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ABSTRACT
Range query is one of the most frequently used queries for online
data analytics. Providing such a query service could be expensive
for the data owner. With the development of services computing
and cloud computing, it has become possible to outsource large
databases to database service providers and let the providers main-
tain the range-query service. With outsourced services, the data
owner can greatly reduce the cost in maintaining computing infras-
tructure and data-rich applications. However, the serviceprovider,
although honestly processing queries, may be curious aboutthe
hosted data and received queries. Most existing encryptionbased
approaches require linear scan over the entire database, which is
inappropriate for online data analytics on large databases. While a
few encryption solutions are more focused on efficiency side, they
are vulnerable to attackers equipped with certain prior knowledge.
We propose the Random Space Encryption (RASP) approach that
allows efficient range search with stronger attack resilience than ex-
isting efficiency-focused approaches. We use RASP to generate in-
dexable auxiliary data that is resilient to prior knowledgeenhanced
attacks. Range queries are securely transformed to the encrypted
data space and then efficiently processed with a two-stage process-
ing algorithm. We thoroughly studied the potential attackson the
encrypted data and queries at three different levels of prior knowl-
edge available to an attacker. Experimental results on synthetic and
real datasets show that this encryption approach allows efficient
processing of range queries with high resilience to attacks.

Categories and Subject Descriptors
H.2.0 [Database Management]: General—Security, integrity, and
protection; E.3 [Data Encryption]

General Terms
Security, Algorithms
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Multidimensional Range Query, Random Space Encryption, Attack
Analysis, Outsourced Databases

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODASPY’11,February 21–23, 2011, San Antonio, Texas, USA.
Copyright 2011 ACM 978-1-4503-0465-8/11/02 ...$10.00.

1. INTRODUCTION
With the increasing popularity of web-based applications and

the support from widely available cloud infrastructures, service-
based computing has become a major computing paradigm. Ser-
vice providers take advantage of low cost cloud infrastructures,
while service users enjoy convenient services without worrying about
the cost of maintaining hardware and software. On the other hand,
large datasets have been collected, stored, and analyzed inbusiness
intelligence and scientific computing for several years. Itwas re-
ported that maintaining data and supporting query-based services
incur much higher cost than initial data acquisition [12]. An ap-
pealing solution is to delegate data services to a service provider,
which, however, raises the question: how to protect the private in-
formation in the outsourced data, considering the service provider
might be curious about the data.

Range query is the most frequently used query in online data ana-
lytics (OLAP) that requires the service provider to quicklyrespond
to concurrent user queries. To efficiently process range queries, in-
dexing is a necessary step. However, most existing encryption ap-
proaches [30, 4, 5, 29] require linear scan over the entire database,
thus, impractical for OLAP. Fully homomorphic encryption [13] in
theory allows any operation on encrypted data that can be traced
back to an equivalent operation on the corresponding plaintexts.
However, as the author of [13] mentioned, this is still too expensive
to be practical even for a simple application like encryptedkeyword
search.

Several methods that consider different tradeoffs betweendata
security and efficiency of query processing were proposed inthe
recent years. Both Crypto-index [20, 21] and order-preserving en-
cryption (OPE) [1, 3] assume the attacker does not have sufficient
prior knowledge about the data; thus powerful attacks cannot be
conducted. Specifically, they assume the attacker knows only the
ciphertext. However, we have found that if the attacker has some
prior knowledge, such as the attribute domains (maximum andmin-
imum values), the attribute distributions, and even a few pairs of
plaintext and ciphertext, these encryption methods will bevulner-
able to attacks. Therefore, although they can allow the service
provider to build indices on encrypted data and perform efficient
query processing, they can only be applied to very restricted ap-
plications. Wang and Lakshmanan [31] use OPE in querying en-
crypted XML database and address the prior-knowledge enhanced
attacks on OPE with duplicated fake index entries that pointto the
same data item in the encrypted data block. However, their ap-
proach requires the data owner to build indices for the server, which
is expensive and not convenient when the database is large and fre-
quently updated.

Challenge: Therefore, the challenge is to provide an encryption



scheme that allows efficient, index based query processing,and is
also resilient to prior knowledge enhanced attacks on both data and
queries. Our goal is to develop such an encryption scheme.

1.1 Our Contributions and Scope of Research
We propose the RAndom SPace encryption (RASP) approach

for efficient range query processing on encrypted data. We assume
the outsourced data are multidimensional data and thus the data
records can be treated as vectors (or points) in the multidimen-
sional space. The RASP method randomly transforms the multidi-
mensional space, while preserving the convexity of datasets, which
allows indexing and query processing with the encrypted multidi-
mensional data. The framework assumes a secure proxy serverat
the client side that handles data encryption/decryption and query
encryption. The data owner and authorized users submit the orig-
inal data and queries to the proxy server; the proxy server then
sends the encrypted data/queries to the service provider. The ser-
vice provider is able to index the encrypted data and use it toeffi-
ciently process encrypted queries.

Our approach has several important features: (1) The RASP ap-
proach uses a random space transformation method that allows the
service provider to build indices and process queries with multi-
dimensional indices. With the support of indices, the proposed
two-stage query processing algorithm can achieve much better per-
formance than linear scan. (2) The existing indexable encryption
schemes hold strong assumptions on attacker’s lack of priorknowl-
edge on the data; thus they are vulnerable to many attacks enhanced
with prior knowledge. Our work categorizes attacker’s prior knowl-
edge into three levels and the proposed schemes are resilient to
these knowledge-enhanced attacks. To increase resilienceagainst
known plain text attacks we use a straightforward composition of
Agarwal et al.’s OPE [1] with RASP. (3) Attacks based on queries
were rarely discussed in existing schemes. We show that withprior
knowledge, attacks on queries can seriously undermine the encryp-
tion. We design certain methods to enhance the resilience tothe
query-based attacks. (4) Some approaches, such as crypto-index,
may return a lot of encrypted records irrelevant to the queryand
burden the client side to filter out these irrelevant records. Our ap-
proach always returns the exact result to the client, eliminating the
unnecessary additional costs.

We also conduct a number of experiments on synthetic and real
datasets to evaluate the performance and the attack resilience. The
experimental results show that the proposed method is efficient and
resilient to the knowledge enhanced attacks.

The rest of this paper is organized as follows. Section 2 briefly
describes range queries and the privacy problems with outsourced
databases. Section 3 gives the definition of random space perturba-
tion. In section 4 we present the algorithms for query transforma-
tion on the client side and efficient query processing on the server
side. In Section 5, we formally analyze the security of the scheme,
describe various attacks and discuss the resilience of our scheme
to these attacks. The algorithms outlined in Section 4 and Section
5 are summarized at the end of Section 5. The cost of encryption,
the resilience to attacks, and the efficiency of query processing are
further evaluated through extensive experiments in Section 6.

2. PRELIMINARIES
First, we establish the notation used in this paper. A database

table consists ofn records andk searchable attributes. We also fre-
quently refer to an attribute as a dimension or column. Thesethree
names are exchangeable in our context. Each record can be repre-
sented as a vector, and notated with bold lower cases, while lower
cases are used to represent scalars. Each column is defined ona

domain. For categorical domain, we use integers to represent the
categorical values. A table is also represented as ak×n matrix, no-
tated with capital characters. In the following, we briefly describe
the definition of range queries and the importance of indexability
to the performance of query processing.

Range Queries: Range query is an important type of query for
many data analytic tasks from simple aggregation to more sophisti-
cated machine learning tasks. LetT be a table andXi, Xj , andXk

be the real valued attributes inT , anda andb be some constants.
Take the counting query for example. A typical SQL-style range
query looks like

select count(*) from T
whereXi ∈ [ai, bi] andXj ∈ (aj , bj) andXk = ak,

which calculates the number of records in the range defined by
conditions onXi, Xj , andXk. Range queries may be applied
to arbitrary number of attributes and conditions on these attributes
combined with conditional operators “and”/“or”. We call each part
of the query condition that involves only one attribute as asimple
condition. A simple condition likeXi ∈ [ai, bi] can be described
with two half space conditionsXi ≤ bi and−Xi ≤ −ai. Without
loss of generality, we will discuss how to process half spacecondi-
tions likeXi ≤ bi in this paper. A slight modification will extend
the discussed algorithms to handle other conditions likeXi < bi
andXi = bi.

3. RANDOM SPACE ENCRYPTION
In this section, we propose the basic Random Space Encryp-

tion (RASP) approach for secure range query processing on the
encrypted outsourced data. First, we give the system framework
and assumptions held for the attack models. Second, we present
the definition of the basic random space encryption method and
distinguish it from order preserving encryption methods. Finally,
we describe how to generate outsourced data and answer queries
with the encrypted data.

3.1 System Framework and Attack Models
System Framework. We assume the outsourced data are multi-
dimensional data and thus the data records can be treated as vec-
tors (or points) in the multidimensional space. Figure 1 shows the
framework for processing range query services on outsourced data.
In the client side, the data owner has all rights to upload/query
data, and may also grant the query right to the trusted users.The
proxy server receives original data and queries, encrypts and sub-
mits them, and decrypts the query results. It keeps the security
key, the encryption functionsET (), EQ(), the decryption function
D(), and controls the access rights. The traffic between the proxy
server and the service provider contains only the encrypteddata
and queries. Although the proxy server does not handle the large
dataset and process queries, it might still become a bottleneck for
a large number of users and frequent query submissions. However,
the cost to scale the proxy server should be much lower than that to
host the entire query processing service.

This framework includes several key components. (1)Encrypted
auxiliary data generation. This approach will generate the auxil-
iary data encrypted with the proposed scheme for indexing purpose
through the encryption functionET () in Figure 1. It applies a type
of multiplicative perturbation [9, 27] on the searchable attributes in
the original database to generate the auxiliary data. The goal is to
keep the topology of original data vectors in the auxiliary data but
obscure the original data values so that they cannot be possibly in-
ferred from the auxiliary data. (2)Query Encryption.A submitted
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Figure 1: A framework for hosting range query services.

query should also be appropriately transformed so that the server
can use the index on the encrypted auxiliary data to process the
query. This query transformation should be secure, not reveal any
information that helps curious service providers breach privacy. We
denote it as theEQ() function. (3)Server side indexing and query
processing. The service provider is able to build multidimensional
index on the auxiliary data. However, processing the transformed
queries requires algorithms different from the existing ones. Our
framework also includes the algorithms for query processing.

Attack Models. In our framework, we study the attack models
based on the popular honest-but-curious service provider assump-
tion. We assume the service provider will honestly provide the ser-
vices and perform the computations following the protocol (e.g.,
public cloud providers). However, the provider might be curious
about the data and the users’ queries. Also, we assume that the at-
tacker knows the algorithms used to encrypt data and queries(i.e.,
the algorithms forET (), EQ()). Active attackers will also try to
obtain as much prior knowledge as possible to help break the en-
cryption, or estimate the encrypted data and queries. To better eval-
uate the strength of an encryption scheme, we categorize attacks
into different levels based on the prior knowledge the attacker may
have.

• Level 1: the attacker observes only the encrypted data and
queries, without any additional knowledge. This corresponds
to the ciphertext-only attack (COA) in cryptography [15].

• Level 2: Apart from the encrypted data, the attacker also
knows some dimensional distribution information about the
original data, including the attribute domain (the maximum
and minimum values) and distribution (e.g., the Probability
Density Function (PDF) or histogram). In practice, for some
applications such as hosting query services for census data,
the dimensional distribution might be known by the public.

• Level 3: Apart from the encrypted data, the attacker observes
a small set of plaintext tuplesX and the corresponding en-
crypted tuplesY in the outsourced data. This corresponds
to the known-plaintext attack (KPA) in cryptography. In our
special context, the attacker may also observe a small num-
ber of plain queries and the corresponding encrypted queries.

The three levels also correspond to the difficulty level of obtain-
ing the required prior knowledge. Both Level 2 and Level 3 knowl-
edge are difficult to obtain and it is possible only when the attacker,
e.g., the curious service provider, resorts to social engineering or
gains temporary unauthorized access to some user accounts at the
data owner location. For example, the related database applications
may reveal some knowledge about the domain; the compromised
user may use queries to probe the encrypted database. The prior
knowledge based attacks have also been used in attack analysis for

privacy preserving data mining [2, 22, 9] and kNN queries [33] on
outsourced data. We will study attacks under these three different
levels after we present the basic encryption methods.

3.2 Definition of Random Space Encryption
Random Space Encryption (RASP) is one type of multiplicative

perturbation [8], with relaxed constraints on the encryption param-
eters. Let’s consider the multidimensional data are numeric and
in multidimensional vector space− For categorical attributes, we
use a simple mapping of integers to categorical values to convert
them to integers1. Assume the database hask searchable dimen-
sions andn records, i.e., ak × n matrix X. Let x represent a
k-dimensional record. Note that in thek-dimensional vector space,
the range query conditions are represented as half space conditions
and a range query is correspondingly translated to finding the point
set in a hyper-cube [6]. The RASP encryption involves two steps.
For eachk-dimensional input vectorx,

1. the vector is first extended tok+2 dimensions as(xT , 1, v)T ,
where the(k+1)-th dimension is always a1 andv is drawn
from (0, α] using a random number generatorRα, with some
privateα and distribution2.

2. After this extension the(k + 2)-dimensional vector is then
subjected to the transformation

ET (x,K = {A,Rv}) = A





x

1
v



 , (1)

whereA is a(k+2)×(k+2) randomly generated invertible
matrix (see Appendix for matrix generation) withaij ∈ R

such that there are at least two non-zero values in each row
of A and the last column ofA is also non-zero.

Note thatA is shared by all vectors in the database, butv is ran-
domly generated with the random number generatorRα for each
individual vector. Note that onlyA is needed in the trusted proxy
server for decryption (and hence forms the key) - we don’t need
to keepv in the proxy server. The design of extended data vec-
tor (xT , 1, v)T is to address the query-based attacks: thek + 1
dimension is a homogeneous dimension for hiding the query con-
tent; thek+2 dimension is used to counter the inherent linearity in
transforming the queries. The rationale behind different aspects of
this encryption will be discussed clearly in later sections. Also, the
structure ofA will be slightly changed to withstand known plain
text attacks in Section 5.

RASP has two important features. First, we want to show that
RASP does not preserve the ordering of dimensional values, which
distinguishes itself from order preserving encryption schemes, and
thus does not suffer from the bucket-based attack (details in Section
7). Second, we show that RASP isconvexity preserving, which al-
lows range queries on the encrypted data.

RASP is Not Order Preserving. In the following, we show that
RASP is not order preserving; thus the attacks on OPE schemes
cannot be applied to RASP. An OPE scheme maps a set of dimen-
sional values to another, while keeping the value order unchanged.
Let x be any record in the dataset, andf i be the selection vector

1For a categorical attributeXi, the values{c1, . . . , cm} in the do-
main are mapped to{1, . . . ,m}. A query conditionXi = cj , is
converted toj − δ ≤ Xi ≤ j + δ, whereδ ∈ (0, 1)
2We usedα = 1 and uniform random distribution for the experi-
ments



(0, . . . , 1, . . . , 0) i.e., only thei-th dimension is 1 and other di-
mensions are 0. For simplicity we use unextended vectors− the
extended dimensions are not related to this discussion and can be
safely removed. Then,(f i)Tx will return the value at dimensioni
of x.

PROPOSITION 1. Let A be an invertible matrix with at least
two non-zero entries in each row. For any vectors, let s′ = As.
Then for anyi ∈ {1, . . . , k} there exist vectorsx, y for whichA
preserves the order of dimensioni (that is,(xi − yi)(x

′
i − y′

i) >
0) and there exist vectorsu, v for whichA reverses the order of
dimensioni. That is, RASP does not preserve order for arbitrary
input vector pairs.

PROOF. Using the same dimensional selection vector, we have
s′i = (f i)TAs andt′i = (f i)TAt. Thus, we get

(si − ti)(s
′
i − t′i) = (si − ti)(f

i)TA(s− t)

= (si − ti)

k
∑

j=1

ai,j(sj − tj), (2)

whereai,j is thei-th row j-th column element ofA. Without loss
of generality, let’s assumesi > ti (for si < ti the same proof
applies). It is straightforward to see that given the fixed values of
A, the values ofsj and tj for all j 6= i can be chosen so that
(si − ti)

∑k

j=1 ai,j(sj − tj) is either negative or positive. Note
that since each row ofA has at least two non-zero entries, even if
ai,i(si − ti)

2 > 0 (or < 0), using the other non-zero value in the
i-th row ofA, sayai,k, the sign of(si−ti)

∑k

j=1 ai,j(sj−tj) can
be adjusted to either positive or negative by appropriatelychoosing
the valuessk andtk.

RASP is Convexity Preserving.Let’s treat data records as points
in a real multidimensional space. In the following, we will show
that although RASP does not preserve ordering, it preservescon-
vexity, which forms the basis of our query processing strategy. The
following definitions of convex set and convexity preserving func-
tion can be found in most textbooks on convex optimization, e.g.,
[6].

DEFINITION 1. A setS is a convex set, if and only if for∀x1,
x2 ∈ S, and∀θ ∈ [0, 1],

θx1 + (1− θ)x2 ∈ S

DEFINITION 2. A convexity preserving functionE() preserves
the convexity of sets. Concretely, ifS is a convex set in the orig-
inal data space, the functionE() always transformsS to another
convex setE(S).

The following proposition cited from [6] is critical to the proof of
convexity preserving property of RASP encryption and our query
processing algorithm.

PROPOSITION 2. (1) Every convex set is a (possibly infinite) in-
tersection of halfspaces, i.e.,

⋂

Hi, whereHi defines a halfspace;
and (2) the intersection of (possibly infinite) convex sets is also con-
vex.

With this proposition we can prove that

PROPOSITION 3. RASP encryption is convexity preserving.

PROOF. We assume an original convex set inR
k (that is closed)

is the intersection of a set of halfspaces
⋂

Hi, where a halfspace
Hi can be represented aswT

i x ≤ ai (“=” for the closed set), and

wi ∈ R
k andai ∈ R are parameters for the halfspace. By re-

placing x with a column vectorz = (xT , 1, v)T and wi with
ui = (wT

i ,−ai, 0)
T , the set enclosed byHi is transformed to

the set enclosed by the halfspaceHext
i : uT

i z ≤ 0. With the RASP
function, we havey = Az, and thus this halfspaceHext

i can be
further transformed toH ′

i as follows

u
T
i A

−1
y ≤ 0. (3)

Each of the halfspace conditions,H ′
i, in the transformed space rep-

resents a convex set. Thus, the intersection of them is convex as
well. Therefore, the RASP encryption is convexity preserving.

Since a range query defines a convex set, the transformation
method (Eq. 3) gives a basic method for transforming the range
query for the RASP encrypted data - we name it RASP query trans-
formation method. The following proposition shows that by search-
ing with the transformed conditions in the encrypted data space, we
can get the exact set of points that is the image of the query result
in the original data space.

PROPOSITION 4. LetHi andH ′
i be halfspaces defined as in the

proof of Proposition 3. The RASP query transformationuniquely
maps the convex setS enclosed by halfspaces

⋂

Hi to the convex
setS′ enclosed by

⋂

H ′
i.

It is straightforward to show that by using the RASP query trans-
formation, any point inS cannot be mapped to a point outsideS′

and any point not inS cannot be mapped to a point inS′. So we
skip the details of the proof.

Note that duplicate records in the original set might be mapped
to different records in the encrypted space due to the randomly gen-
erated additional dimensionk+2. However, this query transforma-
tion method guarantees all of such records are still exactlyfound in
the encrypted space. This proposition forms the basis for the pro-
posed query processing strategy, which will be discussed indetails.

R1,…  , Rm Rm+1,…,    RnOriginal record

Attributes

G(<R1,…, Rm>) Encrypt(<R 1,…, Rn>)

R’1,…  , R’m
Encrypted/

compressed block
Record stored at
server side

Figure 2: The records stored on the server.

Generating Auxiliary Vectors for Outsourcing. With the RASP
encryption function, we generate the outsourced data as follows.
First, we normalize each attribute to avoid the attacks based on the
value ranges. The normalization process is briefly described as fol-
lows. Let the mean of the attribute distribution beµi and the vari-
ance beσ2

i . For any valuex of thei-th attribute, the transformation
(x − µi)/σi is applied. For the sake of simplifying presentation,
we assume the data columns are already normalized - when we say
the vectorx we mean it is the normalized version. Second, we
assign an unintelligible name to each attribute, e.g. “X1” for the
first attribute. Finally, Eq. 1 is applied to the searchable dimen-
sionsx to generate the encrypted auxiliary recordy. y and the
original record that is compressed and encrypted with any exist-
ing methods are used for outsourcing (as shown in Figure 2). The
service provider may build indices or perform linear scan onthe
auxiliary data vectors to answer queries. The cost for generating an
outsourced record consists of one RASP encryption perturbation
(O(k2) multiplications;k is the number of searchable dimensions)



and the compression/encryption operations applied to the whole
record. Here note that the RASP transformation is applied only
to those attributes that are actually queried. Thus like mentioned
earlier, conventional encryption can be used on compressedvalues
of attributes that will not be queried.

4. EFFICIENT RANGE QUERY PROCESS-
ING WITH RASP

We have shown that the RASP encryption is convexity preserv-
ing. This result is closely related to how a query can be transformed
and processed. A range query can be represented as a convex set
query. Thus, in the encrypted space there is a unique convex set
that is the answer to the query. However, there are challenges in (1)
efficiently processing it, and (2) making sure query processing does
not reveal significant information about the encryption keyand the
original data. One may already notice that the simple query trans-
formation method described in this section is vulnerable toattacks.
However, in this section, we will focus on the first challenge. It
will be revisited and significantly improved in security analysis in
Section 5.

In the encrypted space, a simple dimensional condition in the
original space is transformed to a general halfspace condition (as
Figure 4 shows). It would be straightforward to scan each auxiliary
vector with the transformed conditions and return the result. We
want to explore more efficient index-based processing methods in
this section. The normal processing strategies are based onmul-
tidimensional index trees, such as R-Tree [28], that handles axis-
aligned minimum bounding boxes (MBR). If we still depend on
multidimensional tree indexing to process the transformedqueries,
the processing algorithm should be slightly modified to handle ar-
bitrary convex areas, the boundaries of which are not necessarily
axis-aligned. We will start with the method of query transforma-
tion, briefly discuss the normal range query processing algorithms
using multidimensional indices, and then present the proposed so-
lution for processing the transformed queries.

4.1 Query Transformation
Since the auxiliary vectors are in the encrypted space, to query on

this space, range queries should also be appropriately transformed.
We have mentioned that the transformation method used in proving
Proposition 3 can be used for query transformation. In this section,
we discuss how to transform an original range query into the en-
crypted space in details.

First, let’s look at the general form of a range query condition.
Let Xi be an attribute in the database. A simple condition in a
range query involves only one attribute and is of the form “Xi

<op> ai”, whereai is a constant in the normalized domain ofXi

andop ∈ {<,>,=,≤,≥, 6=} is a comparison operator. For con-
venience we will only discuss how to processXi ≤ ai, while the
proposed method can be slightly changed for other conditions. Any
complicated range query can be transformed into the disjunction of
a set of conjunctions, i.e.,

⋃n

j=1(
⋂m

i=1 Ci,j), wherem,n are some
integers depending on the original query conditions andCi,j is a
simple condition aboutXi. Again, to simplify the presentation we
restrict our discussion to single conjunction condition∩m

i=1Ci. A
simple conditionXi ≤ ai is a halfspace condition. Following the
previous discussion,Xi ≤ ai is converted to the extended vector
representation first:uTz ≤ 0, whereu is ak+2 dimensional vec-
tor with ui = 1, uk+1 = −ai, anduj = 0 for j 6= i, k + 1, (for
Xi ≥ ai, ui = −1, uk+1 = ai), andz = (xT , 1, v)T . Then, let
y be the auxiliary vector, i.e.,y = Az. The original condition is
transformed to the form of Eq. 3 in the encrypted space.

As Proposition 4 shows, searching with the transformed queries
on the auxiliary vectors is equivalent to searching with theoriginal
queries and data. Note that this simple query transformation is vul-
nerable to attacks as shown in Section 5.2; we will eventually use
slightly different query transformation method. (In the Appendix,
we also give the details of the transformed query.) Next, we show
how to efficiently process these transformed queries.

4.2 A Two-Stage Query Processing Strategy
with Multidimensional Index Tree

With the transformed queries, the first important task is to pro-
cess queries efficiently. A commonly used method is to use tree
indices to improve the search performance. However, multidimen-
sional tree indices are normally used to process axis-aligned “bound-
ing boxes”; whereas, the transformed queries are in arbitrary con-
vex shape, not necessarily aligned to axes. In this section,we pro-
pose a two stage query processing strategy to handle such irregular
shape queries in the encrypted space. First, we briefly introduce the
query processing algorithm based on multidimensional index trees.
Then, we describe the two stage processing algorithm.

Multidimensional Index Tree. Most multidimensional indexing
algorithms are derived from R-tree like algorithms [19], where the
minimum bounding region (MBR) is the construction block forthe
multidimensional data. For 2D data, an MBR is a rectangle. For
higher dimensions, the concept of a MBR is extended to a hyper-
cube. Figure 3 shows the MBRs in the R-tree for a 2D dataset,
where each node is bounded by a node MBR.

a
b

d

c root

a b c d

Figure 3: R-tree index.

Original space Transformed space

Stage1:
Bounding
box

Figure 4: Illustration of the
two-stage processing algo-
rithm.

Range query processing with a multidimensional indexing tree
can be described as follows. The conjunction of a set of simple
range conditions can be represented as a query MBR. The goal is
to find the MBRs in the tree that are contained by or intersected
with the search MBR. If the query MBR contains a node MBR,
all points in the subtree should be included in the query result. If
the query MBR intersects a node MBR, further checking shouldbe
performed for the children nodes. If the query MBR intersects a
leaf MBR, each point included by the leaf node should be checked
and only those inside the query MBR are selected.

The Two-Stage Processing Algorithm. The transformed query
describes an irregular convex shape that cannot be directlypro-
cessed by multidimensional tree algorithms. New tree search al-
gorithms can be designed to use arbitrary polyhedron conditions,
i.e., the transformed query, directly for search. However,we use a
simpler two-stage solution that keeps the existing tree search algo-
rithms unchanged.

At the first stage, the proxy in the client side finds the MBR of
polyhedron (as a part of the submitted transformed query) and the
server uses the MBR to find the initial result set. We use the sim-
plevertex-based algorithmfor finding the MBR of the polyhedron.
The original query condition constructs a hyper-cube shape. With
the query transformation, the vertices of the hyper cube arealso
transformed to vertices of the polyhedron. Therefore, we can cal-



culate the MBR with only the transformed vertices. Figure 4 illus-
trates the relationship between the vertices and the MBR. There are
a maximum number of2k vertices for one conjunctive range query
condition onk dimensions, i.e., each dimension has its lower and
upper bounds. It is straightforward to construct these vertices based
on the dimensional bounds. In practice, the MBR of the polyhedron
needs to be calculated by the proxy server for security reason, and
then sent to the server together with the transformed queries.

At the second stage, the server uses the transformed halfspace
conditions3 to filter the initial result and find the final result. In
most cases, the initial result set will be reasonably small so that it
can be filtered in memory with linear scan. In the worst case, the
MBR of the polyhedron will possibly enclose the entire dataset and
the second stage is reduced to linear scan of the entire dataset.

Cost Analysis. Assume the query ranges are selected uniformly at
random. For small ranges the first stage average cost isO(logB N)
index block accesses plus a few of data block accesses [28], where
N is the number of records andB is the number of children an
index node has. Due to the randomness associated with the RASP
transformation, the data distribution, and the unpredictable query
ranges, the cost to get the initial result could vary, which will be
investigated in experiments. If the initial result hasn records, a lin-
ear scan at the 2nd stage with2k simple conditions will cost≤ 2kn
checks of the form in Eq. 3. In Section 6, we study the cost dis-
tribution between the two stages and experimentally demonstrate
that this two-stage processing is efficient and orders of magnitudes
faster than the linear scan approach.

5. ATTACK ANALYSIS
We categorize the possible attacks into two types: (1) Attacks

on auxiliary vectors; (2) Attacks based on range queries. There
has been some related work on attack analysis methods for simi-
lar encryption methods, e.g., geometric data perturbationfor data
mining [9], which can be migrated to analyze the first type of at-
tacks. However, attacks on range queries are entirely new for our
approach.

5.1 Attacks on Auxiliary Vectors
According to the three levels of knowledge the attacker may

have, we categorize the attacks into three classes: (1) Naive es-
timation; (2) Distributional Attacks; and (3) Known Input/Output
Attacks. Due to the random component in the RASP encryption,
some attacks are actually estimation attacks, i.e., the goal of the
attack is to estimate the original values. If the estimationresult is
sufficiently accurate, we say the encryption is broken.

5.1.1 Attack Description and Analysis
Naive Estimation. With the level 1 knowledge, the attacker ob-
serves only the encrypted data. The only attack is to blindlyguess
the matrixA. It has been discussed to find a matrixA to maximize
the difference between the encrypted data and the original data [9].
However, since there is no way to verify how accurate a random
guess is, this type of attack is ineffective, in general.

Distributional Attack. With the level 2 knowledge, the attacker
also knows column domains and distributions. This knowledge can
be possibly used to perform more effective attacks. In particular,
when the original data have independent columns and no more than
one column having Gaussian distribution, an attack called Indepen-

3The final form of the security-enhanced transformed query isrep-
resented with the matricesΘis that are described in Section 5.2.

dent Component Analysis (ICA) [23] can be applied to effectively
recover the original data from the perturbed data. Originally de-
veloped for signal processing, ICA is used to discover components
A (the mixing matrix) andX (the original signals) from the mixed
dataY = AX. Since ICA recovers columns in an arbitrary order,
it has to rely on the known distributional information to distinguish
the columns and order them correctly. Furthermore, the effective-
ness of ICA heavily depends on the independence of the columns
and the number of columns having non-Gaussian distributions . In
practice, since the independence condition and the Gaussian dis-
tribution condition are often not satisfied, the ICA attack can only
result in approximate estimation to the original data. However, the
previous study [9] shows that if the matrixA is not carefully se-
lected, the ICA attack can still result in serious damage.

Another distributional attack is to enumerate the matrixA and
then check the column distributions ofA−1Y to find the best match
between the known column distributions and the distributions of the
estimated columns. However, since there is no constraint onthe el-
ements ofA, with uniformly discretized domains, the number of
candidate matrices will be extremely large. Concretely, ifthe dis-
cretized domain hasd values, the total candidate matrices will be
d(k+2)2 , wherek is the number of dimensions. Even for extremely
low dimensionality, e.g., k=2, this attack could be computationally
intractable.

Known Input/Output Attack. With the level 3 knowledge, the at-
tacker knows a number of input/output (plaintext/ciphertext) record
pairs. Concretely, letPk×m be the knownm k-dimensional origi-
nal records(x1, . . . ,xm),m > k + 2, that includek + 2 linearly
independent records, andQk+2×m be the corresponding perturbed
k + 2-dimensional records(y1, . . . ,ym). The typical method is
to use the linear regression method to get an estimate of the key
and then recover the entire original data. In the following,we show
how to use the regression method to attack the encryption. Let A
decomposed into blocksA = (A1, A2, A3), whereA1, A2 andA3

have block sizes(k + 2) × k, (k + 2) × 1 and(k + 2) × 1, re-

spectively, and the extended data be





P
1

v



 where1 is the row

vector with ‘1’ andv is a row vector with random positive values,
corresponding to the two additional dimensions in RASP. Thus, the
encryption can be represented as

Q = (A1, A2, A3)





P
1

v



 = A1P + A21+A3v, (4)

whereA21 is a translation matrix that adds the vectorA2 to each
of the column vectors inA1X; A3v is a random noise matrix.
With sufficient number of known record pairs (m > k + 2), first,
the translation component can be canceled out; then, the regres-
sion method can be applied to estimateA1. With the estimate
Â1 of A1, A2 can be estimated as well. Therefore, for an en-
crypted datasetY , the estimate of the original dataX is X̂ =
(ÂT

1 Â1)
−1ÂT

1 (Y − Â21).

5.1.2 Countering Attacks on Auxiliary Data
Countering ICA-based Distributional Attack. Since the enumer-
ation based attack is computationally intractable, we focus on the
ICA-based attack. We propose two approaches to increase there-
silience to the attack. The first approach is to simulate the ICA
attack in sufficient rounds to find a statistically resilientA matrix
as the previous work does [9]. However, a more attack-resilient
approach is using the composition encryption scheme (CES) that



consists of two steps: transforming the original data with an order
preserving encryption schemeEo first; then followed by the basic
RASP encryption, which can be represented as follows.

E(X,K,Ko) = A





Eo(X,Ko)
1

v



 (5)

We use the OPE scheme by Agarwal et al. [1] that allows us to
change all column distributions to normal distributions. Thus, the
requirement of non-Gaussian distribution is not satisfied,which
renders ICA ineffective. Since the composition scheme is not or-
der preserving, the attacks on OPE schemes will not be applicable
either. However, can the two-stage query processing strategy still
be applied? The following proposition indicates that it canstill be
applied.

PROPOSITION 5. Order preserving encryption functions trans-
form a hyper-cubic query range to another hyper-cubic queryrange.

PROOF. Assume the original range query condition consists of
simple conditions likebi ≤ Xi ≤ ai for each dimension. Since the
order is preserved, each simple condition is transformed asfollows:
Eo(bi) ≤ Eo(Xi) ≤ Eo(ai), which means the transformed range
is still a hyper-cubic query range.

When processing a query, the proxy server needs to transformthe
ranges to OPE encrypted ranges first, and then apply the query
transformation method. We will show in the experiments how the
resilience to the ICA attack is improved with the composition scheme.

Countering Known Input/Output Attacks. As we have men-
tioned earlier, the random noise matrixA3v in Eq. 4 determines
how effective the linear regression estimation can be done.The
more intense (in terms of variance) the noise component is, the less
accurate the estimation can be. A randomly generated matrixA
does not allow us to control the noise intensity, however. Wepro-
pose to use the following method to generateA3 that satisfying a
specified noise intensity. (1) generate ak + 2 by β random ma-
trix Ψ according to the required noise distribution and intensity,
with sample sizeβ that is sufficiently large, or larger than the max-
imum number of known Input/Output records that an attacker may
have access to; (2) generateβ positive random valuesv; (3) apply
A3 = ΨvT /(vvT ) to getA3. The last column of the randomly
generatedA is then replaced withA3. Note here that having a
value of zero for say thei-th entry inA3 would mean that the noise
values are never added toi-th attribute. So the random generation
process is repeated until all elements ofA3 are not zero. Previ-
ous study shows that Principle Component Analysis (PCA) canbe
used to possibly filter out the noise component or reduce the ef-
fect of noise in some circumstances [22]. We will investigate the
relationship between the noise component and the accuracy of es-
timation, and study whether PCA can help improve the estimation
in experiments.

A more attack-resilient solution is using the previous discussed
composition encryption scheme. If the OPE scheme uses a non-
linear transformation, the composition of OPE and RASP willcre-
ate a nonlinear mapping from the original data to the encrypted
data. Therefore, the linear regression attack will not be effective
by simply using the known pairs of input and output records, if the
OPE key is unknown.

5.2 Attacks on Transformed Queries
As we have discussed, in query processing, the proxy server will

submit the MBR and the transformed query to the server. We re-
fer to the original query as theinput query, and the transformed

query that is submitted to the server as theoutputquery. With the
knowledge of a number of pairs of input/output queries, the follow-
ing attacks can be performed on the current query conditions, e.g.,
uTA−1y ≤ 0, to break the encryption.

5.2.1 Attack Description and Analysis
First, we will show that the row vectors ofA−1 can be probed

if the attacker has the level 3 knowledge on query conditions. Sec-
ond, we show a more serious attack that can reveal columns of data
if the attacker has the level 2 knowledge about dimension distribu-
tions.

A−1 Probing Attack. With the level 3 knowledge, the attacker
knows a pair of input query conditions on the same dimension,say
Xi ≤ ai andXi ≤ bi, and their output forms,uT

ai
A−1y ≤ 0

anduT
bi
A−1y ≤ 0, respectively. Then,uT

ai
A−1y − uT

ai
A−1y =

uT
ai−bi

A−1y, whereuT
ai−bi

= (0, . . . , ai − bi, 0), only the non-
zero(k + 1)-th element remains. Letrj be thej-th row of A−1.
The constant part of the condition represents(ai − bi)rk+1, thus
revealingrk+1. While the single condition likeuT

ai
A−1y ≤ 0 has

the constant partri + airk+1, with knownai andrk+1, ri can be
revealed. Repeating this process for all dimensions with known in-
put/output conditions, the attacker can recoverk + 1 rows of the
matrixA−1, which leaves very weak security.

Dimensional Selection Attack. With the level 2 knowledge, i.e.,
the column domains and the column distributions, the attacker can
perform adimensional selection attack. Assume the condition is
applied to some unknown dimensioni. Applying the query param-
etersuT

i A
−1 to each recordy in the server, the attacker can get

uT
i A

−1y = xi − ai, wherexi is the i-th dimension of the corre-
sponding original recordx. After getting all the values, the attacker
can build up a histogram to compare with the known column distri-
butions. It is thus easy to identify what dimension is queried. With
the knowledge of the column domain, the constantai can be easily
removed, which leads to complete breach of the entire columni.

In summary, the original query transformation method can be
exploited to construct very effective attacks. It needs to be carefully
redesigned to address these attacks.

5.2.2 Countering Query-based Attacks
The additional dimensionXk+2 is used to construct secure query

conditions. Instead of processing a half space conditionXi ≤ ai,
we use(Xi − ai)Xk+2 ≤ 0 instead. These two conditions are
equivalent because the additional dimensionXk+2 satisfiesXk+2 >
0. Using the extended vector formzT = (xT , 1, v), we have
Xi − ai = zTu andXk+2 = wT z, whereui = 1, uk+1 = −ai,
uj = 0, for j 6= i, k + 1; wk+2 = 1 andwj = 0, for j 6= k + 2.
With the transformationy = Az, we get the transformed quadratic
query condition

y
T (A−1)TuwTA−1

y ≤ 0. (6)

Let Θ = (A−1)TuwTA−1. In the two-stage processing strat-
egy, the bounding box of the transformed query area is calculated
in the proxy server as we discussed earlier. Then, this bound-
ing box and the parametersΘi for each conditioni, are submit-
ted to the server. Thus, assume each dimension is represented
with two half space conditions, the encrypted queryEQ is repre-
sented as {MBR,{Θ1, . . . ,Θ2k}}. The server will use the bound-
ing box to get the first-stage results and then use the conditions,
e.g.,yTΘiy ≤ 0, to filter out the results. We now show that this
query transformation is resilient to both query-based attacks.



Assume the attacker knows two pairs of input/output query con-
ditions, e.g., forXi ≤ ai andXi ≤ bi. We use the same method
used in theA−1 probing attack to find the difference of the two
conditions. LetΘa andΘb notate the parameters for these two
conditions, respectively. The simplified form for a single condi-
tion, e.g.,Θa, is (rTi − air

T
k+1)rk+2, whereri, rk+1, andrk+2

are the row vectors of matrixA−1. Thus, the result ofΘa −Θb is
(bi − ai)r

T
k+1rk+2. But knowingΘa, Θb, ai, bi does not help find

the unknown vectors− in fact there are an infinite number of solu-
tions becauserk+1 =

(Θa−Θb)rk+2

(bi−ai)||rk+2||
. Therefore, knowing pairs of

input/ouput queries does not help probingA−1.
This quadratic query transformation method counters the dimen-

sional selection attack as well. For any perturbed recordy, yTΘay

recovers(xi − ai)xk+2, wherexi andxk+2 are the dimensional
values of the corresponding original vectorx. Sincexk+2 is a ran-
domly generated positive value, knowingXi’s domain and distri-
bution does not help recoverxi. Therefore, dimensional selection
attack does not work either.

In the appendix, we put together all the algorithms after consid-
ering the attacks discussed in this section.

6. EXPERIMENTS
In this section, we present three sets of experimental results to in-

vestigate the following questions: (1) How costly are the RASP en-
cryption scheme and the composition scheme involving OPE scheme?
(2) How effective are the ICA attack and the known input/output at-
tack, if the composition scheme is not applied? (3) How efficient is
the two-phase query processing?

6.1 Setup
Two datasets are used in experiments: (1) a synthetic dataset that

draws samples from uniform distribution in the range [0, 1];and
(2) the Adult dataset from UCI machine learning database4. For
the adult dataset, we assign numeric values to the categorical val-
ues using a simple one-to-one mapping scheme. For each dataset,
we generate multiple versions with different numbers of records by
using sampling with replacement. We also change the dimensional-
ity of the datasets by randomly selecting a number of dimensions of
the data. All experiments were done in a quad-core AMD Opteron
server (2.5GHz CPU and 120GB memory).

6.2 Cost of Encryption
In this experiment, we study the cost of the components in the

composition scheme. We implement the OPE scheme [1] by map-
ping original column distributions to normal distributions. The
OPE algorithm partitions the target distribution into buckets, first.
Then, the sorted original values are proportionally partitioned ac-
cording to the target bucket distribution to create the buckets for the
original distribution. With the aligned original and target buckets,
an original value can be mapped to the target bucket and appro-
priately scaled. Therefore, the encryption cost mainly comes from
the bucket search procedure (proportional tologD, whereD is the
number of buckets). Both encryption schemes are implemented
with Matlab. Figure 5 shows the cost distribution for 20K records
at different number of dimensions of data for the two components
in the composite scheme. The dimensionality has less effecton the
cost of RASP than on that of OPE.

6.3 Resilience to Estimation Attacks
We have discussed the methods for countering the estimationat-

tacks, primarily the ICA attack and the known input/output attack.
4http://archive.ics.uci.edu/ml/

In this set of experiments, we explore the resilience of boththe
RASP-Only scheme and the composition scheme to the estima-
tion attacks. Although the composition scheme is more resilient
to attacks, it incurs the additional cost that might not be favored by
some applications. Therefore, it is worth looking at how resilient
the RASP-Only scheme is to the attacks.

Metric for Evaluating Estimation Attacks. The accuracy of esti-
mation attacks can be evaluated with the well-known mean square
error (MSE). Let the number of records ben and the value of
the i-th attribute in thej-th record bexi,j and the correspond-
ing estimated value bêxi,j . Model thei-th attribute with a ran-
dom variableXi and its estimate aŝXi. The estimation error can
be estimated with the root of mean square error (RMSE):mi =
√

1/n
∑n

j=1(xi,j − x̂i,j)2, i.e.,Xi = X̂i ±mi. 2mi can be used

to roughly represent the effective estimation range. Apparently,mi

has different meaning for different value range. For example,±10
means ineffective estimation for an attribute “age” (in therange
[0,100]), while very effective for “salary” (often> 10000). One
of the common methods is to normalize all attributes to approxi-
mately the same range. For large data, the assumption that each
attribute has approximately normal distribution would be reason-
able [25]. Therefore, standardization can be used to normalize all
attributes to normal distribution with mean zero and standard de-
viation one. For a standardized domain, four times of the standard
deviation (i.e.,4σ = 4) covers the majority of records (> 95%).
Then, we can use the ratepi = 2mi/(4σ) = mi/2 to represent the
relative effectiveness of the estimation attack. The larger themi,
the less effective the estimation is. To evaluate the resilience across
all attributes, we also define dataset-wise metrics, such asthe min-
imum security guaranteepmin = min{pi, 1 ≤ i ≤ k}, which is
used in our experiment.

Results. We simulate the ICA attack for randomly chosen matri-
cesA. The data used in the experiment is the 10-dimension Adult
data with 10K records. The x-axis in Figure 6 represents the se-
quence number of randomly chosen matrixA and the y-axis repre-
sents the minimum security guarantee among all dimensions.The
label “Best” means the most resilientA to the ICA attack; “Worst”
means theA shows the weakest resilience; “Average” is the pro-
gressive average resilience for the generatedA matrices. Figure 6
shows that the effectiveness of the ICA attack can vary with differ-
ent matricesA and we can find some ones that are more resilient
to the attack. In addition, if applied is the composition method that
uses the OPE scheme to change column distributions to Gaussian
distributions, the resilience of a randomly chosenA is significantly
increased.

We also simulate the known input/output attack with a number
of randomly selected input/output records pairs (10% of theentire
dataset). The original data is generated with the method mentioned
in Section 5.2.2 by generating the noise matrix with standard nor-
mal distributionN(0, 1). Due to the randomness, we repeat the
experiment 10 times and record the variance of the estimation. The
PCA based noise filtering technique [22] is also applied as a part
of the attack. LetY be the encrypted data. The PCA method finds
the eigenvalue decomposition ofY Y T . LetQ be the eigenvectors
corresponding to the largestp preserved eigenvalues (i.e., the prin-
cipal components). The noise filtering algorithm usesY QQT to
representY . Figure 7 shows the result for the known I/O attack
with the PCA noise filtering step. The x-axis represents the num-
ber of principal components preserved. Since the data dimension-
ality is 10, 10 principal components means no noise reduction is
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Figure 7: Known input/output attacks
on both Adult and Uniform data.

applied. For both datasets, the average estimation errors are higher
than 0.2. Also, the PCA noise filtering does not help much− when
the number of principle components is reduced (trying to remove
the noises), the estimation error does not reduce. This result shows
that with appropriately set noise component, the known I/O attack
is not effective either.

6.4 Performance of Two-stage Range Query
Processing

In this set of experiments, we study the performance aspectsof
polyhedron range query processing. We use the two-stage process-
ing strategy described in Section 4, and explore the additional cost
incurred by this processing strategy. We implement the two-stage
query processing based on an R*-tree implementation provided by
Dr. Hadjieleftheriou at AT&T Lab http://www2.research.att.com/ mar-
ioh/spatialindex/. The block size is 4KB and we allow each block
to contain only 20 entries to mimic a large database with manydisk
blocks. Samples from the three databases in different size (10,000
− 50,000 records, i.e., 500-2500 data blocks) are encrypted as the
auxiliary data and then indexed for query processing. Another set
of indices are also built on the original data for setting up the per-
formance baseline of query processing on non-encrypted data. We
will use the number of disk block accesses, including index blocks
and data blocks, to assess the performance to avoid the possible
variation caused by other parts of the computer system. In addition,
we also show the wall-clock time for some results for comparison.

Recall the two-stage processing strategy: (1) calculate the MBR
of the transformed query and use the MBR to search the indexing
tree; (2) filter the returned result with the transformed query. We
will study the performance of the first stage by comparing it to two
additional methods: (1) the original queries with the indexbuilt on
the original data, which is used to identify how much additional
cost is paid for querying the MBR of the transformed query; (2) the
linear scan approach, which is the worst case cost. Range queries
are generated randomly within the domain of the datasets, and then
transformed with the method described in the Section 4.1. Wealso
control the range of the queries to be [10%,20%,30%,40%,50%] of
the total range of the domain, to observe the effect of the scale of
the range to the performance of query processing.

Results.The first pair of figures (the left subfigures of Figure 8 and
9) shows the number of block accesses for 10,000 queries on differ-
ent sizes of data with different query processing methods. For clear
presentation, we uselog10(# of block accesses) as the y-axis. The
cost of linear scan is simply the number of blocks for storingthe

whole dataset. The data dimensionality is fixed to 5 and the query
range is set to 30% of the whole domain. Obviously, the first stage
with MBR for polyhedron has a cost much cheaper than the linear
scan method and only moderately higher than R*tree processing on
the original data. Interestingly, different distributions of data result
in slightly different patterns. The costs of R*tree on transformed
queries are very close to those of original queries for Adultdata,
while the gap is larger on uniform data. The costs over different
dimensions and different query ranges show similar patterns.

Linear Scan R*Tree-Orig Stage-1 Stage-2 rpq purity
Uniform 6.32 0.132 0.805 0.041 60 1.3%

Adult 5.42 0.091 0.20 0.017 24 2.2%

Table 1: Wall clock cost distribution and comparison.

We also studied the cost of the second stage. We use “purity”
to represent the rate (final result count)/(1st stage resultcount), and
records per query (RPQ) to represent the average number of records
per query for the first stage results. The quadratic filteringcondi-
tions are used in experiments. Table 1 compares the average wall-
clock time (milliseconds) per query for the two stages, the RPQ
values for stage 1, and the purity of the stage-1 result. The tests are
run with the setting of 10K queries, 20K records, 30% dimensional
query range and 5 dimensions. Since the 2nd stage is done in mem-
ory, its cost is much lower than the 1st-stage cost. Overall,the two
stage processing is much faster than linear scan and comparable to
the original R*Tree processing.

7. RELATED WORK
We review the two most related methods: OPE and crypto-index

first, and then give other related work.

OPE. As the name indicates, order preserving encryption (OPE)
[1] preserves the dimensional value order after encryption. It can
be described as a functiony = F (x),∀xi, xj , xi < (>,=)xj ⇔
yi < (>,=)yj . A well-known attack is based on attacker’s prior
knowledge of original distributions of attribute values. If the at-
tacker knows the original distributions and manages to identify the
mapping between the original attribute and its encrypted counter-
part, the following bucket-based attack can be performed tobreak
the encryption for the attribute. (1) Model the original distribu-
tion for the attribute with a histogram of a number of buckets; (2)
Calculate the percentage of each bucket to the entire distribution;
(3) Sort the encrypted values; (4) According the bucket’s percent-
ages, sequentially partition the sorted encrypted values to generate
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Figure 8: Performance comparison on Uniform data. Left: data size vs. cost of query; Middle: data dimensionality vs. cost of query;
Right: query range (percentage of the domain) vs. cost of query
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Figure 9: Performance comparison on Adult data. Left: data size vs. cost of query; Middle: data dimensionality vs. cost of query;
Right: query range (percentage of the domain) vs. cost of query

buckets; (4) Sequentially map the encrypted buckets to the original
buckets and get the estimate of the encrypted value. The precision
of estimation is determined by the width of the buckets - the nar-
rower the buckets are the higher the precision will be. Sincethe
number of buckets can be arbitrarily chosen, the bucket width can
be very small. It is also not difficult to get the mapping between the
original attribute and the encrypted attribute, if the attacker knows
a number of plain queries and their encrypted queries. In devel-
oping our schemes, we have carefully studied whether the known
query patterns will damage the proposed encryption scheme in our
framework.

Crypto-Index. Crypto-Index is also based on column-wise buck-
etization. It assigns a random ID to each bucket; the values in the
bucket are replaced with the bucket ID to generate the auxiliary data
for indexing. To utilize the index for query processing, a normal
range query condition has to be transformed to a set-based query
on the bucket IDs. For example,Xi < ai might be replaced with
X ′

i ∈ [ID1, ID2, ID3]. If the attacker manages to know the map-
ping between the input original query and the output bucket-based
query, the range that a bucket ID represents could be estimated. The
width of the bucket determines how precise the estimation could be
done. A bucket-diffusion scheme [21] was proposed to address this
problem, which, however, has to sacrifice the precision of query
results. Another drawback of this method is that the client,not the
server, has to filter out the query result. Low precision results raise
large burden on the network and the client system. Furthermore,
due to the randomized bucket IDs, the index built on bucket IDs is
not so efficient for processing range queries as the index on OPE
encrypted data is.

Other Related Work. Private information retrieval (PIR) [10,
24] tries to fully preserve the privacy of access pattern, while the

data may not be encrypted. PIR schemes are normally very costly.
Focusing on the efficiency side of PIR, Williams et al. [32] use a
pyramid hash index to implement efficient privacy preserving data-
block operations based on the idea of Oblivious RAM [16]. It is
different from our setting of high throughput range query process-
ing. Another line of research [5, 29] facilitates authorized users
to access only the portion of data in the authorized range with a
public key scheme. The underlying identity based encryption used
in these schemes does not produce indexable encrypted data.Also
the setting for which Shi et al. [29] propose the multidimensional
range query is different from ours. The untrusted service provider
in our setting is responsible for both indexing and query processing.
Secure keyword search on encrypted documents [30, 17, 14, 4,11]
scans each encrypted document in the database and finds the doc-
uments containing the keyword, which is more like point search
in database. The research on privacy preserving data mininghas
discussed multiplicative perturbation methods [7, 9, 27, 26, 18],
which are similar to the RASP encryption, but with more emphasis
on preserving the utility for data mining.

8. CONCLUSION AND FUTURE WORK
In this paper we propose the random space encryption approach

to efficient range queries over encrypted data and analyze the unique
attacks to this approach. Our approach uses a random space trans-
formation to generate indexable auxiliary data. The auxiliary data
is exported to the service provider, indexed and used for processing
range queries. We present an efficient server-side two-stage query
processing strategy. Experimental results show that this processing
strategy is highly efficient. In addition, we analyzed the attacks on
encrypted data and queries. Experiments are performed to show
the resilience of the encryption to estimation attacks. Note that this
attack analysis is just the first step to rigorous analysis ofsecurity.
We will continue to explore more attacks and formally study the se-



curity. As an important extension to our approach, we would like to
further investigate how database update operations, such as record
deletions, insertions, and updates, affect data utility and security.
The goal is to allow the data owner and authorized users update the
encrypted data without undermining the security.
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Appendix: the Attack-Resilient Algorithms
There are four key algorithms deployed at the proxy server and the
service provider, respectively− two at the proxy server: (1) Data
Encryption and Decryption; (2) Query Transformation and Encryp-
tion; and two procedures at the service provider: (3) Data Indexing;
(4) Query Processing. We will use the existing multidimensional
tree algorithms for Data Indexing, thus we skip the procedure (3).
For simplicity, we process the conditions likeXi ≤ ai orXi ≥ bi.
The algorithms can be slightly changed to handle other typesof
conditions.

In Algorithm 1, the key matrixA is generated with the resilience
to known input/output attack in mind. First,A is randomly gen-
erated with elements drawn from a real random number genera-
tor RA. Second, according to the desired noise distribution (i.e.,
N(0, σ2)) for enhancing the resilience to known input/output at-
tack, the algorithm described in Section 5.1 is used to find the last
column ofA (i.e., A3) andA3 is used to replace the last column
of the generatedA. The invertibility ofA is checked to make sure
decryption can be done. The data encryption function extends each
original data vectorx to the(k+2) dimensional vector with the ho-
mogeneous(k+1)-th dimension and the random positive(k+2)-th
dimension with the random number generatorRα. Then, it uses an
OPE schemeEo to transform the originalk dimensions, followed
by the RASP encryption with the key matrixA. Note that the proxy
server needs onlyA and the key for OPE in decryption.

Algorithm 1 Data encryption and decryption algorithms
1: Encrypt (X,Rα, RA,Ko, α, β, σ)
2: Input: X: k×n data records,Rα andRA

5: random real value genera-
tors for generating the(k+2)-nd dimension (i.e.,v) and the invertible
(k + 2) × (k + 2) matrixA with at least two non-zero values in each
row, Ko: key for OPEEo, α: the upper bound forv, β:sample size,
σ: noise intensity; Output: the matrixA

3: A← ∅;
4: while A is not invertibledo
5: generate the elements inA with RA;
6: v = (v1, . . . , vβ) ← generateβ random positive values in range

(0,α) with Rα;
7: A3 ← 0;
8: while A3 contains zero elementsdo
9: generate the(k + 2) × β noise matrixΨ useN(0, σ2);

10: A3 ← Ψv
T /(vvT );

11: end while
12: Replace the last column ofA with A3;
13: Check the invertibility of the matrixA;
14: end while
15: for each recordx in X do
16: v ← random positive value in range(0, α) with Rα

17: y← A(Eo(xT , Ko), 1, v)T ;
18: submity to the server;
19: end for
20: returnA;

1: Decrypt(Y,A,Ko)
2: Input: Y : k × n matrix, the encrypted records,A:the RASP key,Ko:

the OPE key; Output: the decrypted recordsX

3: X ← A−1Y ;
4: X′ ← the firstk dimensions ofX;
5: return OPE decryptionDo(X′)

In Algorithm 2, the query transformation and encryption func-
tion takes the2k simple conditions (assume two for each dimen-
sion) and the key matrixA as the input, and transforms each condi-
tion with the method described in Section 5.2. The MBR is cal-
culated by the following steps: (1) The vertices of the original
query range are simply calculated with the dimensional bounds;

(2) Transform the vertices with the composite encryption; (3) Find
the bounding box of the transformed vertices as the MBR.

Algorithm 2 Query transformation and encryption.
1: QueryEnc(Cond, A)
2: Input: Cond:2k simple conditions, 2 for each dimensions.A:the key;

3: for each conditionCi in Conddo
4: ui ← zeros(k + 2, 1);
5: if Ci is like Xj ≤ aj then
6: uij ← 1, ui,k+1 ← −aj ;
7: end if
8: if Ci is like Xj ≥ aj then
9: uij ← −1, ui,k+1 ← aj ;

10: end if
11: wi ← zeros(k + 2, 1);
12: wi,k+2 ← 1;
13: Θi ← (A−1)Tuw

TA−1;
14: end for
15: Use the vertex transformation method to find the MBR of the trans-

formed queries;
16: submit MBR and the filtering conditions{Θi} to the server;

In Algorithm 3, the two-stage query processing uses the MBR
to find the initial query result and then filters the result with the
transformed query conditionsyTΘiy ≤ 0, whereΘi is passed by
the client andy is the record in the initial query result.

Algorithm 3 Two-Stage Query Processing.
1: ProcessQuery(MBR, {Θi})
2: Input: MBR: MBR for the transformed query;{Θi}:filtering condi-

tions;

3: Y ← use the indexing tree to find answers for MBR;
4: Y ′ ← ∅;
5: for each recordyi in Y do
6: success← 1
7: for each conditionΘi do
8: if yTΘiy > 0 then
9: success← 0;

10: break;
11: end if
12: end for
13: if success = 1then
14: addyi into Y ′;
15: end if
16: end for
17: returnY ′ to the client;


