
Chapter 1

Towards Optimal Resource

Provisioning for Economical and

Green MapReduce Computing in the

Cloud

Keke Chen, Shumin Guo, James Powers, Fengguang Tian

Data Intensive Analysis and Computing Lab

Ohio Center of Excellence in Knowledge-enabled Computing (Kno.e.sis)

Department of Computer Science and Engineering

Wright State University, Dayton, OH 45435, USA

Email: {keke.chen, guo.18, powers.4, tian.9}@wright.edu

Running MapReduce programs in the cloud introduces the important problem: how to

optimize resource provisioning to minimize the financial charge or job finish time for a specific

job? An important step towards this ultimate goal is modeling the cost of MapReduce

program. In this chapter, we study the whole process of MapReduce processing and build

1

2CHAPTER 1. TOWARDS OPTIMAL RESOURCE PROVISIONING FOR ECONOMICAL ANDGREEN

up a cost function that explicitly models the relationship among the amount of input data,

the available system resources (Map and Reduce slots), and the complexity of the Reduce

program for the target MapReduce job. The model parameters can be learned from test

runs. Based on this cost model, we can solve a number of decision problems, such as the

optimal amount of resources that minimize the financial cost with a job finish deadline,

minimize the time under certain financial budget, or find the optimal tradeoffs between time

and financial cost. With appropriate modeling of energy consumption of the resources, the

optimization problems can be extended to address energy-efficient MapReduce computing.

Experimental results show that the proposed modeling approach performs well on a number

of tested MapReduce programs in both the in-house cluster and Amazon EC2.

1.1 Introduction

With the deployment of web applications, scientific computing, and sensor networks, a large

amount of data can be collected from users, applications, and the environment. For example,

user clickthrough data has been an important data source for improving web search relevance

[9] and for understanding online user behaviors [20]. Such datasets can be easily in terabyte

scale; they are also continuously produced. Thus, an urgent task is to efficiently analyze

these large datasets so that the important information in the data can be promptly captured

and understood. As a flexible and scalable parallel programming and processing model,

recently MapReduce [5] (and its open source implementation Hadoop) has been widely used

for processing and analyzing such large scale datasets [18, 8, 17, 11, 4, 15].

On the other hand, data analysts in most companies, research institutes, and government

agencies have no luxury to access large private Hadoop/MapReduce clouds. Therefore,

running Hadoop/MapReduce on top of a public cloud has become a realistic option for most

users. In view of this requirement, Amazon has developed Elastic MapReduce1 that runs on-

demand Hadoop/MapReduce clusters on top of Amazon EC2 nodes. There are also scripts2

for users to manually setup Hadoop/MapReduce on EC2 nodes.

1aws.amazon.com/elasticmapreduce/.
2wiki.apache.org/hadoop/AmazonEC2

1.1. INTRODUCTION 3

However, running a Hadoop cluster on top of the public cloud has different requirements

from running a private Hadoop cluster. First, for each job normally a dedicated Hadoop

cluster will be started on a number of virtual nodes to take advantage of the “pay-as-

you-use” economical cloud model. Because users’ data processing requests are normally

coming in intermittently, it is not economical to maintain a constant Hadoop cluster like

private Hadoop clusters do. Instead, on-demand clusters are more appropriate to most users.

Therefore, there is no multi-user or multi-job resource competition happening within such

a Hadoop cluster. Second, it is now the user’s responsibility to set the appropriate number

of virtual nodes for the Hadoop cluster. The optimal setting may differ from application to

application and depend on the amount of input data. An effective method is needed to help

the user make this decision.

The problem of optimizing resource provisioning for MapReduce programs involves two

intertwined factors: the cost of provisioning the virtual nodes and the time to finish the

job. Intuitively, with a larger amount of resources, the job can take shorter time to finish.

However, resources are provisioned at cost, which are also related to the amount of time for

using the resources. Thus, it is tricky to find the best setting that minimizes the financial

cost. With other constraints such as a deadline or a financial budget to finish the job, this

problem appears more complicated. More generally, energy consumption of a MapReduce

program can also be modeled in a similar way, which is critical to energy efficient cloud

computing [2].

We propose a method to help users make the decision of resource provisioning for running

MapReduce programs in public clouds. This method is based on the proposed specialized

MapReduce cost model that has a number of model parameters to be determined for a

specific application. The model parameters can be learned with test runs on a small scale of

virtual nodes and small test data. Based on the cost model and the estimated parameters,

the user can find the optimal setting for resources by solving certain optimization problems.

Our approach has several unique contributions.

• Different from existing work on the performance analysis of MapReduce program,

our approach focuses on the relationship among the critical variables: the number of

4CHAPTER 1. TOWARDS OPTIMAL RESOURCE PROVISIONING FOR ECONOMICAL ANDGREEN

Map/Reduce slots, the amount of input data, and the complexity of application-specific

components. The resulting cost model can be represented as a weighted linear combina-

tion of a set of non-linearly functions of these variables. Linear models provide robust

generalization power that allows one to determine the weights with the data collected

on small scale tests.

• Based on this cost model, we formulate the important decision problems as several opti-

mization problems. The resource requirement is mapped to the number of Map/Reduce

slots; the financial cost of provisioning resources is the product of the cost function and

the acquired Map/Reduce slots. With the explicit cost model, the resultant optimiza-

tion problems are easy to formulate and solve.

• We have conducted a set of experiments on both the local Hadoop cluster and Amazon

EC2 to validate the cost model. The experiments show that this cost model fits the

data collected from four tested MapReduce programs very well. The experiment on

model prediction also shows low error rates.

The entire paper is organized as follows. In Section 1.2, we introduce the MapReduce

Programming model and the normal setting for running Hadoop on the public cloud. In

Section 1.3, we analyze the execution of MapReduce program and propose the cost model.

In Section 1.4, we describe the statistical method to learn the model for a specific MapRe-

duce program. In Section 1.5, we formulate several problems on resource provisioning as

optimization problems based on the cost model. In Section 1.6, we present the experimental

results that validate the cost model and analyze the modeling errors. In Section 1.7, the

related work on MapReduce performance analysis is briefly discussed.

1.2 Preliminary

MapReduce programming for large-scale parallel data processing was recently developed by

Google [5] and has become popular for big-data processing. MapReduce is more than a

programming model - it also includes the system support for processing MapReduce jobs in

1.2. PRELIMINARY 5

parallel in a large-scale cluster. Apache Hadoop is the most popular open source implemen-

tation of the MapReduce framework. Thus, our discussions, in particular the experiments,

will be based on Apache Hadoop, although the analysis and modeling approach should also

fit other MapReduce implementations.

It is better to understand how MapReduce programming works with an example - the

famous WordCount program. WordCount counts the frequency of word in a large document

collection. Its Map program partitions the input lines into words and emits tuples 〈w, 1〉 for

aggregation, where ‘w’ represents a word and ‘1’ means the occurrence of the word. In the

Reduce program, the tuples with the same word are grouped together and their occurrences

are summed up to get the final result.

Algorithm 1 The WordCount MapReduce program
1: map(file)
2: for each line in the file do

3: for each word w in the line do

4: Emit(〈w,1〉)
5: end for

6: end for

1: reduce(w, v)
2: w: word, v: list of counts.
3: d← 0;
4: for each vi in v do

5: d← d + vi;
6: end for

7: Emit(〈w,d〉);

When deploying a Hadoop cluster in a public cloud, users need to request a number of

virtual machines from the cloud and then start them with a system image that has the

Hadoop package pre-installed. Because users’ data may reside in the cloud storage system,

e.g., Amazon S3, the Hadoop cluster needs to load the data from the storage system or to

be appropriately configured to directly use the storage system. The configuration files are

passed to the corresponding master and slave nodes, and the Hadoop cluster can then be

started. Here comes the difficult decision problem for the user: how many nodes would be

appropriate for a specific job, which will minimize the financial charge and guarantee the job

to be finished on time? We start exploring this problem with an analysis on the cost model

of MapReduce processing.

6CHAPTER 1. TOWARDS OPTIMAL RESOURCE PROVISIONING FOR ECONOMICAL ANDGREEN

1.3 Resource-Time Cost Model for MapReduce

In this section, we analyze the components in the whole MapReduce execution process and

derive a cost model in terms of the input data, the application-specific complexity, and

the available system resources. The goal of developing this cost model is to identify the

relationships (functions) between the resources and time complexity for a specific application.

We will see that with this cost model, solving the resource prediction and optimization

problems becomes easy.

Due to the complex multi-tenant run-time environment, and uncertain factors such as

network traffic and disk I/O performance, it is impossible to precisely model the cost of a

MapReduce program. Instead, we will introduce a statistical modeling approach to minimize

the possible modeling error. We will give the basic idea of modeling. Let the amount of

system resources be S, which can be the number of virtual machines of certain type in a

public cloud. Let the amount of input data be D, and the MapReduce setting be C, e.g.,

the number of Reduce tasks in our discussion. We want to find a cost function - the total

time cost of the MapReduce job T = T (S,D,C). There are a number of special features

with this modeling task.

1. Because Map/Reduce tasks have very different logic and time complexity for different

applications, this cost function should be different from application to application.

2. Ideally, this cost function should be learned from small-scale instances that have small

amounts of resources and input data, and still be robust for large-scale instances. It

can certainly provide better models for repetitively running jobs.

3. We expect to learn a closed-form function, which can be nicely incorporated in opti-

mization tasks. Some machine learning methods [6] result in special forms of function

such as decision trees, which are not easy to handle in optimization and will not serve

our purpose well.

Because of these special requirements, we aim to design a modeling method that gives a

closed form function with good generalization power. There are two general ways to do cost

1.3. RESOURCE-TIME COST MODEL FOR MAPREDUCE 7

modeling. First, we can carefully analyze all the components of the system in detail and

then try to precisely model the cost functions. As we have already known, this approach is

impractical because of the uncertain environment and the diversity of program logic. The

other approach is solely depending on learning algorithms to find the cost function. However,

due to the limited features (e.g., only four features as we will show), this approach tends to

overfit the cost model [6].

We take a combined approach instead. This method depends on the best-effort analysis

of the whole process of MapReduce processing framework, which will result in the following

cost function

T (S,D,C) =

k∑

i=1

βihi(S,D,C) + β0, (1.1)

where hi(S,D,C) are possibly some non-linear transformations of the input factors S, D,

and C, which are the time complexity of sequential processing components in the system,

and βi are the component weights, different from application to application. hi(S,D,C)

are obtained through the analysis of the MapReduce processing components, while βi will

be learned for a specific application based on sample runs of that application. With this

modeling idea in mind, in the following subsections, we will conduct the modeling analysis,

give a concrete formulation of the cost functions of Map task and Reduce task to find

hi(S,D,C), and finally integrate these components into the whole cost function.

1.3.1 Analyzing the Process of MapReduce

MapReduce processing is a mix of sequential and parallel processing. The Map phase is

executed before the Reduce phase3, as Figure 1.1 shows. However, in each phase many

Map or Reduce processes are executed in parallel. To clearly describe the MapReduce

execution, we would like to distinguish the concepts of Map/Reduce slot and Map/Reduce

process. Each Map (or Reduce) process is executed in a Map (or Reduce) slot. A slot is

a unit of computing resources allocated for the corresponding process. According to the

system capacity, a computing node can only accommodate a fixed number of slots so that

3The Copy operation in the Reduce phase overlaps the Map phase - when a Map’s result is ready, Copy may start immediately.

8CHAPTER 1. TOWARDS OPTIMAL RESOURCE PROVISIONING FOR ECONOMICAL ANDGREEN

Read � Map� Partition/sort� Combine

Copy � Sort � Reduce� WriteBack

HDFS

block
Local

disk

Pull data

HDFS

file

Map Task

Reduce Task

Figure 1.1: Components in Map and Reduce tasks and the sequence of execution.

the parallel processes can be run in the slots without serious competition. In Hadoop, the

Tasktracker running in each slave node has to set the number of Map slots and the number of

Reduce slots. A common setting for a multi-core computer is to have two Map and Reduce

slots per core. Without loss of generality, let’s assume there are m Map slots and r Reduce

slots in total over all slave nodes.

We define a Map/Reduce process as a Map/Reduce task running on a specific slot. By

default, in Hadoop each Map process handles one chunk of data (e.g., 64MB). Therefore, if

there are M chunks of data, M Map processes in total will be scheduled and assigned to the

m slots. In the ideal case, m Map processes can run in parallel in the m slots - we call it one

round of Map processes. If M > m, which is normal for large datasets, ⌈M/m⌉ Map rounds

are needed.

Different from the total number of Map processes, the number of Reduce processes, de-

noted as R, can be set by the user or determined by specific application requirements. The

Map outputs, i.e., the key-value pairs, are organized by the keys and then distributed evenly

by the keys to the R Reduce processes4. Similarly, if R > r, more than one round of Reduce

processes are scheduled. It is probably not very helpful to set a R greater than r because

4Thus, it is not meaningful to set R greater than the number of output keys of Map.

1.3. RESOURCE-TIME COST MODEL FOR MAPREDUCE 9

there is no restriction on the amount of data a Reduce process can handle. As a rule of

thumb, when the number of Map output keys is much large than r, R is often set close to

the number of all available Reduce slots for an in-house cluster, e.g., 95% of all Reduce slots

[22]. When it comes to public clouds, we will set R = r and choose an appropriate number

of Reduce slots, r, to find the best tradeoff between the time and the financial cost.

Map

Process

Map

Process

Map

Process

Map

Process

Map

Process

Map

Process

Map

Process

Map

Process

Map

Process

Reduce

Process

Reduce

Process

M/m rounds of Map Processes

m
 M

a
p

 S
lo

ts ������������

��	
��	

R
R

e
d

u
ce

 S
lo

ts

����

Figure 1.2: Illustration of parallel and sequential execution in the ideal situation.

Figure 1.2 illustrates the scheduling of Map and Reduce processes to the Map and Reduce

slots in the ideal situation. In practice, Map processes in the same round may not finish

exactly at the same time - some may finish earlier or later than others due to the system

configuration, the disk I/O, the network traffic, and the data distribution. But we can use

the total number of rounds to roughly estimate the total time spent in the Map phase. The

variance caused by all these factors will be considered in modeling. Intuitively, the more

available slots, the faster the whole MapReduce job can be finished. However, in the pay-as-

you-go setting, there is a tradeoff between the amount of resources and the amount of time

to finish the MapReduce job. Thus, we cannot simply increase the amount of resources.

In addition to the cost of Map and Reduce processes, the system has some additional

cost for managing and scheduling the M Map processes and the R Reduce processes, which

will also be considered in modeling. Based on this understanding, we will first analyze the

cost of each Map process and Reduce process, respectively, and then derive the overall cost

10CHAPTER 1. TOWARDS OPTIMAL RESOURCE PROVISIONING FOR ECONOMICAL AND GREEN

model.

1.3.2 Cost of Map Process

A Map process can be divided into a number of sequential components, including Read, Map,

Sort/Partition, and optionally Combine, as Figure 1.1 shows. We understand this process

in term of a data flow - data sequentially flow through each component and the cost of each

component depends on the amount of input data.

The first component is reading a block of data from the disk, which can be either local

or remote data block. Let’s assume the average cost is a function of the size of data block b:

i(b).

The second component is the user defined Map program, the time complexity of which is

determined by the input data size b, denoted as f(b). The Map program may output data

in size of om(b) that might vary depending on the specific data. The output will be a list of

〈key, value〉 pairs.

The result will be partitioned and sorted by the key into R shares for the R Reduce

processes. We denote the cost of partitioning and sorting with s(om(b), R). If the partition-

ing process uses a hash function to map the keys, the partitioning cost is independent of

R. However, the sorting phase is still affected by R. Let’s skip the Combiner component

temporarily and we will revisit the Combiner component later.

In summary, the overall cost of a Map process is the sum of the costs (without the

Combiner component):

Φm = i(b) + f(b) + s(om(b), R) + ǫm. (1.2)

i(b) and f(b) are only related to the size of the data block b and the complexity of the Map

program, independent of the parameters m and M . ǫm has a mean zero and some variance

σ2
m, which needs to be calibrated by experiments. We also observed that s(om(b), R) is

1.3. RESOURCE-TIME COST MODEL FOR MAPREDUCE 11

slightly linear to R. In practice, we can model it with parameters m,M, r, R as

Φm(m,M, r, R) = µ1 + µ2R + ǫm, (1.3)

where µ1, µ2, and the distribution of ǫm are constants and specific to each application.

1.3.3 Cost of Reduce Process

The Reduce process has the components: Copy, MergeSort, Reduce and WriteResult. These

components are also sequentially executed in the Reduce process.

Assume that the k keys of the Map result are equally distributed to the R Reduce pro-

cesses5. In the Copy component, each Reduce process pulls its shares, i.e., k/R keys and the

corresponding records, from the M Map processes’ outputs. Thus, the total amount of data

in each Reduce will be

bR = M · om(b) · k/R. (1.4)

Here, we simplify the analysis by assuming the amount of data is proportional to the number

of keys assigned to the reduce. In practice, many applications have skewed data distributions,

i.e., some keys may have more records while other may have less, which may affect the quality

of modeling.

The Copy cost is linear to bR, denoted as c(bR). However, most of the time is overlapped

with the Map phase. Normally only the last few rounds of Map processing may contribute

the overall time cost. We thus approximate the cost as c(bR) ∼ m · om(b) · k/R.

A Merge process follows to merge the M shares from the Map results. Because the records

are already sorted by the key, this process simply merges the shares by the key in multiple

rounds. Assume the buffer size is B, the Merge round i will generate M/Bi files, and its cost

is proportional to bR. The total number of rounds is ⌈logB M rceil. Thus, the total Merge

cost ms(bR) is proportional to bR⌈logB M⌉.

5For this reason, the user normally selects R to satisfy k ≥ R. If R > k, only k Reduces are actually used.

12CHAPTER 1. TOWARDS OPTIMAL RESOURCE PROVISIONING FOR ECONOMICAL AND GREEN

The Reduce program will process the data with some complexity g(bR) that depends on

the specific application. Assume the output data of the Reduce program has an amount

or(bR), which is often less than bR. Finally, the result is duplicated and written back to

multiple nodes, with the complexity linear to or(bR), denoted as wr(or(bR)).

In summary, the cost of the Reduce process is the sum of the component costs,

Φr = c(bR) +ms(bR) + g(bR) + wr(or(bR)) + ǫr, (1.5)

Both the Copy and the WriteResult costs may vary because of the varying network I/O

performance, which are modeled with the random variable ǫr. Similar to ǫm for the Map

phase, ǫr has a mean zero and some variance σ2
r . These variances should be captured in

modeling.

If we model Φr with m,M, r, R, and keep the relevant components for each phase, we

have

Φr(m,M, r, R) = λ1(m/R) + λ2(M logM/R) + g(M/R) + λ3(M/R) + ǫr, (1.6)

where λi and the distribution of ǫr are application-specific constants.

1.3.4 Putting All Together

According to the parallel execution model we described in Figure 1.2, the overall time com-

plexity T depends on the number of Map rounds and Reduce rounds. The cost of managing

and scheduling the Map and Reduce processes Θ(M,R) = ξ1M + ξ2R is linear to M and R,

as stated in the documentation [22]. By assuming all the processes in each Map (or Reduce)

round finish around the same time, we can represent the overall cost as

T = ⌈
M

m
⌉Φm + ⌈

R

r
⌉Φr +Θ(M,R). (1.7)

1.3. RESOURCE-TIME COST MODEL FOR MAPREDUCE 13

We are more interested in the relationship among the total time T , the input data size M×b,

the user defined number of Reduce processes R, and the number of Map and Reduce slots,

m and r.

This general representation can be slightly simplified with a number of settings. As we

have discussed, it is safe to assume R = r, as running Reduces in multiple rounds might be

unnecessary. Thus, ⌈R
r
⌉Φr = Φr. To make it more convenient to manipulate the equation,

we also remove ⌈⌉ from ⌈M/m⌉ by assuming M ≥ m and M/m is an integer. After plugging

in the equations 1.3 and 1.6 and keeping only the variables M , R, and m in the cost model,

we get the detailed model

T1(M,m,R) =

β0 + β1
M

m
+ β2

MR

m
+ β3

m

R

+β4
M logM

R
+ β5M/R + β6M + β7R + β8g(

M

R
) + ǫ, (1.8)

where βi are the positive constants specific to each application. Note that T1(M,m,R) is not

linear to its variables, but it is linear to the transformed components: M/m, MR/m, m/R,

M logM/R, M/R, M , R, and g(M/R). The parameter βi defines the contribution of each

components in the model. β0 represents some constant cost invariant to the parameters. βi

are the weights of each components derived in the component-wise cost analysis. Finally, ǫ

represents the overall noise. We leave the discussion on the item g(M/R) later.

With Combiner. In the Map process, the Combiner program is used to aggregate the

results by the key. If there are k keys in the Map output, the Combiner program reduces

the Map result to k records. The cost of Combiner is only subject to the output of the

Map program. Thus, it can be incorporated into the parameter β1. However, the Combiner

function reduces the output data of the Map process and thus affects the cost of the Reduce

phase. With the Combiner, the amount of data that a Reduce process needs to pull from

the Map is changed to

bR = Mk/R. (1.9)

Since the item M/R is still there, the cost model (Equation 1.8) applies without any change.

14CHAPTER 1. TOWARDS OPTIMAL RESOURCE PROVISIONING FOR ECONOMICAL AND GREEN

Function g(). The complexity of Reduce program has to be estimated with the specific

application. There are some special cases that the g() item can be removed from Equation

1.8. If g() is linear to the size of the input data, then its contribution can be merged to the

factor β4, because g(M/R) ∼ M/R. For other cases that cannot be merged, a new item

should be created and in the cost model. In the linear case, which is common as we have

observed, the cost model can be further simplified to

T2(M,m,R) =

β0 + β1
M

m
+ β2

MR

m
+ β3

m

R

+β4
M logM

R
+ β5M/R + β6M + β7R + ǫ, (1.10)

1.4 Learning the Model

With the formulation of the cost function in terms of input variables M , m, and R, we need

to learn the parameters βi. Note that βi should be different from application to application.

We design a learning procedure as follows.

First, for a specific MapReduce program, we randomly choose the variables M , m, and

R from certain ranges. For example, m and R (i.e., r) are chosen within 50; M is chosen so

that at least two rounds of Map processes are available for testing. Second, we collect the

time cost of the test run of the MapReduce job for each setting of (M , m, R), which forms

the training dataset. Third, regression modeling [14] is applied to learn the model from the

training data with the transformed variables

x1 = M/m, x2 = MR/m, x3 = m/R, x4 = (M logM)/R, x5 = M/R, x6 = M,x7 = R.

(1.11)

Because βi has practical meaning, i.e., the weights of the components in the total cost,

we have βi ≥ 0, i = 0 . . . r, which requires non-negative linear regression [14] to solve the

learning problem. The cross-validation method [6] is then used to validate the performance

of the learned model. We will show more details in experiments.

1.5. OPTIMIZATION OF RESOURCE PROVISIONING 15

1.5 Optimization of Resource Provisioning

With the cost model we are now ready to find the optimal settings for different decision

problems. We try to find the best resource allocation for three typical situations: (1) with a

certain limited amount of financial budget; (2) with a time constraint; (3) and the optimal

tradeoff curve without any constraint. In the following, we formulate these problems as

optimization problems based on the cost model.

In all the scenarios we consider, we assume the model parameters βi have been learned

with sample runs in small scale settings. For the simplicity of presentation, we assume the

simplified model T2 (Eq. 1.10) is applied. Cost models with other Reduce complexity do not

change the optimization algorithm. Since the input data is fixed for a specific MapReduce

job, M is a constant. We also consider all general MapReduce system configurations have

been optimized via other methods [1, 8, 7] and fixed for both small and large scale settings.

With this setup, the time cost function becomes

T3(m,R) = α0 +
α1

m
+

α2R

m
+

α3m

R
+

α4

R
+ α5R (1.12)

where

α0 = β0 + β6M,

α1 = β1M,

α2 = β2M,

α3 = β3,

α4 = β4M logM + β5M,

α5 = β7.

In the virtual machine (VM) based cloud infrastructure (e.g., Amazon EC2), the cost

of cloud resources is calculated based on the number of VM instances used in time units

(typically in hours). Let’s consider the same type of VM instances are used in the deployment.

According to the capacity of a virtual machine (CPU cores, memory, disk and network

16CHAPTER 1. TOWARDS OPTIMAL RESOURCE PROVISIONING FOR ECONOMICAL AND GREEN

bandwidth), a virtual node can only have a fixed number of Map/Reduce slots. Let’s denote

the number of slots per node as γ, which are also fixed for learning and applying the model.

Thus, the total number of slots m + r required by a on-demand Hadoop cluster can be

roughly transformed to the number of VMs, v, as

v = (m+ r)/γ. (1.13)

If the price of renting one VM instance for an hour is u, the total financial cost is determined

by the result uvT3(m,R). Since we usually set R to r, it follows that the total financial cost

for renting the Hadoop cluster is

uvT3(m,R) = u(m+R)T3(m,R)/γ. (1.14)

Now we are ready to formulate the optimization problems.

• Given a financial budget φ, the problem of finding the best resource allocation to min-

imize the job time can be formulated as

minimize T3(m,R) (1.15)

subject to u(m+R)T3(m,R)/γ ≤ φ,

m > 0, and R > 0.

• If the constraint is about the deadline τ for finishing the job, the problem of minimizing

the financial cost can be formulated as

minimize u(m+R)T3(m,R)/γ (1.16)

subject to T3(m,R) ≤ τ,m > 0, and R > 0.

• The above optimization problem can also be slightly changed to describe the problem

that the user simply wants to find the most economical solution for the job without the

deadline, i.e., the constraint T3(m,R) ≤ τ is removed.

1.6. EXPERIMENTS 17

Note that the T3 model parameters might be specific for a particular type of VM instance

that determines the parameters u and γ. Therefore, by testing different types of VM instance

and applying this optimization repeatedly on each instance type, we can also find which

instance type is the best.

These optimization problems do not involve complicated parameters except for the T3

function. Once we learn the concrete setting of the T3 model parameters, these optimization

problems can be nicely solved since they are all in the category of well-studied optimization

problems. There are plenty of papers and books discussing how to solve these optimization

problems. In particular, the search space of m and R is quite limited, for many medium-

scale MapReduce jobs, they are normally integers less than 10,000. In this case, a brute-force

search over the entire space to find the optimal result will not cost much time. Therefore,

we will skip the details of solving these problems.

1.6 Experiments

As we have shown, as long as the cost model is accurate, the optimization problems are easy

to solve. Therefore, our focus of experiments will be validating the formulated cost model.

We first describe the setup of the experiments, including the experimental environment and

the datasets. Four programs are presented: WordCount, TeraSort, PageRank and Join,

which are used in evaluating the cost model. Finally, a restrict evaluation on both the in-

house cluster and Amazon Cloud will be conducted to show the model goodness of fit and

the prediction accuracy.

1.6.1 Experimental Setup

The experiments are conducted in our in-house 16-node Hadoop cluster and Amazon EC2.

We describe the setup of the environments and the datasets used for experiments as follows.

In-house Hardware and Hadoop Configuration. Each node in the in-house cluster

18CHAPTER 1. TOWARDS OPTIMAL RESOURCE PROVISIONING FOR ECONOMICAL AND GREEN

has four quad-core 2.3Mhz AMD Opteron 2376, 16GB memory, and two 500GB hard drives,

connected to other nodes with a gigabit switch. Hadoop 1.0.3 is installed in the cluster. One

node serves as the master node and 15 nodes as the slave nodes. The single master node

runs the JobTracker and the NameNode, while each slave node runs both the TaskTracker

and the DataNode. Each slave node is configured with eight Map slots and six Reduce slots

(about one process per core). Each Map/Reduce process uses 400MB memory. The data

block size is set to 64 MB. We use the Hadoop fair scheduler6 to control the total number

of Map/Reduce slots available for different testing jobs.

Amazon EC2 Configuration. We also used the on-demand clusters provisioned

from Amazon EC2 for experiments. Only the small instances (1EC2 compute unit, 1.7GB

memory, and 160GB hard drive) are used to setup the on-demand clouds. For the simplicity

of configuration, one Map slot and one Reduce slot share one instance. Therefore, a cluster

that needs m Map slots and r Reduce slots will need max{m, r}+1 small instances in total,

with the additional instance as the master node. The existing script7 in the Hadoop package

is used to automatically setup the required Hadoop cluster (with proper node configurations)

in EC2.

Datasets. We use a number of generators to generate three types of testing datasets

for the testing programs. (1) We revise the RandomWriter tool in the Hadoop package to

generate random float numbers. This type of data is used by the Sort program. (2) We

also revise the RandomTextWriter tool to generate text data based on a list of 1000 words

randomly sampled from the system dictionary /usr/share/dict/words. This type of data is

used by the WordCount program and the TableJoin program. (3) The third dataset is a

synthetic random graph dataset, which is generated for the PageRank program. Each line

of the dataset starts with a node ID and its initial PageRank, followed by a list of node IDs

representing the node’s outlinks. Both the node ID and the outlinks are randomly generated

integers.

Each type of data consists of 150 1GB files. For a specific testing task with the predefined

size of input data (the parameter M), we will randomly choose the required number of files

6http://hadoop.apache.org/docs/r1.1.1/fair scheduler.html
7wiki.apache.org/hadoop/AmazonEC2

1.6. EXPERIMENTS 19

from the pool to simulate input data.

Modeling Tool. As we mentioned, we will need a regression modeling method that

works on the constraints βi ≥ 0. In experiments, we use the matlab function lsqnonneg8 to

learn the model, which squarely fits our goal.

1.6.2 Testing Programs.

In this section, we describe the MapReduce programs used in testing and give the complexity

of each one’s Reduce program, i.e., the g() function. If g() is in one of the two special cases,

the simplified cost model Eq. 1.10 is used.

WordCount is a sample MapReduce program in the Hadoop package. The Map program

splits the input text into words and the result is locally aggregated by word with a Combiner;

the Reduce program sums up the local aggregation results 〈word, count〉 by words and output

the final word counts. Since the number of words is limited, the amount of output data to

the Reduce stage and the cost of Reduce stage are small, compared to the data and the

processing cost for the Map stage. The complexity of the Reduce program, g(), is linear to

Reduce’s input data.

Sort is also a sample MapReduce program in the Hadoop package. It depends on a

custom partitioner that uses a sorted list of N − 1 sampled keys to define the key range

for each Reduce process. All keys such that sample[i − 1] <= key < sample[i] are sent to

Reduce i. Then, the inherent MergeSort in the Shuffle stage sorts the input data to the

Reduce. This guarantees that the output of Reduce i are all less than the output of Reduce

i+1. Both the Map program and the Reduce program do nothing but simply pass the input

to the output. Therefore, the function g() is also linear to the size of the input of Reduce.

PageRank is a MapReduce implementation of the well-known Google’s PageRank algo-

rithm [3]. PageRank can be implemented with an iterative algorithm and applied to a graph

dataset. Assume each node pi in the graph has a PageRank PR(pi). M(pi) represents the

8http://www.mathworks.com/help/techdoc/ref/lsqnonneg.html

20CHAPTER 1. TOWARDS OPTIMAL RESOURCE PROVISIONING FOR ECONOMICAL AND GREEN

set of neighboring nodes of pi that have outlinks pointing to pi. L(pj) is the total number of

outlinks the node pj has. d is the damping factor and N is the total number of nodes. The

following equation calculates the PageRank for each node pi.

PR(pi) = (1− d)/N + d
∑

pj∈M(pi)

PR(pj)

L(pj)
(1.17)

PageRank values are updated in multiple rounds until they converge. In one round of

PageRank MapReduce program, all nodes’ PageRank values are updated in parallel based

on the above equation. Concretely, the Map program distributes a share of each node’s

PageRank, i.e., PR(pj)/L(pj), to all its outlink neighbors. The Reduce program collects the

shares from its neighbors and applies the equation to update the PageRank. The complexity

function g() is also linear to the size of the input of Reduce.

Join is a MapReduce program that joins a large file with a small file based on a designated

key attribute, which mimics the Join operation in relational database. The large files are

the text files randomly generated with RandomTextWriter. The small file consists of 50

randomly generated lines using the same method for generating the large text dataset. The

first word of each line in both types of file serves as the join key. The Map program emits the

lines of the input large and small files. Each line of the small file is labeled so that they can

be distinguished from the Map output. In the Reduce, the lines are checked to find those

with matched keys. If the lines from both files are found matched, a Cartesian product is

applied between the two sets of lines with the same key to generate the output. Depending

on the key distribution, the size of output data may vary. In the Reduce program, assume

there is a λ lines are from the large file and µ lines from the small file. The result of Cartesian

product is λµ lines. Since µ ≤ 50 very small, the complexity function g() is approximately

linear to the input λ+ µ lines.

1.6.3 Model Analysis

We run a set of experiments to estimate the model parameters βi for the four programs.

We randomly select the values for the three parameters M , m, and R. The number of data

1.6. EXPERIMENTS 21

chunks M is calculated by the number of selected 1GB files (one file has 1024/64 = 16

blocks). For the in-house cluster, because all available Map slots will be used in executing

the MapReduce job, we control the number of Map slots m by setting the maximum number

of Map slots in the fair scheduler. R is randomly set to a number smaller than the total

number of Reduce Slots in the system. For on-demand EC2 clusters, it is straightforward to

allocate m nodes as the Map slots and R nodes for the Reduce slots.

For each tested program, we generate tens of random settings of (M,m,R). M is randomly

selected from the integers [1 . . . 150]× 16, i.e., the number of 1GB files × 16 blocks/file. R

is randomly selected from the integers [1 . . . 50]. Since changing m will need to update the

scheduler setting, we limit the choices of m to 30,60,90,and 120. For each setting, we record

the time (seconds) used to finish the program. The examples are ordered by the time cost

for further analysis.

Regression Analysis. With the transformed variables (Eq. 1.11), we can conduct a

linear regression on the transformed cost model

T (x1, x2, x3, x4, x5, x6, x7) = β0 +
7∑

i=1

βixi. (1.18)

Table 1.1 shows the result of regression analysis with the constraints βi ≥ 0 for programs

running in the in-house cluster. R2 is a measure for evaluating the goodness of fit in regression

modeling. R2 = 1 means a perfect fit, while R2 > 90% indicates a very good fit. Note that

the matlab function lsqnonneg also demotes the insignificant βi and sets them to 0.

Table 1.1 shows most models have very high R2 values, except for TableJoin on AWS. The

reason of lower-quality models might be caused by either the dynamic run-time environment

or the special characteristics of the program (or data) that the model does not capture.

However, the TableJoin model in the local cluster shows good accuracy, which may imply

the run-time environment is the main reason. The cause of the problem will be further

studied in our future work.

Prediction Accuracy. We also conduct a careful analysis on the prediction accuracy of

the models. The leave-one-out [6] cross validation is used to identify the average prediction

22CHAPTER 1. TOWARDS OPTIMAL RESOURCE PROVISIONING FOR ECONOMICAL AND GREEN

WordCount Sort PageRank TableJoin
Local AWS Local AWS Local AWS Local AWS

β0 51.82 0 20.55 0 25.89 37.73 47.53 3.61
β1 28.32 54.30 0.72 21.74 12.24 10.37 12.27 20.07
β2 0.01 0 0 0 0 0.18 0 0
β3 9.24 0 0 0 0 0 0 14.75
β4 0 0 4.09 3.58 6.58 0 1.60 3.01
β5 0 0 0 0 0 26.79 0 0
β6 0.10 0 0.59 0.05 0.51 0 0.19 0
β7 0.38 0 0 0 0 0 0 0
R2 0.9751 0.9524 0.9692 0.9253 0.9847 0.9733 0.9647 0.8432

Table 1.1: Results of regression analysis for the in-house cluster and AWS clusters R2 values
higher than 0.90 indicate good fit of the proposed model.

accuracy and also the outliers that have low accuracy. Concretely the leave-one-out cross

validation runs in n rounds if there are n training samples. In each round, one of the n

samples is used for testing, while the other n− 1 samples for training.

Figure 1.3 and 1.4 show the comparison between the actual running time and the predicted

running time for each sample case. The x-axis represents the actual running time, and the

y-axis the predicted time. In ideal cases, all the points will be distributed on the line y = x,

which is shown as the solid line. These figures show that the points are very close to the

ideal line, indicating excellent prediction accuracy.

We define the average accuracy as the average relative errors (ARE) over the n rounds of

testing in the cross validation. Let Ci be the real cost and Ĉi be the estimated cost by the

trained model in the round i. We calculate ARE with the following equation.

ARE =
1

n

n∑

i=1

|Ci − Ĉi|

Ci

(1.19)

Intuitively, this represents the percentage of prediction error in terms of the actual execution

time. Table 1.2 shows the AREs in leave-one-out cross validation. The result confirms most

models are robust and perform well. However, certain models such as PageRank in the local

cluster perform less effectively than others. A further detailed study will be performed to

understand the factors affecting the modeling.

1.7. RELATED WORK 23

�

�

��

��

 �

 �

 �

 �

 �

 ��

 ��

�
�
�
�
��
��
�
�	

�
�
�
�
��

��
��

�

��������	
�����
����
���
��

���������

�

�

��

��

�

 �

 �

 ��

 �

�
�
�
�
��
��
�
�	

�
�
�
�
��

��
��

�

��������	
�����
����
���
��

	���

�

�

��

 �

 �

 �

 �

 �

�
�
�
�
��
��
�
�	

�
�
�
�
��

��
��

�

��������	
�����
����
���
��

��
�����

�

�

��

��

�

��

 �

 �

 ��

 �

 ��

�
�
�
�
��
��
�
�	

�
�
�
�
��

��
��

�

��������	
�����
����
���
��

��������

Figure 1.3: Model accuracy in local cluster.

WordCount Sort PageRank TableJoin
Local 5.49% 15.23% 12.18% 13.57%
AWS 6.46% 15.61% 7.92% 14.62%

Table 1.2: Average relative error rates of the leave-one-out cross validation and of the testing
result on training data for the four programs.

1.7 Related Work

The recent research on MapReduce has been focused on understanding and improving the

performance of MapReduce processing in a dedicated private Hadoop cluster. The con-

figuration parameters of Hadoop cluster are investigated in [8, 1, 7] to find the optimal

configuration for different types of job. In [21], the authors simulate the steps in MapReduce

processing and explore the effect of network topology, data layout, and the application I/O

characteristics to the performance. Job scheduling algorithms in the multi-user multi-job

environment are also studied in [23, 19, 24]. These studies have different goals from our

work, but an optimal configuration of Hadoop will reduce the amount of required resources

and time for jobs running in the public cloud as well. A theoretical study on the MapRe-

duce programming model [12] characterizes the features of mixed sequential and parallel

24CHAPTER 1. TOWARDS OPTIMAL RESOURCE PROVISIONING FOR ECONOMICAL AND GREEN

�

���

���

����

����

����

� ��� ���� ���� ����

�
�
�
�
��
��
�
�	

�
�
�
�
��

��
��

�

��������	
����
����
���
��

���������

�

����

����

����

����

� ���� ���� ���� ����

�
�
�
�
��
��
�
�	

�
�
�
�
��

��
��

�

��������	
����
����
���
��

	���

�

����

����

����

����

����

����

����

� ���� ���� ���� ����

�
�
�
�
��
��
�
�	

�
�
�
�
��

��
��

�

��������	
����
����
���
��

��
����

�

���

���

����

����

����

� ��� ���� ���� ����

�
�
�
�
��
��
�
�	

�
�
�
�
��

��
��

�

��������	
����
����
���
��

����
����

Figure 1.4: Model accuracy in Amazon EC2.

processing in MapReduce, which justifies our analysis in Section 1.3.

MapReduce performance prediction has been another important topic. Kambatla et al.

[10] studied the effect of the setting of Map and Reduce slots to the performance and observed

different MapReduce programs may have different CPU and I/O patterns. A fingerprint

based method is used to predict the performance of a new MapReduce program based on

the studied programs. Historical execution traces of MapReduce programs are also used for

program profiling and performance prediction in [13]. For long MapReduce jobs, accurate

progress indication is important, which is also studied in [16]. A strategy used by [10, 13]

and shared by our approach is to use test runs on small scale settings to characterize the

behaviors of large scale settings. However, these approaches do not study an explicit cost

function that can be used in optimization problems.

1.8. CONCLUSION 25

1.8 Conclusion

Running MapReduce programs in the public cloud raises an important problem: how to

optimize resource provisioning to minimize the financial cost for a specific job? To answer

this question, we believe a fundamental problem is to understand the relationship between the

amount of resources and the job characteristics (e.g., input data and processing algorithm).

In this paper, we study the components in MapReduce processing and build a cost function

that explicitly models the relationship between the amount of data, the available system

resources (Map and Reduce slots), and the complexity of the Reduce program for the target

MapReduce program. The model parameters can be learned from test runs. Based on

this cost model, we can solve a number of decision problems, such as the optimal amount of

resources that can minimize the financial cost with the constraints of financial budget or time

deadline. We have also conducted a set of experiments on both a in-house Hadoop cluster

and on-demand Hadoop clusters in Amazon EC2 to validate the model. The result shows

that this cost model fits well on four tested programs. Note this modeling and optimization

framework also aligns with the goal of energy efficient computing by reducing the unnecessary

possession and use of cloud resources. If we can model the energy consumption profiles of the

resources, we can also precisely optimize the overall energy consumption with the proposed

framework.

Some future studies include (1) understand the model prediction errors to improve the

modeling process, which might include sample selection and model adjustment, (2) conduct

more experiments on different MapReduce programs and different types of EC2 instances,

and (3) extend the study to energy efficient MapReduce computing.

Acknowledgment

This project is partly supported by the Ohio Board of Regents and Amazon Web Services.

26CHAPTER 1. TOWARDS OPTIMAL RESOURCE PROVISIONING FOR ECONOMICAL AND GREEN

References

[1] Shivnath Babu. Towards automatic optimization of mapreduce programs. In Proceedings
of the 1st ACM symposium on Cloud computing, pages 137–142, New York, NY, USA,
2010. ACM.

[2] Jayant Baliga, Robert W. A. Ayre, Kerry Hinton, and Rodney S. Tucker. Green Cloud
Computing: Balancing Energy in Processing, Storage and Transport. Proceedings of
the IEEE, 99(1):149–167, jan 2011.

[3] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search
engine. In International Conference on World Wide Web, 1998.

[4] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google news
personalization: scalable online collaborative filtering. In International Conference on
World Wide Web, pages 271–280, New York, NY, USA, 2007. ACM.

[5] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. In OSDI, pages 137–150, 2004.

[6] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer-Verlag, 2001.

[7] Herodotos Herodotou and Shivnath Babu. Profiling, what-if analysis, and cost-based
optimization of mapreduce programs. PVLDB, 4(11):1111–1122, 2011.

[8] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. The performance of mapreduce: An
in-depth study. In Proceedings of Very Large Databases Conference (VLDB), 2010.

[9] Thorsten Joachims, Laura Granka, Bing Pan, and Geri Gay. Accurately interpreting
clickthrough data as implicit feedback. In Proceedings of ACM SIGIR Conference, 2005.

[10] Karthik Kambatla, Abhinav Pathak, and Himabindu Pucha. Towards optimizing
hadoop provisioning in the cloud. In USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud09), 2009.

[11] U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. Pegasus: Mining peta-
scale graphs. Knowledge and Information Systems (KAIS), 2010.

[12] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
mapreduce. In Symposium on Discrete Algorithms (SODA) (2010), 2010.

[13] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. An analysis of traces
from a production mapreduce cluster. In IEEE/ACM International Conference on Clus-
ter Cloud and Grid Computing, pages 94–103, 2010.

[14] Charles L Lawson and Richard J Hanson. Solving Least Squares Problems. Society for
Industrial Mathematics, 1987.

[15] Jimmy Lin and Chris Dyer. Data-intensive text processing with MapReduce. Morgan
and Claypool Publishers, 2010.

[16] Kristi Morton, Abram Friesen, Magdalena Balazinska, and Dan Grossman. Estimating
the progress of mapreduce pipelines. In Proceedings of IEEE International Conference
on Data Engineering (ICDE), 2010.

[17] Biswanath Panda, Joshua S. Herbach, Sugato Basu, and Roberto J. Bayardo. Planet:
Massively parall learning of tree ensembles with mapreduce. In Proceedings of Very
Large Databases Conference (VLDB), 2009.

[18] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,
Samuel Madden, and Michael Stonebraker. A comparison of approaches to large-scale
data analysis. In Proceedings of ACM SIGMOD Conference, 2009.

[19] Thomas Sandholm and Kevin Lai. Mapreduce optimization using regulated dynamic
prioritization. In SIGMETRICS/Performance09, 2009.

[20] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain, Joydeep
Sen Sarma, Raghotham Murthy, and Hao Liu. Data warehousing and analytics infras-
tructure at facebook. In Proceedings of ACM SIGMOD Conference, pages 1013–1020.
ACM, 2010.

1.8. CONCLUSION 27

[21] Guanying Wang, Ali Butt, Prashant Pandey, and Karan Gupta. A simulation approach
to evaluating design decisions in mapreduce setups. In the IEEE/ACM Intl. Symposium
on Modelling, Analysis and Simulation of Computer and Telecomm. Systems, 2009.

[22] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, 2009.
[23] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott

Shenker, and Ion Stoica. Job scheduling for multi-user mapreduce clusters. Techni-
cal Report UCB/EECS-2009-55, University of California at Berkeley, april 2009.

[24] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica.
Improving mapreduce performance in heterogeneous environments. In 8th USENIX
Symposium on Operating Systems Design and Implementation(OSDI08), 2008.

