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ABSTRACT
This poster presents a preliminary study on the PerturBoostap-
proach that aims to provide efficient and secure classifier learning
in the cloud with both data and model privacy preserved.

Categories and Subject Descriptors
H.2.0 [General]: Security, integrity, and protection
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1. INTRODUCTION
Most data mining tasks require a good understanding of the min-

ing techniques, time-consuming parameter tuning, algorithm tweak-
ing, and frequently algorithm innovation. They are often resource-
intensive and need the expertise of applying data-mining techniques.
As a result, most data owners, who have no sufficient computing re-
sources or data-mining expertise, cannot mine their data.

The development of cloud computing and services computing
enables at least two solutions. First, if the data owner has the
data-mining expertise but not the computing resources, he/she can
rent public cloud resources to process the data. Second, if the data
owner does not have the expertise, he/she can outsource their data-
mining tasks to data-mining service providers.

The Netflix prize is a successful story of outsourced data mining.
The goal of the competition is to develop effective movie recom-
mendation algorithms with the published Netflix data. Any inter-
ested person or team can attend the competition. Netflix rewards
the winning teams based on the accuracy of their algorithms.In
comparison, if developing in-house algorithms, Netflix mayspend
much more and possibly get nothing close to the winning algo-
rithms.

In spite of all the benefits, the unprotected outsourcing approach
has at least three drawbacks.

• The published data may contain private information [5], which
actually forced Netflix to suspend the Netflix prize II compe-
tition1.

• The data ownership is not protected. Once published, the
dataset can be accessed by all the participants.

1http://blog.netflix.com/2010/03/this-is-neil-hunt-chief-product-
officer.html
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• The ownership of the resultant models is not protected. At
least the model developer knows the model and understands
how to use it.

Because the success of modern machine learning and data min-
ing applications has largely depended on the available data, datasets
are now precious properties to the data owners. With unprotected
outsourcing, competitors can freely use the published dataand the
resultant models, and possibly derive knowledge against the data
owner’s interests. Data owners will soon realize that, without the
protection on data and model privacy they will have to keep their
data mining tasks in-house.

Proposed Approach.The proposed approach (PerturBoost) aims
to address the above problem with thesecure half-space queryap-
proach for classifier learning. Specifically, we will use secure half-
space queries to mine a classification model from the data hosted
in the cloud - the scenario is similar for using data-mining service
providers.

This approach uses our previously developed RASP perturbation
[1] that perturbs the data to protect the confidentiality, while still al-
lowing users to conduct secure half-space queries. We utilize the
boosting framework to build up a strong classifier with good pre-
diction accuracy, based on a bunch of weak classifiers that have
slightly better accuracy than random guess. These weak classifiers
are constructed with RASP-based secure half-space queries.

In this way, we effectively address the problem of secure data
mining in the cloud. (1) The data is protected with the RASP pertur-
bation. (2) The model is protected in the form of secure half-space
queries. (3) The accuracy is preserved with the boosting frame-
work.

This approach has a couple of unique features. (1) It is very effi-
cient, with low costs in storage, computation, and communication.
(2) It provides sufficient security, if the user protects theperturba-
tion parameters well.

The preliminary results show that the PerturBoost approachcan
learn models with satisfactory accuracy. An ongoing effortis to
further reduce the cost and improve the accuracy of learning.

2. BACKGROUND

2.1 Classification Modeling
Classifier learning is to learn a modely = f(x) from a set of

training examples{xi, yi}, wherexi ∈ R
k is thek-dimensional

feature vector describing an example, andyi is the label for the
example - if we use ‘+1’ and ‘-1’ to indicate two classes,yi ∈
{−1,+1}. The learning result is a functiony = f(x), i.e., given
any known feature vectorx, we can predict the labely for the ex-
amplex. The quality of the model is defined as the accuracy of



prediction. A random guess to the two-class setting would have an
accuracy around 50%.

Our approach is based on the boosting framework [2] for learn-
ing classifiers. A boosting model is a weighted summation ofn
base classifiers,f(x) =

∑n

i=1
αihi(x), where the base models

hi(x) can be anyweak learner, e.g., a learner with its accuracy sig-
nificantly higher than 50% for two-class prediction, andαi is the
weight ofhi(x). Bothαi andhi() are learning in the procedure.

Weak learner can be in any forms [4], among which a simple one
is linear classifier. It can be represented as decision rules, such as:

if f(x) <0 then y=-1, otherwise y=1.

f(x) = wTx + b is a hyperplane, wherew ∈ R
k andb ∈ R are

to be learned from examples to achieve a good prediction accuracy.
f(x) < 0 is also used as half-space query conditions, i.e., finding
the recordsx satisfying the conditionf(x) < 0. This allows us to
apply the RASP approach that was originally designed for secure
half-space queries [1].

2.2 RASP perturbation
We assume that the RASP perturbation will only perturb the fea-

ture vectorsxi of {xi, yi}, while leavingyi unchanged, which will
not breach the data privacy. For eachk-dimensional original vector
xi, the RASP perturbation2 can be described in two steps.

1. The vectorxi is extended tod+2 dimensions as(xT
i , 1, vi)

T ,
wherexT

i is the transpose ofxi, the(d+ 1)-th dimension is
always1, and the(d+ 2)-th dimension,vi, is drawn from a
random number generatorRG that generates positive values
from normal distributions.

2. The(d+ 2)-dimensional vector is further transformed to

pi = RASP (xi) = A(xT
i , 1, vi)

T , (1)

whereA is a(d+2)× (d+2) randomly generated invertible
matrix withaij ∈ R such that there are at least two non-zero
values in each row ofA and the last column ofA is non-zero.

A is shared by all vectors, butvi is randomly generated for each
individual vector. Note that the samexi can be mapped to different
pi in the perturbed space due to the randomly chosenvi, which
provides necessary protection.

The RASP perturbation approach also includes a secure query
transformation method to preserve half-space queries. A simple
half-space query is likeXj < a, whereXj represents thej-th
dimension,a is a constant in the domain, and‘ <′ can be other
comparison operators. It is transformed to an encrypted half-space
query in the perturbed space:pTi Qpi < 0, wherepi is defined
earlier as the perturbed vector.Q is (A−1)TuvTA−1, whereu
is a vector with all entries zero except forj-th dimension set to
1 andd + 1-th dimension set to−a corresponding to the vector
representation of the conditionXj < a, i.e.,pTi (A

−1)Tu < 0; v
is a vector with all entries zero except ford+2-th dimension set to
1. This quadratic query formpTi Qpi < 0 represents the equivalent
query condition(Xj−a)V < 0, whereV is thed+2-th expanded
random positive dimension. For details, we refer readers tothe
original paper [1].

Note that the above query encoding can be extended to encode
half-space queries in general formwTx + b < 0. We only need
to revise theu vector to beu = (wT ,−b, 0)T . This general form
of half-space query will be used in our PerturBoost framework, as
shown in Figure 1.
2The full version transforms the dimensional values with order pre-
serving encryption (OPE), before applying the described steps [1].

3. PERTURBOOST: PROTECTING BOTH
DATA AND MODEL PRIVACY

In the PerturBoost framework, the client prepares a perturbed
dataset and the parameters, and then outsources them to the cloud.
The PerturBoost algorithm is invoked in the cloud to get a model
for the client.
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Figure 1: Illustration of learning classifiers.

The PerturBoost algorithm is basically an algorithm wrapping
the AdaBoost algorithm [2] for processing the perturbed data. We
describe the details later.

After the model is learned, it can be applied in two differentset-
tings: either transforming the model back to the unperturbed data
space - themodel transformationapproach, or transforming the
new feature vector data,{xnew}, whose labels are to be predicted,
to the perturbed space - thedata transformationapproach. If the
user wants to apply the model remotely in the cloud, then the data
transformation approach should be used. While using the model
locally in the client side, the user can choose any of the two.

3.1 PerturBoost Learning
The PerturBoost framework uses the AdaBoost algorithm to han-

dle the base classifiers that adapt to the perturbed data. Algorithm
1 shows the basic structure of the PerturBoost learning algorithm.

Algorithm 1 PerturBoost(B, Tr, Ts)
1: Input:B: the type of base classifier;Tr: the perturbed training

dataset;Ts: the perturbed testing dataset.

2: model← AdaBoost(B,Tr, Ts);
3: return model;

We describe two types of RASP base classifiers.

3.2 RASP Base Classifiers
The RASP perturbation only preserves one type of utility: half-

space queries. Thus, the applicable models are limited to linear
classifiers. In the preliminary study, we test two types ofrandom
linear classifiers: random decision stump and random general lin-
ear classifier. Randomized classifiers increase the resilience to the
attacks on model privacy. These classifiers, if applied as individual
standalone classifiers, are useless because of their low accuracy.
However, they are good enough to serve as weak base classifiers in
the boosting framework.

RASP random decision stump.Random decision stumps are
a straightforward translation of the simple range conditions like
Xj < a described in the RASP paper [1]. Note that with the deci-
sion stump form, the query parameter matrix:Θ = (A−1)TuvTA−1

can be simplified. Letαj be thej-th row of A−1. Θ is actually
(αj − aαd+1)

Tαd+2, which weakens the model privacy.



RASP random linear classifier. In the RASP query represen-
tation, we try to generate random linear classifiers in the following
way. Thev vector keeps unchanged, while theu vector is set to
(wT , b, 0)T for the original querywTx+ b < 0. It is easy to check
that this transformation is correct. Thus, the problem is transformed
to finding an appropriate setting ofw andb.

Arbitrarily generated random linear classifiers might not be very
useful. It may result in a very skewed partitioning of the dataset.
Instead, we use the following method to increase the chance of find-
ing reasonable random linear classifiers. First, we normalize each
dimension with the transformation(Xj − µj)/σj , whereµj is the
mean andσj is the standard deviation of the dimensionXj . In
this way, we can reduce the differences caused by very different
domains (e.g., one in the range [0,1] and the other in the range
[100,200]). Then, we choose each dimension ofw and the constant
b uniformly at random from the range[−1, 1]. In this way of choos-
ing w, the perpendicular direction of resultant hyperplane willbe
uniformly distributed in the unit hyper-sphere. In addition, the
setting ofb will constrain the dimensional intercepts in the range
[−1, 1], forcing the plane to cut the dataset around the center of the
data distribution. This minimizes the chance of generatingskewed
linear classifiers.

3.3 Discussion on Model Privacy
A potential attack can be conducted to breach the privacy of the

query (i.e., the decision stump model) if a strong assumption is
held that the attacker knows two pairs of input-output queries on
the same dimension. We assume that the attacker knowsXj <
a1 and its encoded formΘ1, andXj < a2 andΘ2, respectively.
Then, theΘ matrix for any value in theXj domain can be possibly
enumerated. For instance, fora3 = (a1 + a2)/2, we have the
correspondingΘ3 = (Θ1 + Θ2)/2. As any value in the domain
can be represented asa1+λ(a2−a1), λ ∈ R, the correspondingΘ
isΘ1+λ(Θ2−Θ1). This means the model privacy is not preserved,
if the attacker is equipped with such additional knowledge.We call
it the model-enumeration attack.

Theoretically, using random linear classifiers does not avoid this
attack. After all, if the attacker knows a pair of hyperplanes with
parametersu1 andu2, and theirΘs, respectively, he/she can still
use the same enumeration method to derive other hyperplanesand
theirΘ representations. However, different from decision stumps,
which have the values constrained in one dimension, this attack
only covers a small vector space, i.e., the points on the lineu1 +
λ(u2 − u1). As a random selection ofu has extremely low proba-
bility falling on the line, the chance of breaching a randomly gen-
erated linear model with this amount of knowledge is negligible.

Because the random linear classifier approach makes the model-
enumeration attack computationally more expensive, we believe
random linear classifiers provide more model-privacy protection
than decision stump classifiers. A more rigid study will be con-
ducted for this comparison.

4. PRELIMINARY EXPERIMENTS
We want to understand whether the PerturBoost framework can

generate classifiers with satisfactory accuracy.
Datasets.For easier validation and reproducibility of our results,

we use a set of public data from UCI machine learning repository
in experiments. For convenience we also select the datasetsof only
two classes. These datasets were widely applied in various classifi-
cation modeling and evaluation.

In pre-processing, the missing values in some datasets (e.g., the
Breast-Cancer and Ionosphere datasets) are replaced with random
samples from the domain of the corresponding dimension. They are

Dataset NoPert DS LC
Breast-Cancer 3.7 2.3 2.8

Credit-Australian 13.4 22.5 11.5
Credit-German 22.7 29.3 22.7

Diabetes 21.6 22.1 22.0
Heart 13.5 11.2 12.5

Hepatitis 12.8 21.2 14.7
Ionosphere 2.8 12.1 10.4
Spambase 6.7 17.0 11.1

Table 1: Error-rate comparison for different models (%).

then normalized with the transformation(v − µj)/σj , whereµj is
the mean andσ2

j is the variance of the dimensionj, to remove the
bias introduced by the domains. Then, the datasets are randomly
shuffled and split into training data (70% of the records) andtesting
data (30%). Each of the datasets is also perturbed with the RASP
method.

Implementation. We implement the RASP perturbation based
on the algorithm in the paper [1]. The Weka package [3] is used
to implement the PerturBoost framework. The two base classifiers,
RASP random decision stump and RASP random linear classifier,
are implemented based on Weka’s Java interface. The Weka pack-
age also uses the LibSVM library for SVM classifiers.

Preliminary Results In the following table (Table 1), “NoPert”
means the best SVM classifiers on the original non-perturbeddata.
We test SVM classifiers with the three popular kernels: linear, ra-
dial basis function, and sigmoid function, and choose the best re-
sults. “DS” represents decision stump base classifiers are used for
PerturBoost, and “LC” means general linear base classifiers.

Classifiers are trained with the training data and tested on the
testing data. Table 1 shows the testing error-rates for the models.
Overall, general linear base classifiers give better results than de-
cision stump base classifiers, and the results are also closeto the
non-perturbed scenarios in most cases.

5. CONCLUSION
This poster presents a preliminary study on the PerturBoostap-

proach that aims to provide efficient secure classifier learning in
the cloud with both data and model privacy preserved, using previ-
ously studied RASP perturbation approach. The results showthat
PerturBoost with certain secure base classifiers can generate good
models with accuracy and security guarantee.
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