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Abstract—With the development of sensor network, mobile  to economically and securely share and handle big matrices
computing, and web applications, data are now collected collected from distributed sources. In this framework, the
from many distributed sources to form big datasets. Such data contributors may submit data vectors (e.g., a vector

datasets can be hosted in the cloud to achieve economical d ibing th int i . ial network .
processing and sharing. However, these data might be highly escribing the users Iinteractions In a social network eerv

sensitive requiring secure storage and processing. We esion ~ OF @ vector describing the users interested topics) to the
a cloud-based data storage and processing framework that cloud via a mobile app provided by the service provider

enables users to economically and securely share and handle (j.e., the data owner). The data owner authorizes the data
big datasets. Under this framework, we study the matrix-  c4nqumers (i.e., a data mining team of the social service

based data mining algorithms with a focus on the secure . . - .
top-k eigenvector algorithm. Our approach uses an iteratie provider) to conduct analysis. With this framework, both

processing model in which the authorized user interacts wit ~ the data owner and data consumers do not need to own in-
the cloud to achieve the result. In this process, both the soee ~ house computational infrastructures - they need only a PC
matrix and the intermediate results keep confidential and tte  to interact with the cloud infrastructure to finish the data
client-side incurs low costs. The security of this approach intensive computing

is guaranteed by using Paillier Encryption and a random . . .
perturbation technique. We carefully analyze its securityunder The key problem of this framework is the security of

a cloud-specific threat model. Our experimental results she ~ data. The data owner loses the control of the data once
that the proposed method is scalable to big matrices while the data are exported to the cloud. For many reasons, such

requiring low client-side costs. as a compromised cloud infrastructure or insider attacks
Keywords-cloud computing, big matrix, power iteration, conducted by the cloud provider's employees, the cloud
MapReduce, security, performance provider may not be considered a trusted party. Storing data

securely is trivial, but processing data securely in theidlo
. INTRODUCTION is very challenging because the underlying infrastructure
With the development and wide deployment of webijs owned by the untrusted cloud provider. Our framework
services, mobile applications, and sensor networks, data aaims to enable the trusted parties to collaboratively ssgur
now collected from many distributed sources to form bigconduct computation on encrypted data on top of untrusted
datasets. For example, users of mobile devices can generaiud infrastructures.
many useful information such as user-user interactions, The most relevant approach is fully homomorphic en-
users’ interests on products, users’ location informationcryption [7], [12], which, however, is too expensive to be
users’ tweets, etc. Such datasets have become a valuajgactical. As cloud users expect to minimize the clienesid
asset to the data owner. This paradigm raises a number @bsts, in general, approaches, which demand high costs on
challenges for data storage, sharing, and analysis. communication and the client side processing, do not fit the
« Most data collectors, such as mobile devices and sereloud-based framework (Section V for more details).
sors, have very limited resources to store and process Scope and Contributions. Securely sharing, analyzing,
data. Thus, the data have to be sent to servers or cloudand mining datasets in the cloud is a rather broad issue. In
« The collected data may be highly sensitive. So itthis paper, we study a specific problem with the proposed
becomes necessary to transfer, store, and process the&ramework: matrix-based data mining, and more specifically
securely. we focus on the secure and efficient iterative methods for
« Data miners might be authorized by the data owner tdinding the approximate top-k eigenvectors of a secureatlarg
use the data. Processing and analyzing the secured bigatrix in the cloud.
data will require a huge amount of computing resources Eigendecomposition [16] has broad applications in many
to be allocated on demand, where cloud computing igmportant areas including user clustering based on shared
the ideal platform. interests [5], visualization of high-dimensional datadan
With these problems in mind, we envision a cloud-basednline social community detection based on graph mining
data storage and processing framework that enables usdfs/], etc. The common algorithm to find all eigenvectors



will cost O(n?) in time complexity, which is prohibitively indexed lower case letters for the elements in the vector,

expensive for large dimensionality. When the matrix and capital letters for matrices or submatrices. In pagigu

is large, the iterative methods (i.e., power-iterationeoas Z; represents the group etdimensional vectors of integers

methods [1], [4]) are used to find the approximate top-kwith moduluog. We use{b;},i = 1..k to denote a set of

eigenvectors instead. The most expensive step of theiterat vectors (or values).

methods is the matrix-vector multiplication. Power Iteration for Eigenvalue Decomposition Finding
In the proposed framework, we use thartially homo-  eigenvalues and eigenvectors of a matrix has many impor-

mor phic Paillier encryption system [14] to encrypt the valuestant applications in science and engineering domains. In

which enables the processing of encrypted data in the clougbarticular, eigenvalue decomposition has been an impiortan

The data owner manages the keys and owns the data tnol in data analysis. For example, Principal Component

the cloud. At the data owner’s request, the data collector&nalysis (PCA) depends on eigenvalue decomposition [8].

encrypt vectors (e.g., describing the interactions inaoci In information retrieval, it is used to find the relationship

network or preferences over books) and submit them tdetween words and documents on a text corpus [5].

the cloud to form the big matrix. The data owner or the The matrices from these applications can be very large.

authorized data consumer, who has only limited computing hus, the direct computation method that ca3ts?) is not

resources, then interacts with the cloud to conduct an-iteraa viable option. Instead, for large matrices, power iterati

tive computation to find the approximate top-k eigenvectorsbased methods, such as the Arnoldi [1] and Lanczos methods
The core component of this framework is the securd4], are used for finding the top-k eigenvectors. In pragtice

matrix-vector multiplication between the encrypted matri such matrices are often sparse. However, in this paper we

stored in the cloud and the vector provided by the clientfocus on dense matrices, the result on which will be extended

Paillier encryption is used to enable computations oveto sparse matrices.

encrypted data in the cloud, which is much more efficient AssumeA, A € R™*", is an x n real matrix andbg

than the existing fully homomorphic encryption methodsis a randomn-dimensional vector. We sketch these power

[7]. However, it can only provide homomorphic addition, iteration methods in Algorithm 1.

handicapped for homomorphic matrix computation. We de-

velop an efficient perturbation-based protocol to overcométlgorithm 1 Framework of Power Iteration Methods

this problem and ensure no information is leaked in the 1: by < randomn-D vector;

computation. It also guarantees low costs in the trustesicli  2: for i < 1 tok do

side (the data owner, data collectors, and the authorized da 3:  b; < Ab;—1/||Abi—1][;

consumers) to fully take advantage of cloud computing. We 4:  other operations of cos?(n) specific to the Arnoldi

also develop a MapReduce program to process the secure  or Lanczos methods.

matrix-vector multiplication to fully exploit the parallsm 5. end for

and scalability enabled by the cloud platform. 6: Post-processing with a coét(n) to generate eigenvec-
An extensive evaluation has been conducted on the pro- tors.

posed method. The result shows that the cloud-side parallel

processing on encrypted data is efficient and scalable, and Note that in this iterative framework, the most expensive

the client-side costs are quite acceptable. operation is the line; «+ Ab;_1/||Ab;—1]|. Other opera-
The remaining part of the paper is organized as fol-tions are only related to processing and some auxiliary

lows. Section Il gives background knowledge about thek x k matrix. Usually, only a few eigenvectors are needed

proposed approach, including a brief description on theand thusk is typically small (e.g., k=10). The remaining

Paillier encryption system, the power iteration methodsl a computations, specific to the Arnoldi and Lanczos methods

the MapReduce programming model. Section Il describegost only O(kn). With the matrix stored in the cloud, we

the design of the approach and also analyzes its correctnegsn let the cloud take care of the most expensive part while

security, and costs. Section IV presents the results ofrexpe the client handles the remaining low-cost steps.

mental evaluation with a focus on the storage and computing Paillier Encryption. Fully homomorphic encryption aims

costs in both the cloud and client sides. Section V showso allow addition and multiplication to be conducted on

some related work on secure computation in the cloud. encrypted values without decryption. Paillier Encryptien

a partially homomorphic encryption scheme that is much

more efficient than the fully homomorphic ones [7], but only
In the following, we will briefly describe our notation preserves homomorphic addition, i.e.

and background knowledge about eigenvalue decomposition,

Paillier encryption, and MapReduce programming. E(x) + B(y) = E(@ +y). (1)
Notation For clear presentation, we will use Greek char-Multiplication cannot be implemented on top &f(x) and

acters to represent scalars, lower case letters for vector&(y) in Paillier encryption. However, with one operand not

Il. PRELIMINARIES



encrypted, say, multiplication can still be implemented as Data collectors/contributors

B(ay) = E(x) mod powery, ) @ % @ —
: ’ public keys »

wheremod_power means the modulo power operation [9]. e S EA)FEA) s
For simplicity of presentation, we ugé’(z))Y to represent X~ P

E(z) mod _powery. It has been proven that Paillier Encryp-
tion has strong security guarantee, satisfying the dedimiti
of semantic security.

Therefore, to implement more complicated operations
with Paillier encryption, one has to expose one of the
operands which becomes the security hole. Finding a way
to limit the exposure and maintain data privacy will be one  ¢joud
of the challenging tasks in the application.

Data Owner

:v’Authorize to

;g /use the data
Interactions to

finish data analysis ~ Authorized User
Or data mining tasks

On-demand
MapReduce
Cluster

I1l. SECURETOP-K EIGENVECTORCOMPUTATION IN Figure 1. Framework for conducting matrix mining with theuwtl.
THE CLOUD

In this section, we will describe the major components
in our approach. We begin with the general computationaP-: Threat Model
framework and describe the roles of the client and cloud Assumptions.Our security analysis is built on the impor-
components. Next, we present the security/threat model an@nt features of the discussed architecture. Under thisget
discuss our assumptions and potential attack points. We folve believe the following assumptions are appropriate.
low with the secure power iteration algorithm thatis buptu | The cloud provider is not trustable and may silently

with Paillier encryption and random perturbation. Then, we observe the data and the computation to find useful
briefly discuss the cloud-side MapReduce algorithm. Fnall information, e.g., the eigenvectors.

we formally analyze the security and cost of the proposed

~ MIE « Only the data owner and the authorized users can use
approach. We show that our approach can minimize the

the proprietary matrix. The data owner authorizes some

cost of the client-side computation while providing exeatl trusted users to use the data. They will not intentionally

performance for processing big matrices with strong securi breach the confidentiality. We consider insider attacks

guarantee. to be orthogonal to our research.

A. Computational Framework « The client-side system and the communication channels
Our framework involves four parties: cloud, data owner, ~ @re properly secured and no part of the confidential

data collectors, and authorized data users. It reflects the ~Matrix or the computation results can be leaked. .
highly distributed nature in data intensive computing vener ~* Adversaries can see the secured matrix and the submit-
collecting data, storing data, and processing data might be  t€d plaintext vectors for secure matrix-vector computa-
handled by different distributed parties. tion, but nothing else.

Figure 1 illustrates the relationship and interaction be-These assumptions can be maintained and reinforced by
tween these parties. The non-cloud parties: the data ownexpplying appropriate security policies.
the data collectors/contributors, and the authorizedsuses Protected AssetsData confidentiality is the central issue
trusted. The data owner controls all rights to the data, disin our approach. While the integrity of data and computation
tributes public keys, and asks the data collectors/canmbils  is also an important issue, it is orthogonal to our study.
to upload the collected data which are encrypted by @Due to the space limitation, we will not cover data and
public key. The data owner can process the pooled data bgomputation integrity techniques [18], which are typigall
him/herself or authorize other users to use the encryptedsed to prevent adversaries from actively tampering wigh th
data. Each data collector may contribute a small part oflata or computation. Therefore we can assume the “honest
the data, e.g., a row of the matrix. Practical examples maut curious” adversary model.
include the interactions with other users or the recommen- Attacker's goal. The attacker is interested in recovering
dations on items during a period. The data owner or thdor estimating) the matrix elements and the computing tesul
authorized users can interact with the cloud to conducte., the eigenvectors and eigenvalues.
matrix analysis tasks. Note that encrypted data will have Security Definition. The protected matrix is indistin-
a size much larger than the original one. The authorizedjuishable to chosen-plaintext attack (IND-CPA). The sub-
users cannot afford to download the encrypted big matrixmitted plaintext vectors in the computation are no différen
and conduct computations locally. Instead, they want tiy ful from random samples uniformly drawn from a sufficiently
utilize the benefits of cloud computing and minimize thelarge vector space (witlh(2%) elements in the set, if{
client-side cost. is the number of bits for encoding). The protocol will not



reveal any additional information. where s;;, is the k-th element of the vectos; and A
is the element(j, k) of the matrix A. Note this secure

C. Data Collection matrix-vector computation is also used later in each itenat

Representation of Data.In order to use the Paillier The result E(As;) is sent back to the client side and
encryption system all data need to be convertechan-  decrypted for later processing. After the preparation estag
negative big integers [14]. However, in practice, we process the authorized user holds the random vect®rs {s;} and
matrices in the real value domain. A valid method tothe resultant vectords = {As;}, for i=1..m.
preserve the desired precision, ed decimal places, is to Iteration. The iteration stage starts with the random
multiply the original value byl0? to scale up the values Vector by, then applies the formuld,, = Aby/||Aby]|
and drop the remaining decimal places. In addition, weand other low-cost steps as described in the Arnoldi and
also need to shift the values so that the domain is positivd-anczos methods. It is important to proteft in each
This process is clearly reversible so that the results can biéeration - otherwise, the eigenvectors are revealed. Vilg/ap
correctly recovered. With a typical key length of 1024, we the following method to protect the privacy of computation,
have enough digits to preserve the precision. the security of which will be analyzed in detail later.

Submitting data. To prepare for collecting data, the data  To calculateE’(Ab;) from E(A) andb; with the Paillier
owner will generate one-dimensional random vectdr,, ~homomorphic operations; cannot be encrypted. We design
bo € Z2. by is then encrypted with the Paillier public key: @ perturbation method to proteigt before sending it to the
E(bo) = (E(bo1) ... E(bo,)), which is then distributed to cloud. The basic idea is to use a random veetcand send
the data collectors. _ _ _ b; = b; +r; mod ¢ (5)

The data collectors submit their row(s) of the matrix,
denoted as4; for the collector, in the encrypted form to to the cloud instead, whetgis a big random prime number
the cloud storage. In addition, they also calculate thelresuso thatq is large enough to contain all the values in the
of E(A;by) with the following homomorphic method and application domain. We design; with the seed random

submit it to the data owner. Assunaeis one row ofA4; vectors generated during the preparation stage:
n n m 1—1
E(abo) = > E(axbox) = Y _(E(bok))™, (3) ri= Y agsi+ Y _ Bijbj mod g, (6)
k=1 k=1 =1 =0

Note that the number of elements I\ A;bo) is the same fori = 1..k, wherea;; andj;; are randomly drawn frori,.
as the number of rows to be submitted to the cloud by the'he purpose of including;,j = 0. — 1 in perturbation is
collector, which is typically one. Finally, the data owner to provide better security, which will be discussed lates. A

collects all E(A;by) and decrypts them to findby. the results,{As} and {Ab;, j < i}, have been computed
in the preparation stage and the previous steps,can be

D. Secure Power Iteration Protocol conveniently calculated by

To protect the plaintext vectors submitted to the cloud m i—1
in power iteration, the authorized data user must perform Ar; = ZaikAsk + ZﬁjkAbjb mod ¢, @)
a few steps to prepare for the perturbation approach. Then, k=1 j=0
the client side collaborates with the cloud side to finish the;i, only the client-side vector operations (¥n) cost).
secure matrix-vector multiplication in the iterations. Then, the cloud side will tak&; = b; + r; mod ¢, apply

Preparing the Perturbation Pool. The authorized data  formula 4 to calculate?(Ab;), and send the result back. The

user will receiveE(bo), E(Abo), and the decryption key cjient side decrypts?(Ab;) to get Ab;. With Ar; known,
from the data owner, and then seleet n-dimensional e have Ab; = Ab; — Ar; mod . Once we haveAb;,

random vectors, where: is small, saym = 5, and send it is easy to calculateh;y; = Ab; /|| Ab;|| for the next
them to the cloud. These random vectors will be used tGieration. Additional operations (as described in the Adno
perturb and protect the vecto{s; } in each iteration. Let's  and Lanczos methods) have a costfn), which can be
deno%e them as the seed random vecforg, for i=1.m,  conveniently performed with only client-side operations.
s; € L7,
For each random vector;,, a secure computation ofs;  E. Cloud-side MapReduce Computation
is performed in the cloud as follows. With the homomorphic Data encrypted with Paillier encryption are significantly
properties of Pailier encryption, for theth element of the larger than the unencrypted values. With a 1024-bit key,
resultant vecto(As;),, we have a 64-bit double-type original value becomes a 2048-bit
n n encrypted one, a 32-time increase. This cost cannot be
) = o) — ) Sik avoided by using any encryption schemes based on the
Bl(Asi);) E(; Ajwsir) ;(E(A'jk)) IR assumption of Diffie-Hellman or large-integer factoripati



[9]. This literally turns a common-size problem to a “big  Security of {b;} in a single run. The first problem is
data” problem, which requires us to exploit the parallelwhether the adversary can gain additional information by
processing power in the cloud. observing the known vector®,} and S. We want to show
With this problem in mind, we designed the MapReducethat: ~
version of homomorphic matrix-vector multiplication. The  Proposition 1: The known{b;} and.S do not reveal any
client passes the perturbed vectgras a parameter to the information about{b;}. B
MapReduce program and the cloud computes and returns Proof: First, we prove theb, case. Other cases are
Ab,. Below we describe the MapReduce formulation of thesimilar. Leta; = («i1,..., ;). Recall that Equation 5 is
cloud-side computation of(Ab;). by =b;+ 1 =b;+ Sa; + Z;;t Bijb; mod ¢ for ¢ = 1..k.
Thus,by = by + 71 = by + Say + B1,0bp mod g. With the
Algorithm 2 The MapReduce Matrix-Vector Multiplication knownb; and unknownry, it is clear that if the adversary
program on encrypted matrix can guessh; from any uniformly random sample drawn
1 map(E(A), by) from Z;; with non-negligible advantage, then she/he can also

2: E(A): some rows of the encrypted matrix that are distinguishr, from random vectors.

distributed to the specific Mag;: the perturbed vector €t 71 b€ represented as = Say + e; mod ¢, where
sent by the client. er = Piobo and a; is secret. IfS, 1o and by are

3 for each row ofE([l): E(4;) do drawn uniformly at random, the problem of dithLTguis;hing

. Emit((j, Zd— (E(A-k))?’f‘k)) < S,ry > from um_fo_rmly ran_dom samples_ ov@_’; X Ly
5. end for k=1 J is exactly the decision version of thesarning with Errors

' (LWE) problem discussed by Regev [15]. It is already known
that suchr; cannot be distinguished from uniformly random
samples ife; is randomly drawn andi; are secret [15].
Therefore,b; cannot be distinguished from uniformly ran-
dom samples as well. The same conclusion can be extended

1: partition (j, nr)
2: j: the row numbernr: the total number of reduces.
3: return|j/nr|;

1: reduce((j,v)) to the cases of > 1 with more unknowns included. We
2: j: the row numbery: the result. skip the details here. _
3: Emit((j, v)); Becauser; cannot be distinguished from uniformly ran-

dom samples, regardless of how appears (ash; will
) _ look similar with sufficiently larged), {b;} cannot be
The MapReduce program is rather straightforward. Thejisiinguished from any set of random vectors. Thus, the

Map function applies the secure matrix-vector multiplicat series{b;} does not help the adversary gain any additional
formula (Eq. 4), and emits the results indexed by the row, ¢ mation about{b;}. n

number. The Map outputs are partitioned and sorted by gyagistical Inference Attack. The curious cloud provider

row number and sent to the corresponding identity Reduceay |00k at multiple runs of eigendecomposition conducted
which writes the data segment to disk. Because we usegy different users. As all users start with the same

the binary representation for the encrypted elements of thg the multiple runs provide an opportunity for statistic
matrix, we also designed special input/output format €8SS interence? Below we describe an inference attack that looks
to handle the binary data. at the statistical property of the series and analyze the ris
under this attack.

Again, we start with the simplest case = b; + r;.

The proposed algorithm consists of three components (IJhe statistical inference attack tredits and; as random
data collection, (2) the random perturbation step in thentli variables and tries to estimat&[b;] and var(b;) with
side, and (3) the matrix-vector multiplication based oradat random samples. Theoretically;[b;] = b, + E[r;] and
encrypted with the Paillier encryption scheme. Componentar(b;) = wvar(r1). Correspondingly, the estimatg —=
(1) and (3) are secure as long as the Paillier encryption i€ [b;] — E[r1]. In practice, this estimation has to depend on
secure. Thus, the security of the approach only depends oN samples ob;: {Bgi)7i = 1..N'} observed by the attacker.
that of component (2). We want to show that:

In perturbation preparation, the curious cloud provider Proposition 2: The proposed random perturbation
is able to collect the initial random seed vectafs = method is computationally secure to the statistical infeee
(s1,...,8m) in the perturbation pool and the progressively attack.
generated perturbed vectofs; }. In addition, the adversary Proof: We use thé; case to prove the statement. Let's
could be aware that, may converge to the dominant analyze the statistical property of to see the effectiveness
eigenvector corresponding to the largest eigenvalué: in of this attack. As shown in the earlier analysis, cannot
iterations [16]. be distinguished from a uniformly random sample in the

F. Security Analysis



domainZyg. In the integer domairZ,, a uniformly random  A. Setup
variable v has a mean valu&[v] = ¢/2 and variance
var(v) = ¢?/12. Thus, we can assume it is from the same
distribution and each element has the propertigs;;] =

The client machine is configured with 128 GB of
RAM and four quad-core AMD processors. The cloud-side
. . - MapReduce program was tested using the Hadoop cluster
N — 2 —
qﬁ) and mlz(m)t_blq élz for 1_1 1]'\'7N' ];rh%(gstln;tdn at Wright State University. The cluster is configured with
ot by can be establishe dﬁ N ./ Z.izl Lo [r4]. 16 slave nodes running Apache Hadoop version 1.0.3. Each
However, the accuracy of this estimate is determined by thglave node is configured with 16 GB of RAM, four quad-

. = (4) . .
variance ofb; *, which has the same variance @sr(r1).  core AMD processors, 16 map slots, 12 reduce slots, and

With V independent samples the variancebofis a 64MB HDFS block size. The cloud-side MapReduce

. 1M 1 _ 1 program was implemented with Java, and the client-side
var(b) = var(— Y _07) = —var(b)) = —var(r). programs with C++ and the GMP library (gmplib.org)
N &~ N N -

We use a 1024-bit key in our experiments. Paillier en-
To gain sufficiently small variance for the estimation, thecryption with key sizes less than 1024 is considered not
number of sampled’ would be as large a3(¢?). Inthe case  secure [11]. The experiments are conducted with simulated
of using long integers;® will be in the range o2!?%, which  matrices. Because the studied problem is fundamental and
can be further increased if a longer representation is usedieneral to all applications it is sufficient to use simulated
It is impractical that the authorized users will conducsthi data. The original matrices use double values as the element
number of computations. Therefore, the statistical infeee (8 bytes per value). As discussed in section IlI-C, these
attack is ineffective. B matrices are converted to long integers for encryption to
G. Cost Analysis preserve sufficient precision. The encrypted matrices are

) ~used as input to the MapReduce jobs in the power iteration
We analyze the computation, storage, and communlcatloa|gorithm_

costs according to the three parties we described. Communi-
cation and storage costs are expressed in terms of number gf
elements which must be transmitted or stored, respectively
Data Collector must encrypt one vector, which costs Each data collector in the framework will generate one
O(n) encryptions, conduct one homomorphic dot productyector (or a few), encrypt them, and deliver them to the
which has a similar cost to vector encryption (see Sectiorgloud. In addition, it will conduct the secured vector dot-
IV), and transmit the encrypted vector to the cloud, whichproducts for generating’(A;b). Thus, the data collector’s
has a cost of)(n). In total, its computational and commu- major costs are on vector encryption, secure vector dot-
nication costs ar@®(n). products, and transmission. These costs are determined by
Authorized User must prepare the perturbation pool, the basic cost of Paillier encryption (i.e., the key sizedl an
which costsO(mn) in transmission and als®(mn) de-  the number of dimensions.
cryptions, wherem is small. In power iterations, it needs

Data Collector Costs

O(kn) decryptions in total for getting the eigenvectors, Encoding E?Scerg)pt DO‘(ﬁgdUCI (bsy‘tzjs) Co(rt‘:;’tfeess)sed
andO(kn) space for storing the encrypted values./Aand Text 56 37 6.IM 35M

m are small, the client side costs are small - in general, a Binary 56 3.7 2.5M 2.5M
PC can handle such a workload. This is an important feature Table |

for users to fully enjoy the benefits of cloud computing. DATA COLLECTOR COSTS FOR ALO,000DIMENSION VECTOR

Cloud Side has aO(n?) storage cost for encrypted matrix . ) L )
elements, as well as computation costs on MapReduce-based?Ve Use the binary encoding scheme to minimize the size
secure matrix-vector multiplication. Because the majestco ©f €ncrypted data, which also minimizes communication and
is on the Map phase, with Map slots in the Hadoop cloud storage. Basically, the size of an encrypted value in
cluster, the total cost is aboGt(n?/p). The storage cost is binary representation has twice the size of the encryption

proportional to the number of encrypted values, and relatef€Y: €-9- & 64-bit double-type value will become 2048-bit
to the key size. encrypted value with a 1024-bit key. We show a simple

We will conduct extensive experiments to carefully eval-COmparison using a 1024-bit key for a 10,000-dimension

uate these costs. vector in Table I.
Compared to the binary representation, a naive text repre-

IV. EXPERIMENTS sentation of big integers without compression will costwbo
To show the effectiveness of the proposed research, w&50% more in space (and 40% more with compression)
conducted a set of experiments to evaluate the efficiency dfut the computation time is about the same. The binary
processing in the three involved parties: the data coltscto representation does not significantly compress due to the
the authorized users, and the cloud. randomized nature of encrypted values.



C. Client-side Costs in Iterations The matrix is stored in the form of row vector sets and split

In each iteration of the proposed algorithm, the client sidento data blocks of 64MB in the Hadoop file system. The
will receive the encrypted vectds(Ab;) from the cloud, de- MapReduce framework assigns each block to a_Map. This
crypt it, regenerate a plaintext perturbed vector, and submallows sets of vector-vector dot products to occur in pefall
it for the next iteration. We will evaluate the communicatio Because the expensive operations happen in the Map phase,
memory, and computation costs of the corresponding step§1e number of Maps determines the overall performance.

The communication costs consist of receiving the en-
crypted vector from the cloud and sending the plaintext 400 12
perturbed vector back to the cloud. We use the number of ~+-Computation time //’ - 10
bytes to represent these costs. According to the previous | [#%-Map Rounds |
discussion, an encrypted vector of 10,000 dimensions will /

Seconds
N w
o o
s} )
|
Map Rounds

[y
o
o

o N B O

cost 2.56M bytes, which needs to be transmitted to the client
side. In comparison, the returned plain vector of 10,000
long integers has 80K bytes. These sizes are also linearly t:l/ L
proportional to the number of dimensions.
The computational steps include decrypting the vector and
. . . 0 20 40 60
constructing the new plaintext vector. Let the perturbratio Matrix dimensi 5
N atrix dimension x 10°
pool Coma_"n _10 'fando_mly _generate_d vect_ors. Table Il shows Figure 2. MapReduce costs of one encrypted matrix-vector
the cost distribution with different dimensions. As obssty computation. Processing cost is approximately determimedhe
decryption takes most of the time. Since decryption can be E‘.‘mber °2f Mﬁp fOUft‘ﬁS- (i trend with different i
easily done in parallel with a multicore processor, thistcos Igure = shows he cost increase trend with ditterent sizes
of encrypted matrices. With the number of dimensions less
can be further reduced. . i
than 10,000, the Map phase can be done in one round with

Dimension | E(Ab;) size | Decrypt E(Ab;) | Other processing the in-house Hadoop cluster. With more dimensions, more
10000 2.56MB 31 5 . . .
30000 7 68MB 942 u;nnf‘s Map rounds are needed and the total time cost is proportional
50000 12.8VB 149s 26ms to the number of Map rounds. On average each Map round

Table I costs about 30-40 seconds. This shows great scalability. As
CLIENT COMPUTATION COSTS FOR VARIOUS VECTOR DIMENSIONS we increase the Size Of the C|uster (W|th more Map SIOtS) to

. maintain one Map round, the overall cost will stay constant
The memory cost consists of the encrypted vector an(earound 40 seconds as shown in the figure)

the plain vectors in the perturbation pool. According to
the algorithm, after each iteration, the resultantwill be

600

added to the perturbation pool. However, since the number of
iterations is normally small, the pool requires only a liexit g 500 7| mClient Time
amount of memory. For example, with 10,000 dimensions 2400 ¥ Cloud Time
and a pool size of 10, 10 iterations need only about 2M F 300
bytes of memory to hold the plain long integer vectors. % 200
Q

D. Cloud-side Costs £ 100 .

The cloud side has major costs in storing the encrypted 0 _= . . . . . .
data and computing the secure matrix-vector multiplicatio 10 20 30 40 50
Note that encrypted data has significantly larger size. It is Matrix Dimension X 103

impractical for an authorized user to download and process rg,e 3. A summary of the cloud-side and client-side costs
the data locally. We show some real numbers in Table Il to  shows low client-side cost and the cloud-side efficiency wuthe

give a more concrete idea of the problem scale. optimized MapReduce implementation.

NaT Gimension | Unencrypied (GB)| Encypted (GB) _ The overall_cost _dlstrlbgtlon ovgr the cloud and the client
10000 0.8 25.8 side for one iteration using the in-house cluster is shown
30000 7.2 232.0 i i T i i i _aj
20000 o0 6150 in Flgure 3. With increased dimensions, the cloud-side cost

dominates the overall cost.
Table Il
STORAGE COST FOR MATRICES ENCRYPTED WITH A024BIT KEY. V RELATED WORK

Clearly, data in such scales cannot be processed using A framework for securely outsourcing general compu-
traditional methods. Instead, we have to fully exploit thetations is given in [6]. However, this framework is based
parallel processing power in the cloud. The cloud side comen Gentry’s fully homomorphic encryption scheme [7] ren-
putation consists of the secure matrix-vector multiplmat  dering it impractical due to the high computational costs



and ciphertext sizes. A simple test with the Scarab FHE[2] M. J. Atallah and K. B. Frikken, “Securely outsourcing

library (hcrypt.com/scarab-library) yielded ciphertesites
more than ten times those generated using Paillier [14].
Very recent work by Naehrig et al. [12] propose a secure

linear algebra computations,” iroceedings of the 5th ACM
Symposium on Information, Computer and Communications
Security, 2010, pp. 48-59.

outsourcing solution for problems which only require the [3] z. Brakerski and V. Vaikuntanathan, “Efficient fully ham

encryption scheme to be “somewhat” homomorphic (SHE).
They use the SHE scheme of [3] which provides reasonably
efficient computational performance but still suffers from

large ciphertexts.

Atallah et al. [2] use a more directed approach and
present secure outsourcing solutions that are specificde la

morphic encryption from (standard) Ilwe,” iAroceedings of
the 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science. ACM Press, 2011, pp. 97-106.

[4] J. K. Cullum and R. A. Willoughby,Lanczos Algorithms

for Large Symmetric Eigenvalue Computations. Cambridge
University Press, 1985.

scale systems of linear equations and matrix multiplicatio [5] s. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Fsyna

applications. These solutions fall short in that they ledk p
vate information, depend on multiple non-colluding sesyer
and require a large communication overhead, respectively, 6]
Wang et al. [18] use an iterative approach for solving
linear equations via client-cloud collaboration. However
their approach has several weaknesses. First, their agproa
requires that the entire unencrypted matrix be presenteat th 7]
client side. Secondly, the client side must perform a proble
transformation step with a computation costf»?). These
weaknesses render the approach impractical for big matrice 8

and do not fully utilize the benefit of the cloud.

and R. A. Harshman, “Indexing by latent semantic analysis,”
JASS vol. 41, no. 6, pp. 391-407, 1990.

R. Gennaro, C. Gentry, and B. Parno, “Non-interactive
verifiable computing: outsourcing computation to untrdste
workers,” in Proceedings of CRYPTO Conference.  Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 465-482.

C. Gentry, “Fully homomorphic encryption using ideat-la
tices,” in Annual ACM Symposium on Theory of Computing.
New York, NY, USA: ACM, 2009, pp. 169-178.

] 1. T. Jolliffe, Principal Component Analysis. Springer, 1986.

Secure multiparty computation (SMC) solutions [13], [9] J. Katz and Y. Lindelljntroduction to Modern Cryptography.

[10] currently exist for various linear algebra problems. |
general, the SMC solutions do not translate well to the secur,
outsourcing scenario. Each of the SMC parties typicall
holds a share of the data in plaintext form and conducts
computation with it. In our approach, the cloud holds the
encrypted data. In addition, the SMC approaches normall)[/ll]
have high communication overhead between the parties,

which is not desired in cloud-based computing.

VI. CONCLUSION

In this paper we present an iterative processing approacﬂh]
for finding top-k eigenvectors from encrypted data in the
cloud. The security of this approach is implemented with
the Paillier encryption system and an efficient random wecto
perturbation. It is carefully designed so that the client-[14]
side computation cost is minimized. We also develop a
MapReduce program to efficiently process the cloud-side

encrypted matrix-vector multiplication. The experimémnéa

sults demonstrate the reasonable storage and computationa

costs needed to setup and use the proposed approach and
show the scalability of the design. In future work, we plan

to extend the study to more efficient algorithms for sparsdl16]
matrices and formulate techniques to detect dishonesryr la

service providers.
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