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Abstract

With the growing demand on cluster analysis for
categorical data, a handful of categorical clus-
tering algorithms have been developed. Surpris-
ingly, to our knowledge, none has satisfactorily
addressed the important problem for categorical
clustering — how can we determine the bést
number of clusters for a categorical dataset? Since
the categorical data does not have the inherent dis-
tance function as the similarity measure, the tra-
ditional cluster validation techniques based on the
geometry shape and density distribution cannot be
applied to answer this question. In this paper, we
investigate the entropy property of the categorical
data and propose BkPlot method for determin-
ing a set of candidate “be#fs”. This method is
implemented with a hierarchical clustering algo-
rithm HierEntro. The experimental result shows
that our approach can effectively identify the sig-
nificant clustering structures.

Cluster Validation Different clustering algorithms
hardly generate the same clustering result for one dataset,
and we need the cluster validation methods to evaluate the
quality of the clustering results [27, 22, 20]. Formally, there
are two main issues in cluster validation: 1) how to evalu-
ate the quality of different partition schemes generated by
different clustering algorithms for certain dataset, given the
fixed K number of clusters; 2) how to determine the num-
bers of clusters (the “be#”), which indicates the inherent
significant clustering structures of the dataset.

For numerical data, the clustering structure is usually
validated by the geometry and density distribution of the
clusters. When a distance function is given for the nu-
merical data, it is also natural to introduce the density-
based methods [16, 4] into clustering. As a result, the dis-
tance functions and density concepts play the unique roles
in validating the numerical clustering result. Various sta-
tistical cluster validation methods and visualization-based
validation methods have been proposed for numerical data
[22, 20, 12] and all are based on the geometry and den-
sity property. The intuition behind the geometry and den-

sity distribution justifies the effectiveness of these cluster

keywords Categorical Data Clustering, Entropy, Cluster validation methods. A good example commonly seen in
Validation clustering literature is evaluating the clustering result of
2D experimental datasets by visualizing it — the clustering
result is validated by checking how well the clustering re-
sult matches the geometry and density distribution of points

Data clustering is an important method in data analysisthrough the cluster visualization.
Clustering algorithms use the similarity measure to group While lack of the distance meaning for the categorical
the most similar items into clusters [23]. Clustering tech-data, the techniques used in cluster validation for numer-
niques for categorical data are very different from thosecal data are not applicable for categorical data. Without
for numerical data in terms of the definition of similarity reasonable numerical feature extraction/construction for a
measure. Most numerical clustering techniques use diggiven categorical dataset, the general distance functions
tance functions, for example, Euclidean distance, to definare usually inapplicable and unintuitive. As a result, no
the similarity measure, while there is no inherent distancegeometry/density-based validation method is appropriate in
meaning between categorical values. validating the clustering result for categorical data.
Traditionally, categorical data clustering is merged to Entropy Based Similarity Instead of using distance
numerical clustering through the data preprocessing stag@nction to measure the similarity between any pair of data
[23], where numerical features are extracted/constructedecords, similarity measures based on the “purity” of a set
from the categorical data, or the conceptual similarity be-of records seem more intuitive for categorical data. Entropy
tween data records is defined, based on the domain knowji4] is such a formal definition for measuring the purity of
edge. However, meaningful numerical features or conceppartition. Originally from information theory, Entropy has
tual similarity are usually difficult to extract at the early been applied in both pattern discovery [10] and numerical
stage of data analysis because we have little knowledgelustering [13]. Due to the lack of intuitive distance defini-
about the data. It has been widely recognized that clustion for categorical values, recently, there have been efforts
tering directly on the raw categorical data is important forin applying the entropy criterion in clustering categorical
many applications. Examples include environmental datalata [6, 25]. The initial results show that entropy criterion
analysis [29], market basket data analysis [1], DNA or pro-can be very effective in clustering categorical data. Li et al
tein sequence analysis [8], and network intrusion analysi§25] also proved that the entropy criterion can be formally
[5]. Therefore, there are increasing interests in clusteringlerived in the framework of probabilistic clustering mod-
categorical data recently [21, 19, 17, 18, 6, 15, 3, 25]. els, which further supports that the entropy criterion is a
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meaningful and reliable similarity measure for categorical SinceH (X) is estimated with the sample s&twe de-

data. fine the estimated entropy #5(X) = H(X|S), i.e.
In entropy-based categorical clustering, the quality of
clustering result is naturally evaluated by the entropy cri- f1(x) = H(X|S)

terion [6, 25], namely, thexpected entropfpr a partition.
However, the other cluster validation problem — determin-
ing the “best K”, has not been sufficiently addressed yet. In
this paper, we present a novel method based on entropy to

address this problem. o Suppose the datas@is partitioned intoK clusters. Let
Our Approach We first develop an agglomerative hier- ~x _ {C4,...,Cx} represent a partition, whers, is a

archical clustering algorithmHtierEntro’. The algorithm | ster andh;, represent the number of recordg(.
works in a bottom-up manner. Beginning with each indi- ¢ ¢jassical entropy-based clustering criterion tries to

vidual record as a cluster, it merges the most similar pai(;ind the optimal partitionC'X , which maximizes the fol-
of clusters in each step, where the similarity is evaluate owing entropy criterion [9, 11, 25].

with the incremental entropy An agglomerative hierar-

chical clustering algorithm typically generates a cluster- K

ing tree that contains the different clustering structures that o(CK) = 1 H(X) - 1 anﬁ(()k)
have different/{. We use these clustering structures to an- d L

alyze the besk problem.

Based on the intuition behind the merging operation since A(X) is fixed for a given datase$, max-
in HierEntro algorithm, we investigate the relation be-imizing O(CX) is equivalent to minimize the item
tween the pairs of neighboring partition schemes (havingi «—x A s “ )
K clusters and< + 1 clusters, respectively). We usefi- " 2 k=1 7 (Cy), which is named as the “expected en

” oY K H [ K

tropy Characteristic Grapi{ECG) ” to sketch the entropy tropy ‘?f partition C"%.Let us notate it a‘i{(q ). For
property of the clustering structures, and uBest-K Plot ~ convenience, we also name 1 (C’) as the “weighted en-
(BKPlot)", which is built on ECG, to identify the candidates TOPY” Of clusterCy. o
of the bestK . The initial experimental result shows thatthe L1 €t @l [25] showed that the minimization of expected-
proposed validation method, concretely, using the BkPlot&Ntropy is equivalent to many important concepts in in-
generated by HierEntro to identify the bess, works ef- formation theory, clustering anq cIaSS|f!cat_|on, such as
fectively in finding the significanf’s for categorical data Kullback-Leibler Measure, Maximum Likelihood [24],
clustering. Minimum Description Le_:ng_th [26], and.d|SS|m|Iar|ty co-

The rest of the paper is organized as follows. secfficients [7]. Entropy criterion is especially good for cat-
tion 2 sets down the notations and gives the definition oftgorical clustering due to the lack of intuitive definition of
the traditional entropy-based clustering criterion. SectiorfliStance for categorical values. While entropy criterion can

3 presents the agglomerative hierarchical clustering algo@/SO be applied to numerical data [13], it is not the best
rithm, HierEntro. Section 4 investigates the relation pe-choice since it cannot describe the cluster shapes and other

tween the neighboring partitioning schemes with the enumerical clustering features of the dataset.

tropy criterion, and proposes the validation method for in-

dicating the besk's. We present the experimental resultin 3 HierEntro Categorical Clustering Algo-
section 5 and review the related categorical clusteringwork  rithm

in section 6. Finally, we conclude the paper in section 7.

d
=323 plas = viS)logy pla; = viS)

Jj=1 UGAj

In this section, we define the proposed similarity measure,
> Notati d Definiti incremental entropyfor two clusters. With incremental en-
otations anad befiniions tropy, we design the algorithm HierEntro. HierEntro and its

We give the notations used in this paper and then introducé&orking mechanism is the tool used to explore the signifi-
the traditional entropy-based clustering criterion. Severafant clustering structures in the next section.
basic properties about the entropy criterion will be pre-
sented later. 3.1 Incremental Entropy

Consider that a datasgwith N records and columns,
is a sample set of the discrete random vecior =
(z1,22,...,24). For each component;, 1 < j < d,
x; takes a value from the domait;. A; is conceptually
different from A (k # j). There are a finite number of dis-
tinct categorical values itiomain(A;) and we denote the
number of distinct values dsl;|. Letp(z; = v), v € 4;,
represent the probability af; = v, we have the classical
entropy definition [14] as follows.

We investigate the mergence of two clusters to explore
the similarity between any two clusters. Intuitively, merg-
ing the two clusters that are similar in the inherent struc-
ture will not increase the disorderliness (expected-entropy)
of the partition, while merging dissimilar ones will in-
evitably bring larger disorderliness. Therefore, this in-
crease of expected entropy has some correlation with the
similarity between clusters. It is necessary to formally ex-
plore the property of merging clusters. L€t U C, repre-

d sent the mergence of two clusters andC,;, andC), and
H(X) = ZH(xj) qu. haven, andn, members, re§pect|vely. By the defi-

nition of expected entropy, the difference betwd@(i)

H(K + 1) is only the difference between the weighted en-

d
- Z Z p(zj = v)logy p(z; = v) tropies,(n, + ny)H(C, U C,) andn, H(C,) + ngH(Cy).
=1 vea, We have the following relation for the weighted entropies.
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Figure 1: Summary table and physical structure  Figure 2: Illustration of the operation schedule
after a merging operation

dsl ds2 the I,,, valude in formingK-cluster partition fromi+1-
11011101 cluster partition.
1101|0011 Maintaining the minimum incremental entropy for each
0011 step is the most costly part. In order to efficiently imple-
0011 ment the HierEntro algorithm, we maintain three main data
) structures:summary tabldor convenient counting of oc-
Table 1: Identical structure currences of valued,, -tablefor bookkeeping.,,, (C,, C,)

Proposition 1. (n, + nq)fI(Cp ue,) > npﬁ(Cp) + of any pair of cluster¢’, andC,, and al,,, heapfor main-

i taining the minimunv,,, value in each step.
nqH (Cq) Summary table is used to maintain the fast calculation

PROOF The result is quite intuitive and proving itis not of cluster entropyH (Cy;) and each cluster has one sum-
hard (Appendix). mary table (Figure 1). Since computing cluster entropy is

Let ,,,(Cp, Cy) = (np+ng) H(C,UC,)— (n, H(C,)+ based on counting the occurrences of categorical values in

anI(Cq)) be the ‘incremental entropyby merging the each column, a summary table keeps the counters for the

clustersC,, and C,. Note thatl,,(C,,C,) = 0 most cluster. Apparently, if the average column cardinality is
p q- m pyYq -

likely suggests that the two clusters have the identical struc?:: & Summary table keepsn counters. Such a summary

ture — for every categorical value in every attributer;, table enables fast merging operation — when merging two

. ‘ ; R e clusters, the two summary tables are added up to form the
1< <[4, 1 <j < d, we havep(z; = v|Cy) =

_ . L summary table for the new cluster.

p(z; = vi|Cy). ldentical structure implies! (C;, U Cy) = We usel,,-table to keep track of the incremental en-
H(Cp)= H(C,) regardless of the size of the clusters. A yopy petween any pair of clusters, which is then used to
simple example in table 1 demonstrates the identical struGyaintain the minimun¥,, for each round of mergence.
ture. The I,,,-table is a symmetric table (thus, only a half of en-

_ Incremental entropy brings the heuristic about the disyries are used in practice), where the éllj) keeps the
similarity between any two clusters, i.e., when the two clusgiye of7,,, (C;, C;) Figure 2.

ters are similar in structure, merging them will not bring 7 heap is used to keep track of the globally minimum

large disorderliness into the partition, thus,(Cy,Cq)  incremental entropy. We define the most similar cluster of
will be small; when the two clusters are very differ- o|ysteru as

ent, merging them will bring great disorderliness, thus,

I,,(Cy, C,) will be large. Therefore, incremental entropy u.similar = argmin{Iy, (u, v),v 7 u}

intuitively serves as the similarity measure between any .

two clusters. and let u.I,, represent the corresponding incremental
entropy of mergingu and w.similar. We use <

3.2 HierEntro Algorithm u, u.tp,, u.stmilar > as thefeature vectorof clusteru.

) N ] ] . ~ The feature vectors are inserted into the heap, sorted by
While the traditional hierarchical algorithms for numerical ,, 1

clustering needs to explicitly define the inter-cluster sim-  Ajgorithm 1 shows the sketch of the main procedure.
llarity with “single-link”, “multi-link” or “complete-link”  \when mergingu andu.similar happens, their summary
methods [22]. Incremental entropy is a natural clusteraples are added up to form the new summary table. Con-
based similarity measure, ready for constructing a hierarsjger, as the main cluster, i.ey.similar is merged to
chical clustering algorithm. Having incremental entropy ascjysteru, we need to find the new.similar and insert the
the measure of inter-cluster similarity, we developed theney feature vectot u, u.I,,, u.similar > to the heap.
following entropy-based agglomerative hierarchical clus-  There is an important procedure for updating the book-
tering algorithm — (HierEntro). keeping information after merging operation. Ledenote
HierEntro algorithm is a bottom-up process to construche old u.similar. The bookkeeping information far is
a clustering tree. It begins with the scenario where eache|eased and any entriesiip -table related ta. or v should
record is a cluster. Then, an iterative process is followed e ypdated. For any clusterif the c.similar is changed
in each step, the algorithm finds a pair of clustfsand  gye to the update df,,-table, its location at the heap needs
C, that are the most similar, i.e,,(Cy, Cy) is minimum {5 pe updated too. The detailed update algorithm is de-
among all possible pair of clusters. We &) to denot  scribed in Algorithm 2 and demonstrated by Figure 2.



Algorithm 1 HierEntro.main() the candidates of the optimal number of clusters (the best

Ts[] < initialize summary tables K's). Are there index curves indicating the significant clus-
Tr,, — initialize I, table tering structures for categorical data too? &4, (CK)
?% heap denote the expected entropy of the optimal partitiorof
or Each record: do . g . L

h.push(< u, w.Im, w.similar >) clusters. The first thought might be investigating the curve
end for of H,, (CK).
while not emptyt) do Our result shows that the curve of optimal expected-

< U, u. I, w.similar >« h.top()

Tou]  Tufu] + T [u-similar] entropie; is_usually a smoothly decreasing_ curve without
update< w, u. I, u.similar > any distinguished peaks, valley, or knees (Figure 3). How-
h.push(< w, u.Im, u.similar >) ever, we find some special meaning behind the neighbor-
updatingafter.merging() //Algorithm 2 ing partition schemes (witlk’ and K + 1 clusters respec-
end while tively). The differential of expected-entropy curve, which
i i i i we name as “Entropy Characteristic Graph (ECG)” (Figure
Algorithm 2 HierEntro.updatingafter merging() 4), has substantial meaning indicating the significant clus-
C; — master cluste’; — merged cluster tering structures. An ECG shows that the similar partition
fﬁiﬁjﬁ;gj{ame entrie{C;, =) schemes with differenk” are at the same “plateau”. From
updatel,,, table entriegx, ci)’and(*, c;) plateau to plateau there are the critical points implying the
for Each valid clusten, if u.similar == C; or C; do significant change of clustering structure, which can be the
update< u, u.lm, u.similar >; candidates for the bedt's. These critical points can be

relocate< u, u.Ip,, u.similar >inh

end for highlighted in the second-order differential of ECG, named

“Best-K Plot (BkPlot)”.

3.3 Complexity of HierEntro

. . 4.1 Property of Optimal Partition Schemes
Updating the I,,-table is the most costly part, con- perty P

sisting several incremental-entropy calculations. Eachn this section, we first give the Proposition 3 describing
incremental-entropy calculation involves summation of thethe relation between the optimal expected-entropies with
two summary tables and computing the weighted entropyarying K, which is then used to introduce the “Entropy
with the merged summary tables. The cost of comput-Characteristic Graph” and “BkPlot”.

ing weighted entropy is O(dm), when an auxiliary array  Since the significant clustering structures are the glob-
in length of V is used to buffer théog,, values as the fol- ally optimal selections, we begin with the investigation of

lowing equation shows. optimal partitions with varyind<. Given the numbeK of
clusters, there is at least one optimal partition minimizing
n, H(C,) the expected entropif (C*) — we name it ag1,,;(C¥).
d There are several properties abail,; (CX).
- _ Z Z npcﬂ log, % First of all, Ho, (C*) is bounded. It was proved in [25]
=1 ey n, - that H(C¥) is bounded by (X), i.e.

cjp=Frea(vj;)|Cp

d
— Z Z ¢k (logy cjx — logy np)
j=1

ofeh, H(C*X) is maximized whenk = 1 — all data points
ejk=Ffrea(v;x)|Cp are in the same cluster. We also haléC*) > 0 as
. _ the entropy definition implies. The zero entrop§(C*)
The merge operations totally cog?(N) incremental- s reached at = N, when each vector is a cluster. There-
entropy calculations but the total cost is dominated by UPfore, H,,.(C) is bounded byo, H (X))].
dating I,,,-table after each merging operation which will  Then “for any different number of cluster&, and L,

needO(N?) incremental-entropy calculations in total in K < L, we have also have the following property.
the worst case. Therefore, the overall time complexity is

O(dmN?). The summary tables requit®(dmN) space, Proposition 3. H,,,(C*) > H,,,(C*), whenk < L

both thelog, buffer and the heap cost3(N) space, and

I,,-table cost)(N?) space. PROOF Let some L-cluster partitionC{ be formed
We use the HierEntro algorithm as the tool to help un-by splitting the clusters in the optim&! -cluster partition.

derstanding the property of significant clustering structuredVith Proposition 1, we have

in categorical data. Having the expected entropy as the cri-

Proposition 2. H(X) > H(CK)

terion of evaluating clustering quality for a fixeld, we Hopi(CF) 2 H(CF) = Hopt(CF)
will focus on the other important validation problem: what
is the bestK's for a particular categorical dataset? u

Proposition 3 shows that the optimal expected-entropy
4 Exploring the Significant Clustering q_tecreases wi.th the increasing]ﬁt which meets the intu-
Structures ition well. tis hard to describe the curve with a closed
form function. However, as our experimental result shows,
Traditionally, statistical validity indices based on geometryit is often a negative logarithm-like curve (Figure 3). This
and density distribution are applied in clustering numericalcurve implies that, 1) it is highly possible that the b&sis
data [20]. The statistical index values according to differentnot unique in terms of entropy criterion, and 2) expected-
K make an index curve. ThE's at the peaks, valleys, or entropy curve could not help us to clearly identify the sig-
distinguished “knees” on the index curve, are regarded anificant clustering structures.



BkPlot for Soybean-small, by HierEntro

4 ExpectedEntropy 1(K)4 —\7 o1
n 0.1

N\ 0.08

.
l\\ < 006
) 004
\
™ 002
LN
" 0 ZaN

) |
Delta?l

\I-\ | \/‘; 002 1‘2‘\{‘4‘5\(7‘\3/9 10 11 12 13 14
e 004 N4 o~
L Y #of ‘ K
i clusters Candidate Ks
o #ofclusters Thecandidates
forbestk

Figure 5: Finding the best with
Figure 4: Sketch of ECG graph. BkPlot (example of soybean-small
data).

4.2 L_J_nderstanding the Similarity of Neighboring Par- 3. Merge C3+C4,
tition Schemes and C5 to form
. . . . . . K-1 clusters
There is some important implication behind the expected-

entropy curve when we consider thienilarity between the
neighboring partitionon the curve, where the neighboring
partitions refer to thé(-cluster partition and< + 1-cluster cl c2 e c4
partition. There are two aspects to capture this similar- )

ity. One aspect is the increasing rate of entropy, defined as S
I(K) — -Hopt(CK+1) _ -Hopt(CK); which indicates how 1. Merge C1 and C2 2. Merge C3 and C4

. . to form K+1 clusters to form K clusters
much the clustering structure is changed. The other aspect

is the diff K I(K + 1), which in-
s the difference betweeR(X) and I(K + 1), which in g’gure 6:I(K) =~ I(K+1),butl(K —1) > I(K) signif-
ICantly

Figure 3: Sketch of expected entropy
curve.

dicates whether the consecutive changes to the cIusterirF

structure are similar. Since it is hard to describe the re-

lation between the optimal partitions, we use the cluster

mergence described in HierEntro algorithm to intuitively

illustrate the two aspects of similarity. In the consecutive However, the third merging operation, which merges

partition schemes generated by HierEntro, the increasing’s U C, and Cs, might change the clustering structure

rate is equivalent to incremental entrogy k) = ﬁ_,jnK)_ gre_atly, and thug(K — 1) can increase d'ramatlcally.' This
First, we consider the meaning of small increasing ratdndicates that the second merge operation results in a rep-

of entropy. As we discussed, merging identical clusters in/€Séntative clustering structure for cluster analysis.

troduces zero increasing rate, which implies that the merg-

ina does not introduce anv impurity to the clusters and In practice, if a dataset has significant clustering struc-
9 . any 1mpurity L ture, we can find a series of neighboring “stable” schemes,
the clustering structure is not changed. Similarly, small

) : . . - which have similar increasing rate of entropy, and we may
increasing rate between two neighboring schemes mpheglso find thecritical points where a series of “stable”

. . o : C&chemes become “less stable” — the increasing rate changes
large impurity to the partition and we consider the CIUSter'dramatically (Figure 4). Each of such critical points indi-

Ing structure Is not significantly chang_ed. : ates some significant change in clustering structure and
We can interpret the case of large increasing rate too. | istinguishes a set of “stable” schemes from another set.

the expected-entropy increases a lot frﬁf&l to K, this . . All of the critical points should be the candidates for the
reduction of number of clusters should introduce consid-

erable impurity into the partitions and thus the cIusteringbeStKS and could be interesting to cluster analysis.

structure can be changed significantly. In such cases, we we name thel(K) plot as Entropy Characteristic
need to investigate the relative changes in clustering struqsraph (ECG) If a dataset has significant clustering struc-
ture of the neighboring schemes as follows. tures, its ECG should be a curve with some distinguished
Consider/(K) as the amount of impurity introduced “knees”. An ECG curve showing no distinguished knees
from K'+1-cluster scheme t&’-cluster scheme. lf(K) ~  implies that the clustering structure is smoothly changed
I(K+1),i.e. K-cluster scheme introduces similar amount\yhen x changes fromV to 1, and thus clustering struc-

of impurity asi+1-cluster scheme does, we regard that theyres at alli’'s have the same importance — in other words,
clustering structure is naelatively changed fromK+1-  thereis no significant clustering structure.

cluster scheme t& -cluster scheme. An example of “sim-

ilar mergence” in Figure 6 can well demonstrate the simi- The common way to mathematically identify such crit-
larity of clustering structure at(K) ~ I(K + 1). We use ical knees on a curve is to find the peaks/valleys at the
icons to conceptually represent categorical clusters. Theecond-order differential of the curve. Since an ECG con-
shape and the size of an icon represent the structure and sigists of a set of discrete points, we define the second-order
of the cluster, respectively. The four clustets (~ C,) in  differential of ECG a$21(K)—dI(K) = I(K)—I(K+1)
Figure 6 are very similar. They are selected in two consecuand 621(K) = §I(K — 1) — §I(K) to makeK aligned

tive merging operations. Thus, the changes to the resultingiith the critical points. We can clearly identify the béss
clustering structures are similar and not quite distinguish-at the§?I(K) plot, and thus name it as the “Best-k Plot
able from each other. (BkPlot)” (Figure 5).
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4.3 Entropy Characteristic Graph Generated by Hi- 5.1 Datasets

erEntro We construct two types of synthetic datasets with the fol-

ECGs generated by HierEntro have a special property. Wowing way, so that the clustering structure can be in-
use[ﬁrf() to denote thdm value in formingK-duster parti_ tUlthEly identified and manua”y labeled before running

tion from K + 1-cluster partition. Sincé(K) = L 1$5). the experiment_s. The first type of data_sets has a one-
+ P (K) =~ layered clustering structure (Figure 7) with 30 attributes

itis equivalti?t to inxesitigate the property . We will and 1000 rows. It has three clusters with the same size.
prove thatrs) > I "), so that the critical points always Each cluster has random categorical values selected from
happen at the peaks of BkPlot. {'0",'1",'2",'3",'4",'5" } in a distinct set of attributes, while

o (K) (K+1) the rest attributes are set to ‘0’. The second one has a two-
Proposition 4. I, ’ > In, layered clustering structure also with 30 attributes and 1000
PROOF. Let I, (C,, Cp, Cy) denote the incremental en- rows. The top layer has four clusters, two of which have
tropy in merging any three clusters. It is trivial to prove syb-clusters as Figure 8 shows. Both types have clearly de-
that the sequence of the three clusters does not matter fihed clustering structure, and each record in a generated

calculating thel,,, and dataset distinctly belongs to one cluster. We generate ten
[n(Co, Cpy Cy) = In(Cray, C2y) (1) datasets for each type of structure, named D&td DS2-
i, 1 <4 < 10, respectively.
whereC(;) andC,) are any two of the three clusters. We also use three “real” datasets, “Soybean-small”,

We maintain the ascending list 8§, for each merge op-  «congressional votes” and “Zoo” in the experiments. All
eration in HierEntro algorithm. Suppose that the two clus-gf the three are from UCI KDD Archivé.

tersC, andC, are selected to merge to form the + 1- . _
cluster scheme. We havéX ™) — 1 (C,,C,). After the e Soybean-small dat&s a dataset used to classify the
. — im P q*

merge operation, the incremental entropy between the pairs soyb%arr: dlsgg)asis'.bT?e d(jatasg';)has tﬁ? rfec?rds an? tiaCh
of any clusterC,, o # p, q, and the new cluste,, U C,, record has 35 attributes describing the features of the

shouid be updated t6,,(C,, C,, C,). Sincel,(Cp,C,) plant. There are four classes in the dataset.

is the minimum value at the stage + 1 and relation (1) e Congressional votess also a Boolean dataset con-

shows the updates 1, table only increase the values, the taining US Congressional Voting Records for the year

selected’,,, value for stagefC will definitely be greater or 1984. The dataset has 435 records. Each record has a

equal to that of stag&” + 1, i.e. I,(,f() > I,(f“). O Congressman’s votes on 16 issues (i.e. 16 attributes).
The BkPlots of such ECGY (K) > I(K + 1)) always We use the 16 attributes to classify the Congressman

exhibit the criticalK's at peaks. This could reduce the num- to “Democrat” or “Republican”.

ber of noisyK's. We will demonstrate that the BkPlots gen-
erated by HierEntro are the most robust and efficient ones,
compare to those generated by other algorithms.

e Z00 datacontains the feature description of the ani-
mals in a zoo. There are 101 animal instances, clas-
sified to 7 categories. Each record has 17 attributes

5 Experimental Results describing different features of ani_mal, such as hair

and the number of legs, most of which are boolean.

The goal of the experiments is twofold. 1)We want to show

that BkPlot can be used to find the critic&ls. In order 5.2 Compared Algorithms

to premsely evaluate the effectiveness of the method, \.Nfiterally, any categorical clustering algorithm that employs
design a set of datasets that have well-defined clusterlnﬁ]e same entropy minimization criterion can generate a

the discovered clustering sirustures and the inherent alu21d BKPIOL However,the qualiy of the BKPIots can be
tering structures. 2) Wg want to show that the BkPIotseaS”y influenced by the underline algorithms. We briefly
9 ) introduce another two algorithms, Monte-Carlo algorithm

generated by HierEntro are the most robust and efficient nd Coolcat algorithm in this section. Both use expected

compared to those by another two popular entropy-baseé . S e
X . i ntropy to evaluate the quality of partition and try to mini-
Clustering algorithms, Monte-Carlo method (MC) [25] and mize the expected entropy in order to achieve a suboptimal

Coolcat [6] — all of the three algorithms try to minimize the
expected-entropy defined in section 2. Lhttp:/Aww.ics.uci.edutmlearn/MLRepository.html




partition. We compare the quality of BkPlots generated byple size (50% of the datasets) amd= 20%, which is suffi-

the two algorithms to that by HierEntro. cient for improvement through re-clustering [6]. In order to
Monte-Carlo Method [25] is a top-down partitioning reduce the effect of ordering, we run Coolcat 20 times for

algorithm. With a fixedX, it begins with all records in one each datasets and each run processes the data in a randomly

cluster and follows an iterative process. In each step, thgenerated sequence. Finally, we select the result having the

algorithm randomly picks one record from one of the
clusters and puts it into another randomly selected cluster.

lowest expected entropy among the 20 results.

If the change of assignment does not reduce the expectesls performance Measures

entropy, the record is put back to the original cluster. The
algorithm can be summarized as Algorithm 3.

Algorithm 3 Monte-Carlo Clustering

Input:( data recordsX, # of clusters:K, # of unchanged steps)
Output: cluster assignment

Put all records into one cluster;
Calculate the initial expected entropip;
Set the counter of unchanged steps;- 0;
while ¢ < sdo
Randomly pick a point from a clusterA;
Randomly pick another clusté?;
Putz into B, and calculate the new expected entrdpy
if H> Hy then
Putx back toA, ¢ «— ¢+ 1;
else
Ho «— H,c+ 0;
end if
end while

Theoretically, given a sufficiently large the algorithm
will eventually terminate at a near optimal solution. We set
s = 5000 for running MC on the synthetic datasets.

To improve the efficiency, we also combine MC algo-
rithm with the Coolcat algorithm, in practice. Instead of
beginning with all records in one cluster, we use Coolcat
algorithm to generate the initial partition, and then use MC
algorithm to polish the partition, further reducing the ex-
pected entropy.

Coolcat[6] algorithm begins with selecting records,
which maximize theK-record entropy, from a sample of
the dataset as the initidl clusters. It sequentially pro-
cesses the rest records and assigns each to one & the
cluster. In each step, the algorithm finds the best fitted
one of the K clusters for the new record — adding the
new record to the cluster will result in minimum increase
of expected entropy. The data records are processed in
batches. Because the order of processing points has a sig-
nificant impact on the quality of final clusters, there is a
“re-clustering” procedure at the end of each batch. This
procedure picksn percentage of the worst fitted records in
the batch and re-assigns them to #ieclusters in order to
reduce the expected entropy further.

Algorithm 4 Coolcat Clustering

Input:( data recordsX , # of clusters:K, re-clustering percenin )
Output: cluster assignment

Find the K records as the initial clusters from the sample set, which
maximized the entropy of th& records;
for each batchlo
for each record: in the batctdo
Find the cluster”;, puttingw in which can result in the minimum
incremental entropy;
Placeu in C;;
end for
Find the worst fittedn percent of records in the batch;
Re-clustering the worst fitted records;
end for

We run the algorithm on each dataset with a large sam-

We use four measures to evaluate the quality BkPlots gen-
erated by different algorithms.

e Coverage RateéWe evaluate the robustness of BkPlot

with “Coverage Rate (CR)” — how many significant
inherent clustering structures are indicated by the
BkPlot. There could be more than one significant clus-
tering structures for a particular dataset. For example,
four-cluster and six-cluster structures can be all sig-
nificant for DS2. An robust BkPlot should always in-
clude all of the significanis.

False Discovery Rate. There could be soméss,
which are actually not critical but suggested by some
BkPlots. In order to efficiently find the most signifi-
cant ones, we prefer a BkPlot to have less false indica-
tors as possible. We usEdlse Discovery Rat€DR)”

to represent the percentage of the noisy indicators in
the BkPlot.

Expected EntropySince the BkPlot is indirectly re-
lated to expected entropy through ECG, it is also rea-
sonable to check the quality of expected entropy for
the partitions generated by different algorithms at the
particular K's. The most reliable BkPlot should be
based on the expected entropy of optimal partitions
for varying K. Because finding the optimal partitions
is a NP-hard problem, we do approximation in all of
the three algorithms. For a set of datasets in the same
clustering structure, like DS4-1 < ¢ < 10, we have
almost same optimal expected entropy for different
datasets at a fixe&. Using the mean-square-error
(MSE) criterion [24] to evaluate the quality of the ap-
proximation result, we can decompose the errors to
two parts: the deviation to the optimal expected en-
tropy, and the variance of the estimated expected en-
tropy. Let/ be the estimated expected entropy and
be the optimal one. LeE[h — h] be the expected bias

andvar(h) is the variance of.
MSE = E*[h — h] + var(h)

Without calculating the optimal expected entrajpy

if an algorithm generates BkPlots with the lowest
expected entropy and minimum variance among the
three algorithms, we can also conclude that this algo-
rithm is the best one of the three.

Purity. For the real datasets, there is no documented
clustering structure, but the class definition, which
describes the domain knowledge, is given. We use
purity [30] to evaluate the consistency between the
clustering result and the class definition. The purity
of a cluster,P(C}), measures the extent to which the
cluster contains data points primarily from a single
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Figure 10: BkPlots of DS1 by HierEntro
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Figure 12: BkPlots of DS1 by MC Figure 13: BkPlots of DS2 by MC

class. The purity of a clustering result is the weightedboth, which implies that MC algorithm might not be robust
sum of the purity of individual cluster, given by enough for datasets having complicated clustering struc-
ture. The reason is MC algorithm becomes more likely
to trap in local minima with the increasing complexity of
clustering structure and increasing number of clusters.
Coolcat algorithm is the least robust one for generating
) ] BkPlots. It brings large variation for both datasets (Figure
5.4 Discussion 14 and 15). Coolcat algorithm is originally designed for
The BkPlots generated by HierEntro algorithm for DS1 fast processing of categorical data while the quality of re-
(Figure 10 clearly indicate ‘3’ is the only significat. ~ Sultis not well guaranteed. Therefore, it is not suitable for
The datasets having the same clustering structure shou@fnerating robust BkPlots.
have almost the identical BkPlots. The identical BkPlots We summarize the result with the discussed measures,
on ten different DS%; 0 < i < 10, shows that HierEntro Coverage Rate (CR), False Discovery Rate (FDR), and ex-
is a robust algorithm for generating BkPlot. pected entropy (EE) in Table 2 and 3. The higher the cover-
The peaks of BkPlots for DS2{Figure 11) include age rate, the more robust the BkPlot is. The lower the false
the two inherent significank's — ‘4’ and ‘6’, but ‘2’ is  discovery rate the more efficient the BkPlot is. The num-
also given as the third significadt. However, we no- bers are the average over the 10 datasets. For both types of
tice that the peak values at ‘K=4’ or ‘K=6" for different dataset, HierEntro shows the minimum expected entropy
DS?2 datasets are almost same, while those at ‘K=2" hav@nd minimum standard deviation, as well as the highest CR
more variation. This solicits us to consider a more reliableand lowest FDR. Therefore, the BkPlots generated by Hi-
method to estimate the most significdiitfor a consider- ~ €rEntro are the most robust and efficient ones.
ably large dataset. We can generate a bunch of sample sets,

K
Purity = z %P(Ck)
k=1

; ) . ; ) . CR | FDR EE
WhICh have the identical clustering structure with the orig- HierEntro | 100% | 0% | 0.732£ 0.001
inal dataset. The most stable peaks in Fh.e BkPlots of the MC 100% | 0% | 0.733< 0.001
sample sets correspond to the most signifidgat Coolcat | 60% | 85% | 1.101< 0.026

The BkPlots generated by Monte-Carlo algorithm for
DS1 (Figure 12) also clearly identify that ‘3’ is the best Table 2: Summary for DS1-
K with very small variation. However, the BkPlots for CR | FDR EEK =4 EEK =6
DS2 show large variation ok’s. In order to clearly ob- [ HierEntro | 100% | 33% | 0.562+ 0.002 | 0.501+ 0.001
serve the difference, we only show five BkPlots for DS2-| MC 80% | 53% | 0.565+ 0.009 | 0.521+ 0.008
i, 1 < ¢ < 5, respectively. Overall, thé(s distribute Coolcat | 60% | 70% | 0.852+ 0.023 | 0.761+ 0.021

from ‘2" to ‘10’ for different DS24. Some BkPlots include
the significantK’s - '4’ and '6’, while others miss one or

Table 3: Summary for DS2-
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dataset N d | #class| BestKs | Purity mechanism.
soybean-small 47 | 35| 4 24,7 100% CACTUS [17] adopts the linkage idea from ROCK
votes ‘l‘gi 13 5 2{2} 9%3 1/2/ and names it “strong connection”. However, the similar-
Z00 247 el ity is calculated by the “support”. A cluster is defined

as a region of attributes that are pair-wise strongly con-
nected.Similarly, the concept of “support” or linkage is still

We run experiments on real datasets with HierEntro onlyindirect in defining the similarity of categorical data, and
and the results match the domain knowledge very well. Wéinnecessarily makes the clustering process complicated.
are not clear about the be&t for the inherent clustering Cheng et al. [13] applied the entropy concept in numeri-
structure, but we can use the documented number of classé8l subspace clustering, and Coolcat [6] introduced the en-
as the reference number. Interestingly, the BkPlots of Hiertropy concept into categorical clustering. Coolcat is kind
Entro shows that these numbers are all included in the bestf similar to KModes. However, Coolcat assigns the item
K's, which implies that the inherent structure is consistento a cluster that minimizes the expected entropy. Consider-
with the domain knowledge. In fact, the additional b&st  ing the cluster centers may shift, a number of worst-fitted
can be investigated further to explore more hidden knowlpoints will be re-clustered after a batch. Even though Cool-
edge. For example, ‘K=2’ and ‘K=4" for zoo dataset might cat approach introduces the entropy concept into its cate-
be other meaningful categorizations for the animals. Thegorical clustering algorithm, it did not consider the problem
high purity also shows that the entropy-based categoricadf finding the optimal number of categorical clusters. Some
clustering can generate results highly consistent with thelosely related work also borrows concepts from informa-
domain knowledge, which have been supported by othetion theory, including Co-clustering [15], Information Bot-
literatures [6, 25]. The result encourages us to believe thateneck [28] and LIMBO [3].

BkPlots with HierEntro can also work effectively for the  C. Aggarwal [1] demonstrated that localized associa-
real datasets. tions are very meaningful to market basket analysis. To
find the localized associations, they introduced a categor-
ical clustering algorithm CLASD to partition the basket

6 Related Work data. They defined a new similarity measure for a pair of

While many numerical clustering algorithms [22, 23] havetransactions. CLASD is still a kind of traditional clustering
been published, only a handful of categorical clustering al-algorithm — the special part is only the definition of simi-
gorithms appear in literature. The general statistical analylarity function for categorical data. Thus, it has the similar
sis of categorical data was introduced in [2]. Although it is Problem we described.
unnatural to define a distance function between categorical Most of the recent research in categorical clustering is
data or to use the statistical center (the mean) of a groufocused on clustering algorithms. Surprisingly, there is lit-
of categorical items, there are some algorithms, for examtle research concerning about the cluster validation prob-
ple, K-Modes [21] algorithm and ROCK [19] algorithm, lems for categorical datasets.
trying to fit the traditional clustering methods into categor-
ical d_ata. However, since the numerlca_u S|m|Iar|ty/Q|stance7 Conclusion
function may not describe the categorical properties prop-
erly and intuitively, it leaves little confidence to the cluster- Most of the recent research about categorical clustering has
ing result. only contributed to categorical clustering algorithms. In
Gibson et al. introduced STIRR [18], an iterative algo- this paper, we proposed an entropy-based cluster valida-
rithm based on non-linear dynamical systems. STIRR reption method for identifying the begt's for categorical data
resents each attribute value as a weighted vertex in a grapblustering. Our method suggests to find the €stby ob-
Starting with the initial conditions, the system is iteratedserving the “Entropy Characteristic Graph (ECG)”, which
until a “fixed point” is reached. When the fixed point is describes the entropy property of partitions with varying
reached, the weights in one or more of the “basins” iso-K and is significant in characterizing the clustering struc-
late two groups of attribute values on each attribute. Everture of categorical data. The “Best-K plot (BkPlot)” is
though they proved this approach works for some experiused to find the significant points conveniently from the
mental datasets having two partitions, the user may hesitaténtropy Characteristic Graph. BkPlots generated by dif-
in using it due to the complicated and not intuitive working ferent algorithm may have different performance in iden-

Table 4: HierEntro result for real datasets



tify the significant clustering structures. In order to find the [18] D. Gibson, J. Kleinberg, and P. Raghavan. Clustering cat-
robust BkPlot, We also develop an entropy-based agglom-  egorical data: An approach based on dynamical systems.
erative hierarchical algorithm HierEntro. Our experiments Proc. of Very Large Databases Conference (VLD&B—
show that, HierEntro can generate the most robust BkPlot 4):222-236, 2000. ,

for various experimental datasets, compared to the othef®] S- Guha R.Rastogi, and K. Shim. ROCK: A robust cluster-
two entropy-based algorithms: Monte-Carlo algorithm and ing algorithm for categorical attribute®roc. of IEEE Intl.

- . . . Conf. on Data Eng. (ICDE)1999.
Coolcat algorithm. Meanwhile, HierEntro can also find 2] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Cluster va-

high quality clustering results in terms of the entropy cri- ity methods: Part | and Il SIGMOD Record31(2):40—
terion. Therefore, BkPlot validation method together with 45, 2002.
HierEntro algorithm can serve as an effective tool for an-[21] Z. Huang. A fast clustering algorithm to cluster very large

alyzing the significant clustering structures of categorical categorical data sets in data mininJorkshop on Research
datasets. Issues on Data Mining and Knowledge Discover§97.
[22] A.K.Jainand R. C. Dubeglgorithms for Clustering Data

Prentice hall, 1988.
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