp) log2 p(xj = v|Cp)−

−
d∑

j=1

∑

v∈Aj

nqp(xj = v|Cq) log2 p(xj = v|Cq) (2)

It is equivalent to check if the following relation is sat-
isfied for each valuev in eachdomain(Aj).

npp(xj = v|Cp) log2 p(xj = v|Cp) +
nqp(xj = v|Cq) log2 p(xj = v|Cq)
> (np + nq)p(xj = v|Cp ∪ Cq) ·

log2 p(xj = v|Cp ∪ Cq) (3)

Without loss of generality, supposeCp havingx items
and Cq having y items in valuev at j-th attribute. The
formula 3 can be transformed tox log2

x
np

+ y log2
y
nq

>
(x+y) log2

x+y
np+nq

. Sincex, y, np, nq are positive integers,
let x = s · y andnp = r · nq, (s, r > 0), and then we can
eliminatelog2 to get a simpler form: rs

(1+r)s+1 6 ss

(1+s)1+s .

It is easy to prove that ss

(1+s)1+s is the maximum value

of the functionf(r) = rs

(1+r)s+1 (r, s > 0). Therefore,
formula (3) is true, thus (2) is true and Proposition 1 is
proved.


