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ABSTRACT

Range query is one of the most frequently used queries fanenl
data analytics. Providing such a query service could beresiype
for the data owner. With the development of services compguti
and cloud computing, it has become possible to outsourge lar
databases to database service providers and let the prowden-
tain the range-query service. With outsourced services dtta
owner can greatly reduce the cost in maintaining computifrg.$-
tructure and data-rich applications. However, the serpiosider,
although honestly processing queries, may be curious abeut
hosted data and received queries. Most existing encrypésed
approaches require linear scan over the entire databaseh vgh
inappropriate for online data analytics on large databagésle a
few encryption solutions are more focused on efficiency, siuey
are vulnerable to attackers equipped with certain priomkedge.

1. INTRODUCTION

With the increasing popularity of web-based applicationd a
the support from widely available cloud infrastructuresivice-
based computing has become a major computing paradigm. Ser-
vice providers take advantage of low cost cloud infrastmes,
while service users enjoy convenient services without yimngrabout
the cost of maintaining hardware and software. On the otaedh
large datasets have been collected, stored, and analybeadimess
intelligence and scientific computing for several yearswds re-
ported that maintaining data and supporting query-basedcss
incur much higher cost than initial data acquisition [12]n &Ap-
pealing solution is to delegate data services to a servio@dsr,
which, however, raises the question: how to protect theafeiin-
formation in the outsourced data, considering the serviogiger
might be curious about the data.

We propose the Random Space Encryption (RASP) approach that Range query is the most frequently used query in online deta a

allows efficient range search with stronger attack regikethan ex-
isting efficiency-focused approaches. We use RASP to geniera
dexable auxiliary data that is resilient to prior knowledgdanced
attacks. Range queries are securely transformed to thgpedr
data space and then efficiently processed with a two-stage ps-
ing algorithm. We thoroughly studied the potential attacksthe
encrypted data and queries at three different levels of friowl-
edge available to an attacker. Experimental results orhetiotand
real datasets show that this encryption approach allowsiegffi
processing of range queries with high resilience to attacks
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lytics (OLAP) that requires the service provider to quickégpond
to concurrent user queries. To efficiently process rangeegjen-
dexing is a necessary step. However, most existing enorypip-
proaches [30, 4, 5, 29] require linear scan over the entit@bdae,
thus, impractical for OLAP. Fully homomorphic encryptidt8] in
theory allows any operation on encrypted data that can loedra
back to an equivalent operation on the corresponding [ebetisit
However, as the author of [13] mentioned, this is still topensive
to be practical even for a simple application like encrytegword
search.

Several methods that consider different tradeoffs betvezta
security and efficiency of query processing were proposeitien
recent years. Both Crypto-index [20, 21] and order-preagren-
cryption (OPE) [1, 3] assume the attacker does not have muffic
prior knowledge about the data; thus powerful attacks cabao
conducted. Specifically, they assume the attacker knowstbsl
ciphertext. However, we have found that if the attacker lwases
prior knowledge, such as the attribute domains (maximunmainel
imum values), the attribute distributions, and even a feispaf
plaintext and ciphertext, these encryption methods wilVbimer-
able to attacks. Therefore, although they can allow theicerv
provider to build indices on encrypted data and perform ieffic
query processing, they can only be applied to very resttiefe
plications. Wang and Lakshmanan [31] use OPE in querying en-
crypted XML database and address the prior-knowledge esidan
attacks on OPE with duplicated fake index entries that poitie
same data item in the encrypted data block. However, their ap
proach requires the data owner to build indices for the samidch
is expensive and not convenient when the database is ladfeean
quently updated.

Challenge: Therefore, the challenge is to provide an encryption



scheme that allows efficient, index based query procesaim)js
also resilient to prior knowledge enhanced attacks on bath and
queries. Our goal is to develop such an encryption scheme.

1.1 Our Contributions and Scope of Research

We propose the RAndom SPace encryption (RASP) approach

for efficient range query processing on encrypted data. \&gnas

domain. For categorical domain, we use integers to représen
categorical values. Atable is also representedias a matrix, no-

tated with capital characters. In the following, we briefgsdribe

the definition of range queries and the importance of indéigab
to the performance of query processing.

Range Queries: Range query is an important type of query for

the outsourced data are multidimensional data and thusatee d many data analytic tasks from simple aggregation to morhistp

records can be treated as vectors (or points) in the muligim
sional space. The RASP method randomly transforms thedirulti

mensional space, while preserving the convexity of dasasétich
allows indexing and query processing with the encryptedidiul

mensional data. The framework assumes a secure proxy sgrver

the client side that handles data encryption/decryptich guery

encryption. The data owner and authorized users submitrtbe o
inal data and queries to the proxy server; the proxy servem th

sends the encrypted data/queries to the service provider.sér-
vice provider is able to index the encrypted data and usesffto
ciently process encrypted queries.

cated machine learning tasks. [7ebe a table and(;, X;, and X}
be the real valued attributes 1, anda andb be some constants.
Take the counting query for example. A typical SQL-stylegan
query looks like

select count(*) from T
whereX; € [a;, b;] and X € (a;, b;) and Xy, = ay,

which calculates the number of records in the range defined by

conditions onX;, X;, and X;;. Range queries may be applied
to arbitrary number of attributes and conditions on theséates
combined with conditional operators “and”/“or”. We callatepart

Our approach has several important features: (1) The RASP ap of the query condition that involves only one attribute asiraple

proach uses a random space transformation method thatatew

service provider to build indices and process queries wititim
dimensional indices. With the support of indices, the psgub
two-stage query processing algorithm can achieve muchrt-
formance than linear scan. (2) The existing indexable gty
schemes hold strong assumptions on attacker’s lack of kmimwl-
edge on the data; thus they are vulnerable to many attacksieet
with prior knowledge. Our work categorizes attacker’s pkiaowl-

edge into three levels and the proposed schemes are resiien

these knowledge-enhanced attacks. To increase resil@yaiast
known plain text attacks we use a straightforward compwsitif

Agarwal et al.'s OPE [1] with RASP. (3) Attacks based on ge®ri

were rarely discussed in existing schemes. We show thatpniith
knowledge, attacks on queries can seriously underminenitry e

tion. We design certain methods to enhance the resilientieeto

query-based attacks. (4) Some approaches, such as cngao-i
may return a lot of encrypted records irrelevant to the query
burden the client side to filter out these irrelevant recofisr ap-
proach always returns the exact result to the client, elutimig the
unnecessary additional costs.

We also conduct a number of experiments on synthetic and real

datasets to evaluate the performance and the attack nesilidhe
experimental results show that the proposed method iseffiaind
resilient to the knowledge enhanced attacks.

The rest of this paper is organized as follows. Section Zlprie

describes range queries and the privacy problems with orded
databases. Section 3 gives the definition of random spat&ipar
tion. In section 4 we present the algorithms for query tramsé-
tion on the client side and efficient query processing on #nees
side. In Section 5, we formally analyze the security of tHeesae,
describe various attacks and discuss the resilience ofahanse
to these attacks. The algorithms outlined in Section 4 amti@&e

5 are summarized at the end of Section 5. The cost of encryptio

the resilience to attacks, and the efficiency of query prsingsare
further evaluated through extensive experiments in Seétio

2. PRELIMINARIES

First, we establish the notation used in this paper. A da@ba
table consists of records and searchable attributes. We also fre-

quently refer to an attribute as a dimension or column. These

condition A simple condition likeX; € [a;, b;] can be described
with two half space conditionX’; < b; and—X; < —a;. Without
loss of generality, we will discuss how to process half spareli-
tions like X; < b; in this paper. A slight modification will extend
the discussed algorithms to handle other conditions Kke< b;
andXZ- = b;.

3. RANDOM SPACE ENCRYPTION

In this section, we propose the basic Random Space Encryp-
tion (RASP) approach for secure range query processing ®n th

encrypted outsourced data. First, we give the system framiew

and assumptions held for the attack models. Second, werprese

the definition of the basic random space encryption methatl an
distinguish it from order preserving encryption methodmahy,

we describe how to generate outsourced data and answeesjueri

with the encrypted data.

3.1 System Framework and Attack Models
System Framework. We assume the outsourced data are multi-

dimensional data and thus the data records can be treatestas v

tors (or points) in the multidimensional space. Figure wshthe
framework for processing range query services on outsdutata.
In the client side, the data owner has all rights to uploagigu
data, and may also grant the query right to the trusted uJdrs.
proxy server receives original data and queries, encrypdssab-
mits them, and decrypts the query results. It keeps the isgcur
key, the encryption functionBr (), Eq(), the decryption function
D(), and controls the access rights. The traffic between theyprox
server and the service provider contains only the encryd&d
and queries. Although the proxy server does not handle tige la
dataset and process queries, it might still become a bettlefor

a large number of users and frequent query submissions. \owe
the cost to scale the proxy server should be much lower treriah
host the entire query processing service.

This framework includes several key components Hiigrypted
auxiliary data generation This approach will generate the auxil-
iary data encrypted with the proposed scheme for indeximgqae
through the encryption functioBr () in Figure 1. It applies a type
of multiplicative perturbation [9, 27] on the searchablgilbites in
the original database to generate the auxiliary data. Théigdo

names are exchangeable in our context. Each record cantige rep keep the topology of original data vectors in the auxiliaagadbut

sented as a vector, and notated with bold lower cases, vavier|

obscure the original data values so that they cannot belppgsi

cases are used to represent scalars. Each column is defireed on ferred from the auxiliary data. (Z)uery Encryption A submitted
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: "‘;: L e i outsourced data. We will study attacks under these thréereiift
il . E‘T Lglj L{lj % levels after we present the basic encryption methods.
1 Server Y H > > '
N - Wi : /i U L/ opaav | 3.2 Definition of Random Space Encryption
i Aﬁd ReshtR 1™ Attacks 5 Random Space Encryption (RASP) is one type of multiplieativ
I DataUser ! ) aderonY. perturbation [8], with relaxed constraints on the enciypiaram-
""""""""""""""""""""""" eters. Let's consider the multidimensional data are numenid
TrustParties Untrusted party in multidimensional vector space For categorical attributes, we
use a simple mapping of integers to categorical values taerbn
Figure 1: A framework for hosting range query services. them to integers Assume the database hasearchable dimen-

sions andn records, i.e., & x n matrix X. Let x represent a

) k-dimensional record. Note that in thedimensional vector space,
query should also be appropriately transformed so that¢hees  he range query conditions are represented as half spaditions
can use the index on the encrypted auxiliary data to prod®ss t  and a range query is correspondingly translated to findiagtint

query. This query transformation should be secure, nottey set in a hyper-cube [6]. The RASP encryption involves twpste
information that helps curious service providers breaolapy. We For eachk-dimensional input vectax,

denote it as thég () function. (3)Server side indexing and query

processing The service provider is able to build multidimensional 1. the vector is first extended ka2 dimensions aéx”™, 1,v)7,
index on the auxiliary data. However, processing the tanséd where the(k + 1)-th dimension is always aandv is drawn
queries requires algorithms different from the existingsanOur from (0, «] using a random number generafy, with some
framework also includes the algorithms for query procegsin privatec and distributior?.

Attack Models. In our framework, we study the attack models 2. After this extension thék + 2)-dimensional vector is then
based on the popular honest-but-curious service provisirmap- subjected to the transformation

tion. We assume the service provider will honestly proviteger-

vices and perform the computations following the proto@b(, X
public cloud providers). However, the provider might beicus Er(x, K ={A,R,})=A( 1 ], @
v

about the data and the users’ queries. Also, we assume that-th
tacker knows the algorithms used to encrypt data and qu@mes
the algorithms forEr(), Eq()). Active attackers will also try to
obtain as much prior knowledge as possible to help breakrihe e
cryption, or estimate the encrypted data and queries. Tertmtal-
uate the strength of an encryption scheme, we categoriaekatt

into different levels based on the prior knowledge the &amay Note thatA is shared by all vectors in the database, big ran-
have. domly generated with the random number generdgrfor each
e Level 1: the attacker observes only the encrypted data and individual vector. Note that only is needed in the trusted p’roxy
queries, without any additional knowledge. This corresigon ~ Server for decryption (and hence forms the key) - we don'dnee

to the ciphertext-only attack (COA) in crvptoaraphy [15]. to keepw in the proxy server. The design of extended data vec-
P y ( ) yptography [15] tor (x,1,v)7 is to address the query-based attacks: khe 1

e Level 2: Apart from the encrypted data, the attacker also dimension is a homogeneous dimension for hiding the quemy co
knows some dimensional distribution information about the tent; thek + 2 dimension is used to counter the inherent linearity in
original data, including the attribute domain (the maximum transforming the queries. The rationale behind differepeats of
and minimum values) and distribution (e.g., the Probapilit  this encryption will be discussed clearly in later sectiohlso, the
Density Function (PDF) or histogram). In practice, for some structure ofA will be slightly changed to withstand known plain
applications such as hosting query services for census data text attacks in Section 5.
the dimensional distribution might be known by the public. RASP has two important features. First, we want to show that

RASP does not preserve the ordering of dimensional valuieishw

o Level 3: Apart from the encrypted data, the attacker observe istinguishes itself from order preserving encryptionesobs, and
a small set of plaintext tupleX and the corresponding en- ;5 does not suffer from the bucket-based attack (deteSgction
crypted tuplesy” in the outsourced data. This corresponds 7). Second, we show that RASPdsnvexity preservingvhich al-
to the known-plaintext attack (KPA) in cryptography. Inour  |qus range queries on the encrypted data.
special context, the attacker may also observe a small num-
ber of plain queries and the corresponding encrypted querie  Rasp is Not Order Preserving. In the following, we show that

RASP is not order preserving; thus the attacks on OPE schemes

cannot be applied to RASP. An OPE scheme maps a set of dimen-

sional values to another, while keeping the value order amgéd.

Let x be any record in the dataset, afidbe the selection vector

whereA is a(k+2) x (k+2) randomly generated invertible
matrix (see Appendix for matrix generation) with; € R

such that there are at least two non-zero values in each row
of A and the last column ofl is also non-zero.

The three levels also correspond to the difficulty level dbob
ing the required prior knowledge. Both Level 2 and Level 3who
edge are difficult to obtain and it is possible only when thacker,
e.g., the curious service provider, resorts to social exgging or
gains temporary unauthorized access to some user accauhts a LFor a categorical attribut&;, the values{ci, . ., ¢, } in the do-
data owner location. For example, the related databaseafphs main are mapped 61, .. ., 727'1}. A query C(;ndifiongi = ¢, is
may reveal some knowledge about the domain; the compromisedconverted tgj — 6 < X; < j + 8, whered € (0,1)
user may use queries to probe the encrypted database. Tne pri ?we useda = 1 and uniform random distribution for the experi-
knowledge based attacks have also been used in attackiarfalys ~ ments




0,...,1,...,0) i.e., only thei-th dimension is 1 and other di-
mensions are 0. For simplicity we use unextended vectotee
extended dimensions are not related to this discussion amdhe
safely removed. Ther{f*)”x will return the value at dimension
of x.

PrROPOSITION 1. Let A be an invertible matrix with at least
two non-zero entries in each row. For any vectgilets’ = As.
Then for anyi € {1,...,k} there exist vectors, y for which A
preserves the order of dimensioifthat is, (z; — v:)(x; — yi) >
0) and there exist vectora, v for which A reverses the order of
dimension:. That is, RASP does not preserve order for arbitrary
input vector pairs.

PROOF. Using the same dimensional selection vector, we have
s; = (f9)T As andt] = (f*)” At. Thus, we get

(si—t)(si—t) = (s:—t:)(E) A(s —t)

k
(si —t:) Zai,j(sj —t5), (2

wherea; ; is thei-th row j-th column element ofd. Without loss

of generality, let's assume; > t; (for s; < t; the same proof
applies). It is straightforward to see that given the fixelies of

A, the values ofs; andt¢; for all 5 # ¢ can be chosen so that
(si —ti) Zle ai,;(s; — tj;) is either negative or positive. Note
that since each row ol has at least two non-zero entries, even if
a;i(s: — ;)% > 0 (or < 0), using the other non-zero value in the
i-th row of A, saya; i, the sign of(s; —t;) Zle aij(s; —tj)can

be adjusted to either positive or negative by appropriatbbosing
the valuess;, andt,. [

RASP is Convexity Preserving.Let’s treat data records as points
in a real multidimensional space. In the following, we witiosv
that although RASP does not preserve ordering, it presees
vexity, which forms the basis of our query processing stratéhe
following definitions of convex set and convexity preseg/fanc-
tion can be found in most textbooks on convex optimizatiog,, e

[6].

DEFINITION 1. A setS is a convex set, if and only if forx,
x2 € S, andVve € 0, 1],

9X1+(1—0)X2 cs

DEFINITION 2. A convexity preserving functiafi() preserves
the convexity of sets. Concretely,dfis a convex set in the orig-
inal data space, the functioE'() always transformss' to another
convex sef(S).

The following proposition cited from [6] is critical to theqof of
convexity preserving property of RASP encryption and owergu
processing algorithm.

PROPOSITION 2. (1) Every convex setis a (possibly infinite) in-
tersection of halfspaces, i.€.) H;, whereH; defines a halfspace;
and (2) the intersection of (possibly infinite) convex se&dso con-
VEX.

With this proposition we can prove that

PrROPOSITION 3. RASP encryption is convexity preserving.

PROOF We assume an original convex sefiifi (that is closed)
is the intersection of a set of halfspaq@dd;, where a halfspace
H; can be represented &gl x < a; (“=" for the closed set), and

w; € R¥ anda; € R are parameters for the halfspace. By re-
placing x with a column vectorz = (x”,1,v)” and w; with

w;, = (wi,—a;,0)7, the set enclosed by, is transformed to
the set enclosed by the halfspadé®t: u?z < 0. With the RASP
function, we havey = Az, and thus this halfspacH{"* can be
further transformed tdi; as follows

uF Ay <o. )

Each of the halfspace conditiond/, in the transformed space rep-
resents a convex set. Thus, the intersection of them is gxaawe
well. Therefore, the RASP encryption is convexity presegvi []

Since a range query defines a convex set, the transformation
method (Eq. 3) gives a basic method for transforming theeang
query for the RASP encrypted data - we name it RASP query-trans
formation method. The following proposition shows that bgush-
ing with the transformed conditions in the encrypted datespwe
can get the exact set of points that is the image of the qusnytre
in the original data space.

PROPOSITION 4. Let H; and H be halfspaces defined as in the
proof of Proposition 3. The RASP query transformatioiquely
maps the convex sétenclosed by halfspac¢g H; to the convex
setS’ enclosed by H;.

It is straightforward to show that by using the RASP queryndra
formation, any point inS cannot be mapped to a point outsisle
and any point not irS cannot be mapped to a point #. So we
skip the details of the proof.

Note that duplicate records in the original set might be nedpp
to different records in the encrypted space due to the ratydgem-
erated additional dimensidr-2. However, this query transforma-
tion method guarantees all of such records are still exéatigd in
the encrypted space. This proposition forms the basis ®ptb-
posed query processing strategy, which will be discussddtiils.

Attributes
| Rlvn' vRﬂ |Rm+lV"'v R‘||

G(<Ry,...,Rp>) ﬂ % Encrypt(<Ry,..., Ry>)
f f Encrypted/
Ry ,Rim compressed bIoJk

Figure 2: The records stored on the server.

Original record

Record stored at
server side

Generating Auxiliary Vectors for Outsourcing. With the RASP
encryption function, we generate the outsourced data &sn®l
First, we normalize each attribute to avoid the attacksdbasehe
value ranges. The normalization process is briefly desddisefol-
lows. Let the mean of the attribute distribution peand the vari-
ance ber?. For any valuer of thei-th attribute, the transformation
(x — ps)/oq is applied. For the sake of simplifying presentation,
we assume the data columns are already normalized - whenywe sa
the vectorx we mean it is the normalized version. Second, we
assign an unintelligible name to each attribute, e &, ™for the
first attribute. Finally, Eq. 1 is applied to the searchahlaeh-
sionsx to generate the encrypted auxiliary recgrd y and the
original record that is compressed and encrypted with aiist-ex
ing methods are used for outsourcing (as shown in Figure 2¢. T
service provider may build indices or perform linear scarttoan
auxiliary data vectors to answer queries. The cost for gdimgy an
outsourced record consists of one RASP encryption petiorba
(O(k?) multiplications;k is the number of searchable dimensions)



and the compression/encryption operations applied to thelev
record. Here note that the RASP transformation is applidgd on
to those attributes that are actually queried. Thus liketrored
earlier, conventional encryption can be used on compressads
of attributes that will not be queried.

4. EFFICIENT RANGE QUERY PROCESS-
ING WITH RASP

We have shown that the RASP encryption is convexity preserv-
ing. Thisresultis closely related to how a query can be foansed

As Proposition 4 shows, searching with the transformedigser
on the auxiliary vectors is equivalent to searching withdhginal
queries and data. Note that this simple query transformasioul-
nerable to attacks as shown in Section 5.2; we will eventuse
slightly different query transformation method. (In thepemdix,
we also give the details of the transformed query.) Next, navs
how to efficiently process these transformed queries.

4.2 A Two-Stage Query Processing Strategy
with Multidimensional Index Tree

With the transformed queries, the first important task isrw p

and processed. A range query can be represented as a cohvex s€€ss queries efficiently. A commonly used method is to use tre

query. Thus, in the encrypted space there is a unique comtex s
that is the answer to the query. However, there are chalteimgd)
efficiently processing it, and (2) making sure query procgsdoes
not reveal significant information about the encryption key the
original data. One may already notice that the simple quayst
formation method described in this section is vulnerabigttacks.
However, in this section, we will focus on the first challende
will be revisited and significantly improved in security &rsas in
Section 5.

In the encrypted space, a simple dimensional condition én th
original space is transformed to a general halfspace dondjas
Figure 4 shows). It would be straightforward to scan eacliianx
vector with the transformed conditions and return the tesile
want to explore more efficient index-based processing nastiro
this section. The normal processing strategies are basedubn
tidimensional index trees, such as R-Tree [28], that handiés-
aligned minimum bounding boxes (MBR). If we still depend on
multidimensional tree indexing to process the transforomegties,
the processing algorithm should be slightly modified to tea-
bitrary convex areas, the boundaries of which are not nadgss
axis-aligned. We will start with the method of query tramsia-
tion, briefly discuss the normal range query processingrikgos
using multidimensional indices, and then present the mepso-
lution for processing the transformed queries.

4.1 Query Transformation

Since the auxiliary vectors are in the encrypted space,d¢o/qn
this space, range queries should also be appropriatelsforaned.
We have mentioned that the transformation method used iringo
Proposition 3 can be used for query transformation. In #isien,
we discuss how to transform an original range query into the e
crypted space in details.

First, let’s look at the general form of a range query conditi
Let X; be an attribute in the database. A simple condition in a
range query involves only one attribute and is of the foriy “
<op> a;", wherea, is a constant in the normalized domain of
andop € {<,>,=,<,>,#} is a comparison operator. For con-
venience we will only discuss how to proce’s < a;, while the
proposed method can be slightly changed for other conditidny
complicated range query can be transformed into the dispmof
a set of conjunctions, i.eJ7_, (N, Ci ;), wherem, n are some
integers depending on the original query conditions @qd is a
simple condition abouk;. Again, to simplify the presentation we
restrict our discussion to single conjunction conditiofi,C;. A
simple conditionX; < a; is a halfspace condition. Following the
previous discussionX; < a; is converted to the extended vector
representation firsta” z < 0, whereu is ak + 2 dimensional vec-
tor with u; = 1, ug4+1 = —as, andu; = 0 for j # i,k + 1, (for
X > aiui = —1,upp1 = a;), andz = (x7,1,v)". Then, let
y be the auxiliary vector, i.ey = Az. The original condition is
transformed to the form of Eq. 3 in the encrypted space.

indices to improve the search performance. However, niolgd-

sional tree indices are normally used to process axis-ediinound-
ing boxes”; whereas, the transformed queries are in arpiten-

vex shape, not necessarily aligned to axes. In this seatiempro-

pose a two stage query processing strategy to handle seguliar

shape queries in the encrypted space. First, we brieflydnt®the
query processing algorithm based on multidimensionalXncees.

Then, we describe the two stage processing algorithm.

Multidimensional Index Tree. Most multidimensional indexing
algorithms are derived from R-tree like algorithms [19],emthe
minimum bounding region (MBR) is the construction block fioe
multidimensional data. For 2D data, an MBR is a rectangle. Fo
higher dimensions, the concept of a MBR is extended to a hyper
cube. Figure 3 shows the MBRs in the R-tree for a 2D dataset,
where each node is bounded by a node MBR.

yah

it

Staget:
Bounding
box

j I
i

Myl

Original space Transformed space

Figure 4: lllustration of the
two-stage processing algo-
rithm.

Figure 3: R-tree index.

Range query processing with a multidimensional indexieg tr
can be described as follows. The conjunction of a set of @mpl
range conditions can be represented as a query MBR. Thegjoal i
to find the MBRs in the tree that are contained by or intersecte
with the search MBR. If the query MBR contains a node MBR,
all points in the subtree should be included in the queryltesu
the query MBR intersects a node MBR, further checking shbeld
performed for the children nodes. If the query MBR intersext
leaf MBR, each point included by the leaf node should be aback
and only those inside the query MBR are selected.

The Two-Stage Processing Algorithm. The transformed query
describes an irregular convex shape that cannot be dirpobly

cessed by multidimensional tree algorithms. New tree eakc

gorithms can be designed to use arbitrary polyhedron dondit

i.e., the transformed query, directly for search. Howeweruse a
simpler two-stage solution that keeps the existing treechezlgo-

rithms unchanged.

At the first stage, the proxy in the client side finds the MBR of
polyhedron (as a part of the submitted transformed query)tla@
server uses the MBR to find the initial result set. We use tire si
ple vertex-based algorithrfor finding the MBR of the polyhedron.
The original query condition constructs a hyper-cube shafith
the query transformation, the vertices of the hyper cubeakre
transformed to vertices of the polyhedron. Therefore, weaz-



culate the MBR with only the transformed vertices. Figuréubi
trates the relationship between the vertices and the MBBeTare
a maximum number di* vertices for one conjunctive range query
condition onk dimensions, i.e., each dimension has its lower and
upper bounds. It is straightforward to construct thesecesthased
on the dimensional bounds. In practice, the MBR of the palybe
needs to be calculated by the proxy server for security reasul
then sent to the server together with the transformed cuerie

At the second stage, the server uses the transformed hadfspa
conditions® to filter the initial result and find the final result. In
most cases, the initial result set will be reasonably snmathat it
can be filtered in memory with linear scan. In the worst cdse, t
MBR of the polyhedron will possibly enclose the entire datasd
the second stage is reduced to linear scan of the entireadlatas

Cost Analysis. Assume the query ranges are selected uniformly at
random. For small ranges the first stage average c@¥fliss ; NV)
index block accesses plus a few of data block accesses [B8few

N is the number of records anBl is the number of children an
index node has. Due to the randomness associated with th® RAS
transformation, the data distribution, and the unprebietguery
ranges, the cost to get the initial result could vary, which e
investigated in experiments. If the initial result hasecords, a lin-
ear scan at the 2nd stage wath simple conditions will cosK 2kn
checks of the form in Eq. 3. In Section 6, we study the cost dis-
tribution between the two stages and experimentally detretes
that this two-stage processing is efficient and orders ofritades
faster than the linear scan approach.

5. ATTACK ANALYSIS

We categorize the possible attacks into two types: (1) A#tac
on auxiliary vectors; (2) Attacks based on range querieser§h
has been some related work on attack analysis methods fér sim
lar encryption methods, e.g., geometric data perturbdtionlata
mining [9], which can be migrated to analyze the first type tef a
tacks. However, attacks on range queries are entirely newuio
approach.

5.1 Attacks on Auxiliary Vectors

According to the three levels of knowledge the attacker may
have, we categorize the attacks into three classes: (1)eNssv
timation; (2) Distributional Attacks; and (3) Known InpQ@utput
Attacks. Due to the random component in the RASP encryption,
some attacks are actually estimation attacks, i.e., thé afahe
attack is to estimate the original values. If the estimatesult is
sufficiently accurate, we say the encryption is broken.

5.1.1 Attack Description and Analysis

Naive Estimation. With the level 1 knowledge, the attacker ob-
serves only the encrypted data. The only attack is to bligdlyss

the matrixA. It has been discussed to find a mat#ixo maximize

the difference between the encrypted data and the origatal[8].
However, since there is no way to verify how accurate a random
guess is, this type of attack is ineffective, in general.

Distributional Attack.  With the level 2 knowledge, the attacker
also knows column domains and distributions. This knowdeckn
be possibly used to perform more effective attacks. In algr,
when the original data have independent columns and no rane t
one column having Gaussian distribution, an attack cafidépen-

3The final form of the security-enhanced transformed quergps
resented with the matricé3;s that are described in Section 5.2.

dent Component Analysis (ICA) [23] can be applied to effesti
recover the original data from the perturbed data. Origynaé-
veloped for signal processing, ICA is used to discover campts

A (the mixing matrix) andX (the original signals) from the mixed
dataY = AX. Since ICA recovers columns in an arbitrary order,
it has to rely on the known distributional information totitiguish
the columns and order them correctly. Furthermore, thetff
ness of ICA heavily depends on the independence of the calumn
and the number of columns having non-Gaussian distribsitidn
practice, since the independence condition and the Gaudi&a
tribution condition are often not satisfied, the ICA attaek ©nly
result in approximate estimation to the original data. Heevethe
previous study [9] shows that if the matrik is not carefully se-
lected, the ICA attack can still result in serious damage.

Another distributional attack is to enumerate the mattiand
then check the column distributions 4f 'Y to find the best match
between the known column distributions and the distrilmgiof the
estimated columns. However, since there is no constraithesl-
ements ofA, with uniformly discretized domains, the number of
candidate matrices will be extremely large. Concretelyhéf dis-
cretized domain hag values, the total candidate matrices will be
d(k“)z, wherek is the number of dimensions. Even for extremely
low dimensionality, e.g., k=2, this attack could be comfiatelly
intractable.

Known Input/Output Attack. With the level 3 knowledge, the at-
tacker knows a number of input/output (plaintext/ciphettescord
pairs. Concretely, lePy « ., be the knownn k-dimensional origi-
nal records(x1,...,Xxm), m > k + 2, that includek + 2 linearly
independent records, aigk2x~ be the corresponding perturbed
k + 2-dimensional record$y,...,y=). The typical method is
to use the linear regression method to get an estimate ofepe k
and then recover the entire original data. In the following,show
how to use the regression method to attack the encryptionALe
decomposed into blockd = (A1, A2, As), whereA;, A; andAs
have block sizegk + 2) x k, (k +2) x 1 and(k + 2) x 1, re-
P
spectively, and the extended data pel where1l is the row
v
vector with ‘1" andv is a row vector with random positive values,
corresponding to the two additional dimensions in RASPsTthe
encryption can be represented as

P
1
v

Q:(Al,AQ,AS) :A1P+A21+A3V7 (4)

whereA-1 is a translation matrix that adds the vectbs to each

of the column vectors iMd; X; Asv is a random noise matrix.
With sufficient number of known record pairsy(> k + 2), first,

the translation component can be canceled out; then, thesreg
sion method can be applied to estimate. With the estimate
Ay of A;, Ay can be estimated as well. Therefore, for an en-
crypted dataset’, the estimate of the original datd is X
(ATA1)71A?(Y — Azl).

5.1.2 Countering Attacks on Auxiliary Data

Countering ICA-based Distributional Attack. Since the enumer-
ation based attack is computationally intractable, we $omo the
ICA-based attack. We propose two approaches to increase-the
silience to the attack. The first approach is to simulate @ |
attack in sufficient rounds to find a statistically resiliehimatrix
as the previous work does [9]. However, a more attack-esgili
approach is using the composition encryption scheme (Cl8) t



consists of two steps: transforming the original data witloeder
preserving encryption schentg, first; then followed by the basic
RASP encryption, which can be represented as follows.

Eo(X,K,)
E(X,K,K,)=A 1 (5)

v

We use the OPE scheme by Agarwal et al. [1] that allows us to
change all column distributions to normal distributiondus, the
requirement of non-Gaussian distribution is not satisfigtdich
renders ICA ineffective. Since the composition scheme tsono
der preserving, the attacks on OPE schemes will not be aybdic
either. However, can the two-stage query processing gtraitl

be applied? The following proposition indicates that it sttt be
applied.

PrRoOPOSITION 5. Order preserving encryption functions trans-
form a hyper-cubic query range to another hyper-cubic quange.

PrROOF Assume the original range query condition consists of
simple conditions liké; < X; < a; for each dimension. Since the
order is preserved, each simple condition is transforméoliasvs:
Eo(b;) < Eo(X;) < Eo(aq), which means the transformed range
is still a hyper-cubic query range.[]

When processing a query, the proxy server needs to trangf@m

query that is submitted to the server as tlugputquery. With the
knowledge of a number of pairs of input/output queries, thied-

ing attacks can be performed on the current query conditimigs,
u? A~ly <0, to break the encryption.

5.2.1 Attack Description and Analysis

First, we will show that the row vectors of ~! can be probed
if the attacker has the level 3 knowledge on query conditi@es-
ond, we show a more serious attack that can reveal columretaf d
if the attacker has the level 2 knowledge about dimensiatnilolis
tions.

A~! Probing Attack. With the level 3 knowledge, the attacker
knows a pair of input query conditions on the same dimensay,
X, < a; and X; < b;, and their output formsufiA’ly <0
andu;, A~'y < 0, respectively. Them} A™'y —ul A™'y =
u, , A”'y, whereu, , = (0,...,a; — b;,0), only the non-
zero(k + 1)-th element remains. Lat; be thej-th row of A~
The constant part of the condition represefats — b;)ri1, thus
revealingri+1. While the single condition like}, A~'y < 0 has
the constant patt; + a;rg1, with knowna; andrx1, r; can be
revealed. Repeating this process for all dimensions witwknin-
put/output conditions, the attacker can recokef 1 rows of the
matrix A~*, which leaves very weak security.

ranges to OPE encrypted ranges first, and then apply the query

transformation method. We will show in the experiments hbe t
resilience to the ICA attack is improved with the compositicheme.

Countering Known Input/Output Attacks.  As we have men-
tioned earlier, the random noise matrigv in Eq. 4 determines
how effective the linear regression estimation can be dofige
more intense (in terms of variance) the noise componeritedess
accurate the estimation can be. A randomly generated matrix
does not allow us to control the noise intensity, however. pice
pose to use the following method to generdtethat satisfying a
specified noise intensity. (1) generaté a 2 by g random ma-
trix ¥ according to the required noise distribution and intensity
with sample size8 that is sufficiently large, or larger than the max-
imum number of known Input/Output records that an attackay m
have access t0; (2) generatositive random values; (3) apply
Az = UvT/(vvT) to getAs. The last column of the randomly
generatedA is then replaced withds. Note here that having a
value of zero for say theth entry in A3 would mean that the noise
values are never added #dh attribute. So the random generation
process is repeated until all elementsAf are not zero. Previ-
ous study shows that Principle Component Analysis (PCA)bzan
used to possibly filter out the noise component or reduce fthe e
fect of noise in some circumstances [22]. We will investigtte
relationship between the noise component and the accufas o
timation, and study whether PCA can help improve the estonat
in experiments.

A more attack-resilient solution is using the previous dised

Dimensional Selection Attack. With the level 2 knowledge, i.e.,
the column domains and the column distributions, the attackn
perform adimensional selection attackAssume the condition is
applied to some unknown dimensianApplying the query param-
etersu? A~! to each recorg in the server, the attacker can get
ul A~y = x; — a;, wherexz; is the i-th dimension of the corre-
sponding original recorgt. After getting all the values, the attacker
can build up a histogram to compare with the known columrridist
butions. Itis thus easy to identify what dimension is queri¢/ith
the knowledge of the column domain, the constartan be easily
removed, which leads to complete breach of the entire column

In summary, the original query transformation method can be
exploited to construct very effective attacks. It needstodrefully
redesigned to address these attacks.

5.2.2 Countering Query-based Attacks

The additional dimensioX - is used to construct secure query
conditions. Instead of processing a half space conditor< a;,
we use(X; — ai)Xr+2 < 0 instead. These two conditions are
equivalent because the additional dimensign, » satisfiesXy 2 >
0. Using the extended vector form® = (x7,1,v), we have
Xi —a; =z uand X2 = wlz, whereu; = 1, upy1 = —as,
uj = 0,forj # i,k +1; wgye = L andw; = 0, for j # k + 2.
With the transformatioly = Az, we get the transformed quadratic
query condition

y (ATHTuw" Ay <o (6)

composition encryption scheme. If the OPE scheme uses a non-

linear transformation, the composition of OPE and RASP evidh
ate a nonlinear mapping from the original data to the eneg/pt
data. Therefore, the linear regression attack will not lhectfe
by simply using the known pairs of input and output recortithe
OPE key is unknown.

5.2 Attacks on Transformed Queries
As we have discussed, in query processing, the proxy seiiller w

submit the MBR and the transformed query to the server. We re-

fer to the original query as thiput query, and the transformed

Let® = (A"HTuw” A7, In the two-stage processing strat-
egy, the bounding box of the transformed query area is catied|
in the proxy server as we discussed earlier. Then, this bound
ing box and the parametef8; for each condition;, are submit-
ted to the server.
with two half space conditions, the encrypted quély is repre-
sented as {MBR(©O1, ..., 02 }}. The server will use the bound-
ing box to get the first-stage results and then use the conditi
e.q..yT©;y < 0, tofilter out the results. We now show that this
query transformation is resilient to both query-basedciia

Thus, assume each dimension is reprdsente



Assume the attacker knows two pairs of input/output queny co
ditions, e.g., forX; < a; andX; < b;. We use the same method
used in thed™! probing attack to find the difference of the two
conditions. Let®©, and ©, notate the parameters for these two
conditions, respectively. The simplified form for a singlendi-
tion, .9.,0q, is (r] — a;r} )rir2, Wherer;, ry1, andry. o
are the row vectors of matrid~!. Thus, the result o, — O, is
(b; — ai)rfﬂrkH. But knowing®,, ©4, a;, b; does not help find
the unknown vectors- in fact there are an infinite number of solu-

tions because; = (bj%m Therefore, knowing pairs of

input/ouput queries does not help probiag*’.

This quadratic query transformation method counters thnedi
sional selection attack as well. For any perturbed regosd” ©,y
recovers(z; — a;)ri+2, Wherez; andzy4» are the dimensional
values of the corresponding original vectarSincezy - is a ran-
domly generated positive value, knowidg’s domain and distri-
bution does not help recover. Therefore, dimensional selection
attack does not work either.

In the appendix, we put together all the algorithms aftersabn
ering the attacks discussed in this section.

6. EXPERIMENTS

In this section, we present three sets of experimentaltseguin-
vestigate the following questions: (1) How costly are theS®en-
cryption scheme and the composition scheme involving OR&rme?
(2) How effective are the ICA attack and the known input/omigat-
tack, if the composition scheme is not applied? (3) How effitis
the two-phase query processing?

6.1 Setup

Two datasets are used in experiments: (1) a synthetic daltase
draws samples from uniform distribution in the range [0, djd
(2) the Adult dataset from UCI machine learning databageor
the adult dataset, we assign numeric values to the catededt
ues using a simple one-to-one mapping scheme. For eacletlatas
we generate multiple versions with different numbers obrds by
using sampling with replacement. We also change the diropaki
ity of the datasets by randomly selecting a number of dinoerssof
the data. All experiments were done in a quad-core AMD Optero
server (2.5GHz CPU and 120GB memory).

6.2 Cost of Encryption

In this experiment, we study the cost of the components in the
composition scheme. We implement the OPE scheme [1] by map-
ping original column distributions to normal distributmn The
OPE algorithm partitions the target distribution into beisk first.
Then, the sorted original values are proportionally partiéd ac-
cording to the target bucket distribution to create the btkor the
original distribution. With the aligned original and tatdmickets,
an original value can be mapped to the target bucket and appro
priately scaled. Therefore, the encryption cost mainly esiftom
the bucket search procedure (proportiondbipD, whereD is the
number of buckets). Both encryption schemes are implerdente
with Matlab. Figure 5 shows the cost distribution for 20K orts
at different number of dimensions of data for the two compésie
in the composite scheme. The dimensionality has less effettie
cost of RASP than on that of OPE.

6.3 Resilience to Estimation Attacks

We have discussed the methods for countering the estimation
tacks, primarily the ICA attack and the known input/outptiaek.

*http://archive.ics.uci.edu/ml/

In this set of experiments, we explore the resilience of libth
RASP-Only scheme and the composition scheme to the estima-
tion attacks. Although the composition scheme is more iezsil

to attacks, it incurs the additional cost that might not he@fad by
some applications. Therefore, it is worth looking at howilierst

the RASP-Only scheme is to the attacks.

Metric for Evaluating Estimation Attacks. The accuracy of esti-
mation attacks can be evaluated with the well-known meaarsqu
error (MSE). Let the number of records leand the value of
the 4-th attribute in thej-th record bezx; ; and the correspond-
ing estimated value bg; ;. Model thei-th attribute with a ran-
dom variableX; and its estimate a&;. The estimation error can
be estimated with the root of mean square error (RMS3):=
\/1/71, Z;zl(m,j — CEZ‘TJ')2, e, X; = XZ + m;. 2m,; can be used
to roughly represent the effective estimation range. Apptly, m;
has different meaning for different value range. For exampll0
means ineffective estimation for an attribute “age” (in thage
[0,100]), while very effective for “salary” (often- 10000). One
of the common methods is to normalize all attributes to axpro
mately the same range. For large data, the assumption tblat ea
attribute has approximately normal distribution would bason-
able [25]. Therefore, standardization can be used to nazenall
attributes to normal distribution with mean zero and stashabe-
viation one. For a standardized domain, four times of thedsted
deviation (i.e. 40 = 4) covers the majority of records>(95%).
Then, we can use the rgte = 2m; /(40) = m; /2 to represent the
relative effectiveness of the estimation attack. The latgem;,
the less effective the estimation is. To evaluate the szsik across
all attributes, we also define dataset-wise metrics, sutheasiin-
imum security guaranteg™” = min{p;,1 < i < k}, which is
used in our experiment.

Results. We simulate the ICA attack for randomly chosen matri-
cesA. The data used in the experiment is the 10-dimension Adult
data with 10K records. The x-axis in Figure 6 represents ¢he s
guence number of randomly chosen mattiand the y-axis repre-
sents the minimum security guarantee among all dimensibne.
label “Best” means the most resilieAtto the ICA attack; “Worst”
means thed shows the weakest resilience; “Average” is the pro-
gressive average resilience for the generatedatrices. Figure 6
shows that the effectiveness of the ICA attack can vary wifterd

ent matricesA and we can find some ones that are more resilient
to the attack. In addition, if applied is the composition hoet that
uses the OPE scheme to change column distributions to Gaussi
distributions, the resilience of a randomly chosgrs significantly
increased.

We also simulate the known input/output attack with a number
of randomly selected input/output records pairs (10% ofethigre
dataset). The original data is generated with the methodiomed
in Section 5.2.2 by generating the noise matrix with stathater-
mal distribution N (0, 1). Due to the randomness, we repeat the
experiment 10 times and record the variance of the estimafibe
PCA based noise filtering technique [22] is also applied aart p
of the attack. LeY” be the encrypted data. The PCA method finds
the eigenvalue decomposition By 7. Let Q be the eigenvectors
corresponding to the largesipreserved eigenvalues (i.e., the prin-
cipal components). The noise filtering algorithm u3s8Q7 to
representy’. Figure 7 shows the result for the known 1/O attack
with the PCA noise filtering step. The x-axis represents tha-n
ber of principal components preserved. Since the data diioen
ality is 10, 10 principal components means no noise redudto
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on both Adult and Uniform data.

applied. For both datasets, the average estimation enm@tigher
than 0.2. Also, the PCA noise filtering does not help mucivhen

the number of principle components is reduced (trying toaesm
the noises), the estimation error does not reduce. Thi#t saws

that with appropriately set noise component, the known tt@ck

is not effective either.

6.4 Performance of Two-stage Range Query
Processing

In this set of experiments, we study the performance aspécts
polyhedron range query processing. We use the two-stage$so
ing strategy described in Section 4, and explore the additicost
incurred by this processing strategy. We implement the stage
query processing based on an R*-tree implementation pedviy
Dr. Hadjieleftheriou at AT&T Lab http://www2.research.abm/ mar-
ioh/spatialindex/. The block size is 4KB and we allow eaabckl
to contain only 20 entries to mimic a large database with naishy
blocks. Samples from the three databases in different $20Q0
— 50,000 records, i.e., 500-2500 data blocks) are encryptédea
auxiliary data and then indexed for query processing. Agrosiet
of indices are also built on the original data for setting lup per-
formance baseline of query processing on non-encrypted e
will use the number of disk block accesses, including indexks
and data blocks, to assess the performance to avoid thebfgossi
variation caused by other parts of the computer system.ditiad,
we also show the wall-clock time for some results for congari

Recall the two-stage processing strategy: (1) calculaéBR
of the transformed query and use the MBR to search the indexin
tree; (2) filter the returned result with the transformedrguéVe
will study the performance of the first stage by comparing tino
additional methods: (1) the original queries with the inteit on
the original data, which is used to identify how much additib
cost is paid for querying the MBR of the transformed queryi2
linear scan approach, which is the worst case cost. Rangegue
are generated randomly within the domain of the datasedisthem
transformed with the method described in the Section 4.1aM&
control the range of the queries to be [10%,20%,30%,40%)] %0%
the total range of the domain, to observe the effect of thiesafa
the range to the performance of query processing.

Results. The first pair of figures (the left subfigures of Figure 8 and
9) shows the number of block accesses for 10,000 queriedfen-di
ent sizes of data with different query processing methodsclear
presentation, we udeg,,(# of block accesses) as the y-axis. The
cost of linear scan is simply the number of blocks for stotimeg

whole dataset. The data dimensionality is fixed to 5 and tleeyqu
range is set to 30% of the whole domain. Obviously, the fiegest
with MBR for polyhedron has a cost much cheaper than thetinea
scan method and only moderately higher than R*tree praugssi

the original data. Interestingly, different distributioaf data result

in slightly different patterns. The costs of R*tree on tifansied
queries are very close to those of original queries for Adala,
while the gap is larger on uniform data. The costs over difier
dimensions and different query ranges show similar pagtern

Linear Scan| R*Tree-Orig | Stage-1| Stage-2| rpq | purity
Uniform 6.32 0.132 0.805 0041 | 60 | 1.3%
Adult 5.42 0.091 0.20 0.017 24 2.2%

Table 1: Wall clock cost distribution and comparison.

We also studied the cost of the second stage. We use “purity”
to represent the rate (final result count)/(1st stage resultt), and
records per query (RPQ) to represent the average numberartise
per query for the first stage results. The quadratic filtedodi-
tions are used in experiments. Table 1 compares the averafie w
clock time (milliseconds) per query for the two stages, tHQR
values for stage 1, and the purity of the stage-1 result. &$ts aire
run with the setting of 10K queries, 20K records, 30% dimemasi
query range and 5 dimensions. Since the 2nd stage is donevn me
ory, its cost is much lower than the 1st-stage cost. Ovetadlfwo
stage processing is much faster than linear scan and cobipaoa
the original R*Tree processing.

7. RELATED WORK

We review the two most related methods: OPE and crypto-index
first, and then give other related work.

OPE. As the name indicates, order preserving encryption (OPE)
[1] preserves the dimensional value order after encryptibgan
be described as a function= F(x),Vzi,zj,z; < (>,=)z; <

yi < (>,=)y;. A well-known attack is based on attacker’s prior
knowledge of original distributions of attribute valued.the at-
tacker knows the original distributions and manages totifietine
mapping between the original attribute and its encryptachtar-
part, the following bucket-based attack can be performduteak
the encryption for the attribute. (1) Model the original tdisu-
tion for the attribute with a histogram of a number of buck¢®y
Calculate the percentage of each bucket to the entire llisivn;
(3) Sort the encrypted values; (4) According the bucketicqat-
ages, sequentially partition the sorted encrypted valugemerate
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buckets; (4) Sequentially map the encrypted buckets torigaal
buckets and get the estimate of the encrypted value. Thésfmec
of estimation is determined by the width of the buckets - tae n
rower the buckets are the higher the precision will be. Sthee
number of buckets can be arbitrarily chosen, the buckethadeh
be very small. Itis also not difficult to get the mapping betwéhe
original attribute and the encrypted attribute, if the et knows
a number of plain queries and their encrypted queries. leldev
oping our schemes, we have carefully studied whether thevikno
query patterns will damage the proposed encryption scheroeri
framework.

Crypto-Index. Crypto-Index is also based on column-wise buck-
etization. It assigns a random ID to each bucket; the valuéise
bucket are replaced with the bucket ID to generate the auyitlata
for indexing. To utilize the index for query processing, amal
range query condition has to be transformed to a set-basay qu
on the bucket IDs. For exampl&; < a; might be replaced with
X; € [ID1, 1D+, ID3]. If the attacker manages to know the map-
ping between the input original query and the output bubkested
query, the range that a bucket ID represents could be estimahe
width of the bucket determines how precise the estimatiofodoe
done. A bucket-diffusion scheme [21] was proposed to addtés
problem, which, however, has to sacrifice the precision @&rgu
results. Another drawback of this method is that the clieat,the
server, has to filter out the query result. Low precision lissaise
large burden on the network and the client system. Furthermo
due to the randomized bucket IDs, the index built on buckstitD
not so efficient for processing range queries as the indexB O
encrypted data is.

Other Related Work.  Private information retrieval (PIR) [10,
24] tries to fully preserve the privacy of access patternilemie

data may not be encrypted. PIR schemes are normally verly.cost
Focusing on the efficiency side of PIR, Williams et al. [32¢ s
pyramid hash index to implement efficient privacy preseg\data-
block operations based on the idea of Oblivious RAM [16].slt i
different from our setting of high throughput range quergqass-
ing. Anocther line of research [5, 29] facilitates authodagsers

to access only the portion of data in the authorized rangk avit
public key scheme. The underlying identity based encryptised

in these schemes does not produce indexable encryptedAdsda.
the setting for which Shi et al. [29] propose the multidinienal
range query is different from ours. The untrusted servicwiger

in our setting is responsible for both indexing and quergpessing.
Secure keyword search on encrypted documents [30, 17, 14] 4,
scans each encrypted document in the database and findscthe do
uments containing the keyword, which is more like point ebar
in database. The research on privacy preserving data miraag
discussed multiplicative perturbation methods [7, 9, 4, 18],
which are similar to the RASP encryption, but with more engiha
on preserving the utility for data mining.

8. CONCLUSION AND FUTURE WORK

In this paper we propose the random space encryption agproac
to efficient range queries over encrypted data and analgagrtique
attacks to this approach. Our approach uses a random spase tr
formation to generate indexable auxiliary data. The aamglidata
is exported to the service provider, indexed and used fargasing
range queries. We present an efficient server-side twe sfagry
processing strategy. Experimental results show that thisgssing
strategy is highly efficient. In addition, we analyzed thmels on
encrypted data and queries. Experiments are performedot® sh
the resilience of the encryption to estimation attacks eNloat this
attack analysis is just the first step to rigorous analysisegfirity.
We will continue to explore more attacks and formally study $e-



curity. As an important extension to our approach, we woildkl o
further investigate how database update operations, succard
deletions, insertions, and updates, affect data utility security.
The goal is to allow the data owner and authorized users apbat
encrypted data without undermining the security.
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Appendix: the Attack-Resilient Algorithms
There are four key algorithms deployed at the proxy serverthaa

service provider, respectively two at the proxy server: (1) Data

Encryption and Decryption; (2) Query Transformation andrigp-
tion; and two procedures at the service provider: (3) Dadaxmg;
(4) Query Processing. We will use the existing multidimenai
tree algorithms for Data Indexing, thus we skip the proced@).
For simplicity, we process the conditions likg < a; or X; > b;.

The algorithms can be slightly changed to handle other tgfes
conditions.

In Algorithm 1, the key matrixA is generated with the resilience
to known input/output attack in mind. Firstl is randomly gen-

erated with elements drawn from a real random number genera—lo;
tor Ra.

Second, according to the desired noise distribution, (i.e.

N(0, ¢?)) for enhancing the resilience to known input/output at-
tack, the algorithm described in Section 5.1 is used to fieddkt
column of A (i.e., As) and A3 is used to replace the last column
of the generated!. The invertibility of A is checked to make sure
decryption can be done. The data encryption function exteadh
original data vectok to the(k+2) dimensional vector with the ho-
mogeneousk+1)-th dimension and the random positi{fe+2)-th
dimension with the random number generaiyr. Then, it uses an
OPE schemd, to transform the originak dimensions, followed
by the RASP encryption with the key mattik Note that the proxy
server needs onlyl and the key for OPE in decryption.

(2) Transform the vertices with the composite encrypti@);Rind
the bounding box of the transformed vertices as the MBR.

Algorithm 2 Query transformation and encryption.

1:
2:

3

CeNOUAX

11:
12:
13:
14:
15:

16:

QueryEnc(Cond, A)
Input: Cond:2k simple conditions, 2 for each dimensioné:the key;

for each conditiorC; in Conddo
u; + zeros(k +2,1);
if C; is like X; < a; then
Ui j <+~ 1, Ui k+1 < —CLJ‘;
end if
if C; is like X; > a; then
Ui j +— —1, Ui k+1 < CLJ‘;
end if
w; < zeros(k + 2,1);
Wy gy2 < 15
0; + (A HTuwT A—1;
end for
Use the vertex transformation method to find the MBR of thadra
formed queries;
submit MBR and the filtering conditiond; } to the server;

In Algorithm 3, the two-stage query processing uses the MBR
to find the initial query result and then filters the resulthnihe
transformed query conditions” ©;y < 0, where®; is passed by
the client andy is the record in the initial query result.

Algorithm 1 Data encryption and decryption algorithms

Algorithm 3 Two-Stage Query Processing.

1:
2:

ab~w

Encrypt (X, Ra, Ra, Ko, a, 8,0)

Input: X: k x n data recordsR,, andR 4°: random real value genera-
tors for generating thé + 2)-nd dimension (i.e.y) and the invertible
(k + 2) x (k + 2) matrix A with at least two non-zero values in each
row, K,: key for OPEE,, a: the upper bound fow, 3:sample size,
o noise intensity; Output: the matriz

A+ 0

. while A is not invertibledo

generate the elements iiwith R 4;
v = (v1,...,v8) <+ generate3 random positive values in range
(0,) with Rq;
Az « 0;
while A3z contains zero elementi
generate thék + 2) x 3 noise matrix¥ useN (0, o2);
Az« OvT/(vvT);
end while
Replace the last column of with As;
Check the invertibility of the matrixd;

. end while
. for each recorck in X do

v < random positive value in rand®, o) with Rq
y < A(EO(XT7 K0)7 17U)T
submity to the server;

. end for
L returnA;

. Decrypt(Y, A, Ko)
> Input: Y: k x n matrix, the encrypted recordg,.the RASP keyK,:

the OPE key; Output: the decrypted recofds

X — Ay,
. X' + the firstk dimensions ofX;;
. return OPE decryptiod, (X ")

In Algorithm 2, the query transformation and encryptiondun
tion takes the2k simple conditions (assume two for each dimen-
sion) and the key matri¥ as the input, and transforms each condi-
tion with the method described in Section 5.2. The MBR is cal-
culated by the following steps: (1) The vertices of the ovadi
query range are simply calculated with the dimensional depn

1:
2:

oeNoOAR®

10:
11:
12:
13:
14:
15:
16:
17:

ProcessQueryM BR, {©;})
Input: MBR: MBR for the transformed queny;©; }filtering condi-
tions;

. 'Y « use the indexing tree to find answers for MBR;
CY 0
. for each record; in Y do

success— 1
for each conditior®; do
if y’©;y > 0then
success— 0;
break;
end if
end for
if success = then
addy; into Y/;
end if
end for
returnY” to the client;




