CRESP: Towards Optimal Resource
Provisioning for MapReduce Computing in
Public Clouds

Keke Chen, James Powers, Shumin Guo, Fengguang Tian
Ohio Center of Excellence in Knowledge-enabled Computing (Kno.e.sis)
Department of Computer Science and Engineering
Wright State University, Dayton, OH 45435, USA
Email: {keke.chen, powers.4, guo.18, tian.9} @wright.edu

Abstract—Running MapReduce programs in the cloud introduces
this unique problem: how to optimize resource provisioning to min-
imize the monetary cost or job finish time for a specific job? We
study the whole process of MapReduce processing and build up a
cost function that explicitly models the relationship among the time
cost, the amount of input data, the available system resources (Map
and Reduce slots), and the complexity of the Reduce function for
the target MapReduce job. The model parameters can be learned
from test runs. Based on this cost function, we can solve a number
of decision problems, such as the optimal amount of resources that
can minimize monetary cost within a job finish deadline, minimize
time cost under certain monetary budget, or find the optimal trade-
offs between time and monetary costs. Experimental results show
that the proposed approach performs well on a number of sample
MapReduce programs in both the in-house cluster and Amazon EC2.
We also conducted a variance analysis on different components of
the MapReduce workflow to show the possible sources of modeling
error. Our optimization results shows that with the proposed ap-
proach we can save a significant amount of time and monetary costs,
compared to randomly selected settings.

Index Terms—MapReduce; Cloud Computing; Resource Provision-
ing; Performance Modeling

1 INTRODUCTION

With the deployment of web applications, scientific
computing, and sensor networks, a large amount of
data can be collected from users, applications, and
the environment. For example, user clickthrough data
has been an important data source for improving web
search relevance and for understanding online user
behaviors. Such datasets can be easily in terabyte
scale; they are also continuously produced. Thus,
an urgent task is to efficiently analyze these large
datasets so that the important information in the data
can be promptly captured and understood. As a flexi-
ble and scalable parallel programming and processing
model, recently MapReduce [3] (and its open source
implementation Hadoop) has been widely used for
processing and analyzing such large scale datasets.

On the other hand, data analysts in most
companies, research institutes, and government
agencies have no luxury to access large pri-
vate Hadoop/MapReduce clouds. Therefore, run-
ning Hadoop/MapReduce on top of a public cloud
has become a realistic option for most users.
In view of this requirement, Amazon has de-
veloped Elastic MapReduce that runs on-demand
Hadoop/MapReduce clusters on top of Amazon EC2
nodes. There are also scripts' for users to manually
setup Hadoop/MapReduce on EC2 nodes.

However, running a Hadoop cluster on top of the
public cloud has different requirements from running
a private Hadoop cluster. First, for each job normally
a dedicated Hadoop cluster will be started on a
number of virtual nodes to take advantage of the
“pay-as-you-use” economical cloud model. Because
users’ data processing requests are normally coming
in intermittently, it is not economical to maintain a
constant Hadoop cluster like private Hadoop cluster
owners do. Meanwhile, current virtualization tech-
niques allow a virtual cluster to be provisioned or
released in minutes. Thus, on-demand Hadoop clus-
ters have become an appropriate choice for most users
who have ad-hoc Hadoop jobs. Typically, such a on-
demand cluster is created for a specific long-running
job, where no multi-user or multi-job resource com-
petition happens within the cluster? Second, it is now
the user’s responsibility to set the appropriate number
of virtual nodes for the Hadoop cluster. The optimal
setting may differ from application to application and
depend on the amount of input data. An effective

1. wiki.apache.org/hadoop/AmazonEC2

2. We do not exclude the case that the user wants to pack more
than one job into one cluster, especially for short jobs. However,
in this paper, we only consider the large-scale jobs that may run
for long time on a large dataset and thus a dedicated on-demand
cluster is more practical.

method is needed to help the user make this decision.

The problem of optimizing resource provisioning
for MapReduce programs involves two intertwined
factors: the monetary cost of provisioning the virtual
machine nodes and the time cost to finish the job.
Intuitively, with a larger amount of resources, the job
can take shorter time to finish. However, resources
are provisioned at cost, which are also related to the
amount of time for using the resources. It is tricky
to find the best setting that minimizes the monetary
cost. With other constraints such as a deadline or
a monetary budget to finish the job, this problem
appears more complicated.

We propose a method to help users make the de-
cision of resource provisioning for running MapRe-
duce programs in public clouds. This method, Cloud
RESource Provisioning (CRESP) for MapReduce Pro-
grams, is based on the proposed specialized MapReduce
time cost model that has a number of model parameters
to be determined for a specific application. The model
parameters can be learned with test runs on small
scale settings, i.e., small clusters and small sample
datasets. Based on the time cost model and the es-
timated parameters, the user can find the optimal
setting for resources by solving certain optimization
problems.

The CRESP approach has several unique contribu-
tions.

« Different from existing work on the performance
analysis of MapReduce program, our approach
focuses on the relationship among the critical
variables: the number of Map/Reduce slots, the
amount of input data, and the complexity of
application-specific components. The resulting
time cost model (function) can be represented as
a weighted linear combination of a set of non-
linear functions of these variables. These models
provide robust generalization power that allows
one to determine the weights of the functions
with the data collected on small scale tests.

¢ Based on this time cost model, we formulate two
important decision problems: minimizing time
cost within monetary constraint, and minimiz-
ing monetary cost within time constraint. The
resource requirement is mapped to the number of
Map /Reduce slots; the monetary cost is propor-
tional to the product of the time cost function and
the acquired Map/Reduce slots. With our time
cost model, the resultant optimization problems
are easy to formulate and solve.

o We have conducted a set of experiments on both
the local hadoop cluster and Amazon EC2 to
validate the cost model. The experiments show
that this cost model fits the data collected from
four tested MapReduce programs very well. The
experiment on model prediction also shows low
error rates. The optimization results are times
better than the randomly selected cluster config-

urations.

The entire paper is organized as follows. In Section
2, we analyze the execution of MapReduce program,
propose the cost model, and describe the statistical
methods for learning the model. In Section 3, we
formulate several problems on resource provisioning
as optimization problems based on the cost model.
In Section 4, we present the experimental results that
validate the cost model and analyze the modeling
errors. The related work on MapReduce performance
analysis appears in the supplementary file.

2 RESOURCE-TIME CosT MODEL
MAPREDUCE

In this section, we analyze the components in the
whole MapReduce execution process and derive a cost
model in terms of the input data, the application-
specific complexity, and the available system re-
sources. The goal of developing this cost model is to
identify the relationships (functions) between the re-
sources and time complexity for a specific application.
This cost model is the core component for solving the
resource prediction and optimization problems.

Basic Ideas. We first give the formal setting of
the modeling problem and then discuss the unique
features of our approach. Let the amount of system
resources be S, which can be the number of virtual
machines of certain type in a public cloud. Let the
amount of input data be D, and the MapReduce
setting be C, e.g., the number of Reduce tasks in our
discussion. We want to find a cost function - the total
time cost of the MapReduce job T'=T(S, D, C).

Our approach is a combination of the white-box
[5] and machine learning approaches [9]. It aims
to gain good generalization power and modeling
flexibility at the same time. There are a number of
special features with this modeling method. (1) Be-
cause MapReduce programs have very different logic
and time complexity, the cost functions should be
different from application to application. However,
they can share some general form, only differing in
the setting of parameters. (2) The parameter setting
of the cost function can also be affected by input data
distributions. We argue that the same program, if the
distribution of input dataset is changed, should be
modeled separately as a different modeling task. (3)
We aim to learn the cost function from small-scale
examples with small amounts of resources and input
data, which will still be robust for large-scale settings.
(4) We expect to learn a closed-form function, which
can be nicely incorporated in optimization tasks. The
learning methods [4] resulting in special forms of
function such as decision trees do not fit our need.

Because of these special requirements, we aim to de-
sign a modeling method that gives a closed form func-
tion with good generalization power. This method
depends on an accurate analysis of the whole process

FOR

of MapReduce processing framework. The resulting
model will be in the form of

ZBZ

where h;(S, D, C) are possibly some non-linear trans-
formations of the input factors S, D, and C, k is
the number of such items determined by the anal-
ysis result, and §; should be learned for a specific
application. With this modeling principle in mind,
the following sections conduct the modeling analysis,
give a concrete formulation of the cost functions of
Map task and Reduce task, which helps find the
components, h;(S, D,), and finally we will integrate
these components to have the whole cost function.

T(S,D,C) (S,D,C) + Bo, 1)

2.1 Analyzing the Process of MapReduce

MapReduce processing is a mix of sequential and
parallel processing. The Map phase is executed before
the Reduce phase®, as Figure 5 shows. However, in
each phase many Map or Reduce tasks are executed
in parallel. To clearly describe the MapReduce exe-
cution, we would like to distinguish the concepts of
Map/Reduce slot and Map/Reduce task. Each Map (or
Reduce) task is executed in a Map (or Reduce) slot.
A slot is a unit of computing resources allocated for
running the tasks. According to the system capacity,
a computing node can only accommodate a fixed
number of slots so that the tasks can be run in the slots
in parallel without serious competition. In Hadoop,
the Tasktracker running in each slave node has to set
the number of Map slots and the number of Reduce
slots. A common setting for a multi-core computer is
to have two Map and Reduce slots per core. Without
loss of generality, let’s assume there are m Map slots
and r Reduce slots in total over all slave nodes.

We define a Map/Reduce task as the Map/Reduce
program running on a specific slot. By default, in
Hadoop each Map task handles one chunk of data
(e.g., 64MB). Therefore, if there are M chunks of data,
M Map tasks in total will be scheduled and assigned
to the m slots. In the ideal case, m Map tasks can run
in parallel in the m slots - we call it one round of Map
tasks. If M > m, which is normal for large datasets,
[M/m] Map rounds are needed.

Different from the total number of Map tasks, the
number of Reduce tasks, denoted as R, can be set
by the user or determined by specific application
requirements. The Map outputs, i.e., the key-value
pairs, are organized by the keys and then distributed
evenly by the keys to the R Reduce tasks?®. Similarly,
if R > r, more than one round of Reduce tasks are
scheduled. It is probably not very helpful to set a R

3. The Shuffle operation in the Reduce phase overlaps the Map
phase - when a Map’s result is ready, Shuffle may start immediately.

4. Thus, it is not meaningful to set R greater than the number of
output keys of Map.

greater than r because there is no restriction on the
amount of data a Reduce task can handle. As a rule
of thumb, when the number of Map output keys is
much large than r, R is often set close to the number of
all available Reduce slots for an in-house cluster, e.g.,
95% of all Reduce slots [13]. When it comes to public
clouds, we will set R = r and choose an appropriate
number of Reduce slots, r, to find the best tradeoff
between the time and the monetary cost.

Figure 6 (in Supplementary Section 7.1) illustrates
the scheduling of Map and Reduce tasks to the Map
and Reduce slots in the ideal situation. In practice,
Map tasks in the same round may not finish exactly
at the same time - some may finish earlier or later
than others due to the system configuration, disk I/0O,
network traffic, and data distribution. But we can
use the total number of rounds to roughly estimate
the total time spent in the Map phase. The variance
caused by all these factors will be considered in
modeling. Intuitively, the more available slots, the
faster the whole MapReduce job can be finished.
However, in the pay-as-you-go setting, the resources
are provisioned at cost. There is a tradeoff between
the amount of resources and the amount of time to
finish the MapReduce job.

In addition to the cost of Map and Reduce tasks,
the system has some additional cost for managing and
scheduling the M Map tasks and the R Reduce tasks,
which will also be considered in modeling. Based on
this understanding, we will first analyze the cost of
each Map task and Reduce task, respectively, and then
derive the overall cost model.

2.2 Cost of Map Task

A Map task can be divided into a number of sequen-
tial components, including Read, Map, Sort/Partition,
and optionally Combine, as Figure 5 (in Supplemen-
tary Section 7.1)shows. We understand this process in
term of a data flow - data sequentially flow through
each component and the cost of each component
depends on the amount of input data.

The first component is reading a block of data from
the disk, which can be either local or remote data
block. Let’s assume the average cost is a function of
the size of data block b: i(b).

The second component is the user defined Map
function, the complexity of which is determined by
the input data size b, denoted as f(b). The Map
function may output data in size of o,,(b) that might
vary depending on the specific data. The output will
be a list of (key,value) pairs.

The result will be partitioned and sorted by the key
into R shares for the R Reduce tasks. We denote the
cost of partitioning and sorting with s(o,,(b), R). If
the partitioning process uses a hash function to map
the keys, the partitioning cost is independent of R.
However, the sorting phase is still affected by R. Let’s

skip the Combiner component temporarily and we
will revisit the Combiner component later.

In summary, the overall cost of a Map task is the
sum of the costs (without the Combiner component):

P =i(b) + f(b) + s(om (D), R) + €m.)

i(b) and f(b) is only related to the size of the data
block b and the complexity of the Map function,
independent of the parameters m and M. ¢,, has a
mean zero and some variance o2, which needs to
be calibrated by experiments. We also observed that
s(om(b), R) is slightly linear to R. In practice, we can
model it with parameters m, M, r, R as

(I)m(vavrvR) :H1+H2R+Em7 (3)

where p1, po, and the distribution of ¢, are constants
specific to each application. We will study the variance
of €, to understand the modeling accuracy.

2.3 Cost of Reduce Task

A Reduce task has these components: Shuffle, Merge-
Sort, Reduce and WriteResult. They are also sequen-
tially executed in the Reduce task.

Assume that the k keys of the Map result are
equally distributed to the R Reduce tasks’. In the
Shuffle component, each Reduce task pulls its shares,
i.e., k/R keys and the corresponding records, from the
M Map tasks’ outputs. Thus, the total amount of data
in each Reduce will be

br =M - on(b) - k/R. (4)

Here, we simplify the analysis by assuming the
amount of data is proportional to the number of keys
assigned to the reduce. In practice, many applications
have skewed data distributions, i.e., some keys may
have more records while other may have less, which
may affect the quality of modeling.

The Shulffle cost is linear to bg, denoted as ¢(bg).
However, most of the time is overlapped with the
Map phase. Normally only the last few rounds of Map
processing may contribute the overall time cost. We
thus approximate the cost as c¢(bg) ~ m - 0,,(b) - k/R.

A Merge process follows to merge the M shares
from the Map results. Because the records are already
sorted by the key, this process simply merges the
shares by the key in multiple rounds. Assume the
buffer size is B, the Merge round i will generate
M/ B files, and its cost is proportional to bg. The total
number of rounds is [logg M. Thus, the total Merge
cost ms(br) is proportional to bgr[logz M.

The Reduce function will process the data with
some complexity g(br) that depends on the specific
application. Assume the output data of the Reduce
function has an amount o,(bg), which is often less

5. For this reason, the user normally selects R to satisfy & > R.
If R > k, only k Reduces are actually used.

than bg. Finally, the result is duplicated and written
back to multiple nodes, with the complexity linear to
or(br), denoted as wr(o,(bg)).

In summary, the cost of Reduce task is the sum of
the component costs,

O, = c(br) + ms(br) + g(br) + wr(o.(br)) + €, (5)

Both the Shuffle and the WriteResult costs may vary
because of the varying network I/O performance,
which are modeled with the random variable ¢,.. Sim-
ilar to €,, for the Map phase, ¢, has a mean zero and
some variance o2. These variances should be captured
in modeling.

If we model ®, with m, M,r, R, and keep the rele-
vant components for each phase, we have

o, (m,M,r,R) = M (m/R)+ Xo(MlogM/R)+

g(M/R) + A\3(M/R) + €, (6)

where \; and the distribution of ¢, are application-
specific constants.

2.4 Putting All Together

According to the parallel execution model we de-
scribed in Figure 6, the overall time complexity T
depends on the number of Map rounds and Reduce
rounds. The cost of managing and scheduling the Map
and Reduce tasks O(M, R) = &4 M + &R is linear to
M and R, as stated in the documentation [13]. By
including all costs, we represent the overall cost as

M R

T=[210,+ 10, +O(MR). ()

,
We are more interested in the relationship among the
total time 7', the input data size M x b, the user defined
number of Reduce tasks R, and the number of Map
and Reduce slots, m and r.

This general representation can be slightly simpli-
fied with a number of settings. As we have discussed,
it is safe to assume R = r. Thus, [%1 ®,. = ®,.. To make
it more convenient to manipulate the equation, we
also remove [] from [M/m] by assuming M > m and
M /m is an integer. After plugging in the equations 3
and 6 and keeping only the variables M, R, and m in
the cost model, we get the detailed model

Tl(MamaR) =

M MR

m M log M
Bo + B1— +52—+[33—+ﬂ47g
m m R

R

FBM/R+ BoM + R + o) T

where f; are the positive constants specific to each
application. Note that 77 (M, m, R) is not linear to its
variables, but it is linear to the transformed compo-
nents: M/m, MR/m, m/R, Mlog M/R, M/R, M, R,
and g(M/R). The parameter §; defines the contribu-
tion of each components in the model. 3y represents
some constant cost invariant to the parameters. 3;

are the weights of each components derived in the
component-wise cost analysis. According to the mean-
ing of the components, ; cannot be negative values.
Finally, € represents the overall noise, which is the
combination of noises from the two phases and other
global factors. We leave the discussion on the item
g(M/R) later.

With Combiner. In the Map task, the Combiner
function is used to aggregate the results by the key.
If there are k keys in the Map output, the Combiner
function reduces the Map result to k records. The cost
of Combiner is only subject to the output of the Map
function. Thus, it can be incorporated into the param-
eter 5,. However, the Combiner function reduces the
output data of the Map task and thus affects the cost
of the Reduce phase. With the Combiner, the amount
of data that a Reduce task needs to pull from the Map
is changed to

br = Mk/R.)

Since the item M/R is still there, the cost model
(Equation 8) applies without any change.

Function g(). The complexity of Reduce function
has to be estimated with the specific application.
There are some special cases that the g() item can be
removed from Equation 8. If g() is linear to the size of
the input data, then its contribution can be merged to
the factor 35, because g(M/R) ~ M/R. For other cases
that cannot be merged, a new item should be created
and in the cost model. In the linear case, which is
common as we have observed, the cost model can be
further simplified to

M MR m
To(M,m,R) = B0+ i— + fo— + B3—
m m R
M log M
+B1 =2 | BsM/R + BsM + SR + ¢, (10)

R

2.5 Learning the Model

With the formulation of the cost function in terms of
input variables M, m, and R, we need to learn the
parameters ;. Note that 5; should be different from
application to application because of data distribu-
tions, specific I/O patterns, and data processing logic.
We design a learning procedure as follows.

First, for a specific MapReduce program, we ran-
domly choose the variables M, m, and R from certain
ranges. For example, m and R (ie.,) are chosen
within 50; M is chosen so that at least two rounds
of Map tasks are available for testing. Second, we
collect the time cost of the test run of the MapReduce
job for each setting of (M, m, R), which forms the
training dataset. Third, regression modeling [9] is
applied to learn the model from the training data with
the transformed variables

x1 = M/m,xe = MR/m,x3 = m/R,

x4 =MlogM)/R,x5 = M/R,x6 = M,z7 = R. (11)

Because §; are the weights of the components in
the total cost, we have the contraints 5; > 0, i =
0...r, which require nonnegative linear regression [4]
to solve the learning problem. The cross-validation
method [4] is then used to validate the performance
of the learned model. We will show more details in
experiments.

3 OPTIMIZING RESOURCE PROVISIONING

With the cost model we are now ready to find the
optimal settings for different decision problems. We
try to find the best resource allocation for three typ-
ical situations: (1) with a certain limited amount of
monetary budget; (2) with a time constraint; (3) and
the optimal tradeoff curve without any constraint.
In the following, we formulate these problems as
optimization problems based on the cost model.

In all the scenarios we consider, we assume the
model parameters 3; have been learned with sample
runs in small scale settings. For the simplicity of pre-
sentation, we assume the simplified model 75 (Eq. 10)
is applied. Cost models with other Reduce complexity
do not change the optimization algorithm. Since the
input data is fixed for a specific MapReduce job, M is
a constant. We also consider all general MapReduce
system configurations have been optimized via other
methods [2], [6], [5] and fixed for both small and large
scale settings. With this setup, the time cost function
becomes

OLQR

+ B0 2 LR (12)

aq
T - il
3(m,R) = ap + - + I I

where

ag = Bo+ BeM, 01 = B1 M, a0 = B2 M,
a3 = 33,04 = B4Mlog M + B5s M, a5 = B7.

In the virtual machine (VM) based cloud infrastruc-
ture (e.g., Amazon EC2), the cost of cloud resources is
calculated based on the number of VM instances used
in time units (typically in hours). Let’s consider that
homogenous VM instances are used in the deploy-
ment. According to the capacity of a virtual machine
(CPU cores, memory, disk and network bandwidth),
a VM instance can only have a fixed number of
Map/Reduce slots. Let’s denote the number of slots
per node as v, which are also fixed for a specific
cluster setup. Thus, the total number of slots m + r
required by a on-demand Hadoop cluster can be
roughly transformed to the number of VMs, v, as

v=[(m+r)/v]. (13)

If the price of renting one VM instance for an hour is u
and T3 returns time cost in seconds, the total monetary
cost is determined by the result wv[T3(m, R)/3600].
Since we usually set R to r, it follows that the total
monetary cost for renting the Hadoop cluster is

wo[Ts(m, R)| = u[Ts(m, R)|[(m + R)/v]. ~ (14)

Now we are ready to formulate the optimization
problems.

1) Given a monetary budget ¢, the problem of
finding the best resource allocation to minimize
the job time can be formulated as

(15)
subject to u[Ts3(m, R)|[(m + R)/v] < ¢,
m >0, and R > 0.

minimize Ts(m, R)

2) If the constraint is about the maximum amount
of time 7 for finishing the job, the problem of
minimizing the monetary cost can be formulated
as

minimize u[T3(m, R)|[(m + R)/~] (16)
subject to T3(m, R) < 7,m >0, and R > 0.

3) The second optimization problem can also be
slightly changed to describe the problem that
the user simply wants to find the most econom-
ical solution for the job without the constraint
T3(m,R) <.

Note that the T5 model parameters might be specific
for a particular type of VM instance that determines
the parameters u and 7. Therefore, by testing different
types of VM instance and applying this optimization
repeatedly on each instance type, we can also find
which instance type is the best.

Once we learn the concrete setting of the 73 model
parameters, these optimization problems can be nicely
solved since they are all in the category of well-
studied optimization problems. In practice, since we
often look at the integer parameters m and R in a
limited range, e.g., [1..1000], a brute-force search can
be applied to find the optimal solution by simply
enumerating all the combinations of m and R.

Impact of Modeling Error. The learned model is
normally not perfect, resulting in prediction error.
As the optimization formulation uses the model to
formulate the time and monetary costs, we should
understand how these errors will affect optimiza-
tion. When the error is introduced, the optimization
objectives are actually minimizing the average time
or monetary cost, which should still be consistent
with the actual optimization objectives. However, the
time and monetary constraints are now set to their
average values, which might not be satisfactory. In the
following, we formally define the prediction error and
then describe the methods for computing the relaxed
constraints.

Let C be the real execution time and C' be the pre-
dicted. Let § be the model prediction error rate, which
defined as the relative error to the real execution time,
ie, 8 = |C — C|/C. Without loss of generality, we
assume 0 < § < 1 and J can be estimated with the
training examples (as described in Experiments). Let
a be a positive constant, a >= 1, we expect the actual

error rate will satisfy ad > |C' — C|/C. Thus, we can
derive that with certain probability the actual time
cost C is within the following range

C/(1+ad) <C < C/(1 - ad).

In the worst case the time cost will be around
C/(1 — ad). Because the monetary cost is represented
as u[C1[(m + R)/~], correspondingly the worst case
financial charge will be u[C/(1 — ad)][(m + R)/7].
The constraints can be adjusted to these worst-case
formulation. For example, for the time constraint
T3(m,R) < 7, we may use T3(m,R)/(1 —ad) < 7
instead.

4 EXPERIMENTS

As long as the cost model is accurate, the optimization
problems are easy to solve. Therefore, our focus of
experiments will be validating the formulated cost
model. We first describe the setup of the experi-
ments, including the experimental environment and
the datasets. Four programs are presented: Word-
Count, Sort, PageRank and TableJoin, which are used
in evaluating the cost model. Next, a comprehensive
evaluation on both the in-house cluster and Amazon
Cloud will be conducted to show the model goodness
of fit and the prediction accuracy. Then, we present a
in-depth variance analysis on the Map and Reduce
phases to understand the potential modeling errors.
Finally, we show that with the models we learned and
the optimization method we discussed, we can help
users achieve optimal resource provisioning schemes.

4.1 Experimental Setup

The experiments are conducted in our in-house 16-
node Hadoop cluster and Amazon EC2. We describe
the setup of the environments and the datasets used
for experiments as follows.

In-house Hardware and Hadoop Configuration.
Each node in the in-house cluster has four quad-
core 2.3Mhz AMD Opteron 2376, 16GB memory, and
two 500GB hard drives, connected to other nodes
with a gigabit switch. Hadoop 1.0.3 is installed in
the cluster. One node serves as the master node and
15 nodes as the slave nodes. The single master node
runs the JobTracker and the NameNode, while each
slave node runs both the TaskTracker and the DataNode.
Each slave node is configured with eight Map slots
and six Reduce slots (about one process per core).
Each Map/Reduce task uses 400MB memory. The data
block size is set to 64 MB. We use the Hadoop fair
scheduler® to control the total number of Map/Reduce
slots available for different testing jobs.

Amazon EC2 Configuration. We also used the on-
demand clusters provisioned from Amazon EC2 for
experiments. Only the small instances (1IEC2 compute

6. http:/ /hadoop.apache.org/docs/r1.1.1/fair_scheduler.html

unit, 1.7GB memory, and 160GB hard drive) are used
to setup the on-demand clouds. For the simplicity
of configuration, one Map slot and one Reduce slot
share one instance. Therefore, a cluster that needs m
Map slots and r Reduce slots will need max{m,r}+1
small instances in total, with the additional instance as
the master node. The existing script’ in the Hadoop
package is used to automatically setup the required
Hadoop cluster (with proper node configurations) in
EC2.

Datasets. We use a number of generators to gen-
erate three types of testing datasets for the testing
programs. (1) We revise the RandomWriter tool in the
Hadoop package to generate random float numbers.
This type of data is used by the Sort program. (2) We
also revise the RandomTextWriter tool to generate text
data based on a list of 1000 words randomly sampled
from the system dictionary /usr/share/dict/words.
This type of data is used by the WordCount program
and the TableJoin program. (3) The third dataset is a
synthetic random graph dataset, which is generated
for the PageRank program. Each line of the dataset
starts with a node ID and its initial PageRank, fol-
lowed by a list of node IDs representing the node’s
outlinks. Both the node ID and the outlinks are ran-
domly generated integers.

Each type of data consists of 150 1GB files. For a
specific testing task with the predefined size of input
data (the parameter M), we will randomly choose the
required number of files from the pool to simulate
input data.

Modeling Tool. As we mentioned, we will need
a regression modeling method that works on the
constraints 5; > 0. In experiments, we use the mat-
lab function | sqnonneg® to learn the model, which
squarely fits our goal.

Sample Programs. We will use four sample
MapReduce program in our evaluation: WordCount,
Sort, PageRank, and TableJoin (details in Supplemen-
tary Section 7.2)

4.2 Model Fitting

We run a set of experiments to estimate the model
parameters 3; for the four programs. We randomly
select the values for the three parameters M, m, and
R. The number of data chunks M is calculated by the
number of selected 1GB files (one file has 1024/64
= 16 blocks). For the in-house cluster, because all
available Map slots will be used in executing the
MapReduce job, we control the number of Map slots
m by setting the maximum number of Map slots
in the fair scheduler. R is randomly set to a number
smaller than the total number of Reduce slots in the
system. For on-demand EC2 clusters, we allow each
node to have only one slot. It is thus straightforward

7. wiki.apache.org/hadoop /AmazonEC2

to allocate m nodes as the Map slots and R nodes
for the Reduce slots. For each tested program, we
generate 30-60 random settings of (M, m, R) for the
local cluster and 60-100 settings for EC2 clusters. For
each setting, we record the time (seconds) used to
finish the program.

Regression Analysis. With the transformed vari-
ables (Eq. eq:variables) , we can conduct a linear
regression on the transformed cost model

7
T'(z1, %2, w3, ¥4, T5, T6, T7) :ﬂO+Zﬂixi- (17)

=1

Table 6 shows the result of regression analysis with
the constraints ; > 0 for programs running in the in-
house cluster and in EC2 clusters (denoted as AWS).
R? is a measure for evaluating the goodness of fit
in regression modeling. R> = 1 means a perfect fit,
while R? > 90% indicates a very good fit. Note that
the Matlab function | sgnonneg also demotes most
of insignificant 3; to 0.

Table 6 in Supplementary (Section 7.3) shows most
models have very high R? values, except for TableJoin
on AWS. The reason of lower-quality models might be
caused by either the dynamic run-time environment
or the special characteristics of the program (or data)
that the model cannot capture. The cause of the
modeling error will be discussed later.

Prediction Accuracy. We also conduct a careful
analysis on the prediction accuracy of the models. The
leave-one-out [4] cross validation is used to identify
the average prediction accuracy and possible outlier
examples. Concretely the leave-one-out cross valida-
tion runs in n rounds if there are n training samples.
In each round, one of the n samples is used for testing,
while the other n — 1 samples are for training.

The detailed comparison on the predicted time and
the real time cost is shown in (Section 7.4). Below we
give the overall prediction accuracy. We define the
average accuracy as the average relative errors (ARE)
over the n rounds of testing in the cross validation.
Let C; be the real cost and C; be the estimated cost by
the trained model in the round i. We calculate ARE
with the following equation.

1 <~ |Ci = Ci
ARE = ~ ; G (18)
Intuitively, this represents the percentage of prediction
error in terms of the actual execution time. Table 1
shows the AREs in leave-one-out cross validation.
The result confirms that most models are robust
and perform well. However, certain models such as
PageRank in the local cluster and TableJoin in both
local and AWS perform less accurately than others. A
further study on the component-wise variances will
be performed to understand the factors affecting the

8. http:/ /www.mathworks.com /help /techdoc/ref/Isqnonneg.html modeling accuracy.

WordCount
5.49%
6.46%

Sort
15.23%
15.61%

TABLE 1
Average relative error rates (ARE) from leave-one-out
cross validation.

TableJoin
13.57%
14.62%

PageRank
12.18%
7.92%

Local
AWS

Relaxed Bounds. Note that in Section 3 we have
given a formal analysis on the impact of modeling
error. We have developed the method to make the
actual time cost within a relaxed bound based on the
predicted time cost. Specifically, with the parameter §
(estimated with ARE, i.e., 5 = ARE), we can expect
the actual time cost C is bounded by C'/(1—ab), a > 1,
with high probability. With the leave-one-out testing,
we can get the ARE, C;, and C; and then we can
identify the proportion of in-bound examples. Table
2 gives the in-bound rates with ¢ = 1 and a = 2,
respectively. The results show that with a =1 the in-
bound rates are already very high, while with a = 2
the rates are 90 % ~ 100%.

WordCount Sort PageRank | TableJoin
Local (a=1) 92.5% 77.1% 77.1% 86.6%
AWS (a=1) 75.0% 90.7% 77.89% 82.56%
Local (a=2) 96.3% 89.6% 91.7% 95.8%
AWS (a=2) 89.0% 100% 89.5% 100%
TABLE 2

The percentage of examples that have real time costs
within the relaxed bounds.

Predicting Time Costs of Large Settings. Due to
the economics reason, it is inappropriate to use very
large datasets for training that have a comparable size
to the original data, e.g., > 1/10 of the original size.
Ideally the modeling data will be much small, in a
range of tens of gigabytes at most. In previous exper-
iments, we randomly select datasets that have sizes
ranging from a few gigabytes to near 100 gigabytes.
To understand how the small setting examples that
have smaller input data work in modeling, we sort
the training examples by their input data size. The
smaller setting examples are used for training and the
larger examples for testing.

Figure 1 and 2 show the results for the local hadoop
cluster and the AWS clusters, respectively. The x-axis
indicates that the examples with input data sizes <= «
GB are used for training and the rest of the examples
for testing. The y-axis represents the testing error, i.e.,
the ARE values. For the local cluster, curves are kind
of flat, except for PageRank, which means the small
setting examples work pretty well for generating good
global models.

For AWS clusters, the results show different pat-
terns. For training data <= 10GB, the learned models
perform excellent on large settings. With more train-
ing examples in (10GB, 20GB] included, except for
Sort’s model, all other models still perform very well.
Interestingly, further including training examples in
(20GB, 60GB] will significantly reduce the model qual-

ity, except for the PageRank models. While including
addtional examples with > 70GB, the model quality
recovers soon. It indicates that the examples from the
range (20GB, 60GB] are probably very noisy. These
noises can be possibly identified and removed with
the methods discussed in the literature [9], but the rea-
son of generating the noisy data will be investigated.
Compared to the results from the local cluster, the
AWS results show larger variances, which might be
caused by the multi-tenant virtualized environment.

05 2
—e—WordCount

“m=Sort
PageRank
w —¢Tableloin

—+-WordCount

—@-Sort
PageRank

—Tableloin

)

10 20 30 40 50 60 70 80 90
Threshold of Training Data Size (<= x GB)

10 20 30 40 50 60 70 80 90
Threshold of Training Data Size (<= x GB)

Fig. 1. Accuracy of pre-
dicting large setting sam-
ples for the local cluster.

Fig. 2. Accuracy of pre-
dicting large setting sam-
ples for AWS clusters.

Cost of Experiments. One may wonder how much
money and time it will need to get the modeling done.
We evaluate the costs of the experiments we have
done with AWS so far and list the results in Table 3.
Overall, the AWS charge is around $38-$77, while the
time cost is about 12-27 hours. For processing large
scale data, we expect the amount of data will be 10-
100 times over the sizes we use in modeling. Thus,
the monetary and time costs of modeling will be quite
acceptable.

WordCount | Sort | PageRank | TableJoin
of examples 100 76 96 87
Money ($) 68 48 76 38
Time (hours) 22 15 27 12
TABLE 3

Total costs of AWS experiments.

Note that optimizing these costs is not in the scope
of our current study, which, however, will be an im-
portant task in our ongoing work. The future research
on reducing modeling costs will be conducted in
two directions: (1) developing methods for designing
training examples, i.e., selecting the most representa-
tive parameter settings to generate training examples,
and (2) studying the minimum number of training
examples that are is sufficient to derive high-quality
models.

4.3 Optimizing Resource Provisioning

We have developed a simple optimization algorithm
based on the brute force method discussed in Section
3 . It takes the model parameters f;, the maximum
job time 7 (or the monetary budget ¢), the cluster
configuration: y slots per node, and the per-node price
u as the input, and outputs the optimal setting m and

R that minimizes the monetary cost (or the time cost)
. This program will be open-sourced.

With this program, we compare the optimization re-
sults on 64GB input data with sample jobs running in
EC2 clusters. We try to simulate the decision process
for users who have no knowledge about parameter
selection. Due to the EC2 quota we have, we limit our
selection of m and R in [1,400]. The user’s decision on
parameter selection is defined as three types: conser-
vative [1,100], neutral [101, 300], and aggressive [301,
400]. We randomly generate 50 parameter settings for
each of the three ranges and record the jobs’ time
and monetary costs. Mid-size instances are used for
experiments, where 7 is set to four slots, and the price
per instance hour is $0.12.

16 [Optimization Result

I Selections in [1,100] 1
[Selections in [101,300] 09

O Optimization Result
O Selections in [1, 100]
DO Selections in [101,300]

o
O 04
@
o2
01

PageRank Tableloin 0
WordCount Sort

=

5 5
13
o

Financial Cost (dollars)

o N & o ®
m
o
@

WordCount Sort
PageRank TableJoin

Fig. 3. Monetary
costs of the optimal
setting and randomly
selected settings, time

constraint=0.5 hour.

Fig. 4. Time costs of the
optimal setting and ran-
domly selected settings,
budget constraint=$10.

(1) The first set of experiments uses the time con-
straint 7 = 0.5 hour, and we want to find the setting
that minimizes the monetary cost. Figure 3 shows the
optimal cost given by our optimization algorithm and
the average cost of the randomly generated settings
in the ranges [1, 100] and [101, 300] respectively. The
lower end of the error bar shows the minimum cost in
the randomly selected settings. The random settings
in [301, 400] are much more expensive than other
settings and thus not included in the figure. Overall,
the average dollar costs in [1, 100] are still signifi-
cantly higher than the dollar costs of the optimization
results, although the best result might be close to the
optimal result. Let’s look more details on the range
[1, 100].

Table 4 shows the comparison between the random
settings in [1, 100] and the optimization result. “Av-
erage/Opt” represents the rate between the average
of random settings and our optimization result. Note
that the number of settings in [1, 100] missing the
time constraint is also significant. When the range
is extended to [101, 300] and [301, 400], with more
resources the time constraint is 100% satisfied for all
random settings, but the costs are too high to be
comparable.

(2) The second set of experiments uses the money
budget ¢ = $10, and we want to find the setting that
minimizes the time cost. Figure 4 shows the optimal

WordCount | Sort | PageRank | TableJoin
Average/Opt 3.66 2.80 2.28 3.44
RandomBest/Opt 2.0 1.0 1.08 1.38
Missing Rate 24% 20% 38% 18%
TABLE 4

Comparison on monetary costs between random
settings in [1, 100] and the optimization.

WordCount | Sort | PageRank | TableJoin
Average/Opt 2.34 1.31 1.20 1.25
RandomBest/Opt 1.65 1.01 1.08 1.08
Missing Rate 76% 80% 78% 78%
TABLE 5

Comparison on time costs between random settings in
[101, 300] and the optimization result.

time cost given by our optimization algorithm and the
average time cost of the randomly generated settings
in range [1, 100] and [101, 300]. All random settings
in [301, 400] do not satisfy the money budget and
thus excluded by the figure. The selections in [101,
300] have closer results to the optimization one than
those in [1, 100]; however, they also have much higher
constraint missing rates (> 70%), which are risky to
try. Overall, the optimization results are still signifi-
cantly better than the averages of random selections.
Similarly, we list the concrete comparison in Table 5 .

5 RELATED WORK

The recent research on MapReduce has been focused
on understanding and improving the performance of
MapReduce processing in a dedicated private Hadoop
cluster, such as [6], [2], [5], [12], [7]. These studies
have different goals from our work, but an optimal
configuration of Hadoop will reduce the amount of
required resources and time for jobs running in the
public cloud as well.

The Starfish project [5] tries to model the data flow
of the whole MapReduce program in great detail. The
model depends on low level parameters such as Map
output selectivity, and spill buffer pairs, etc., that are
potentially affected by the Hadoop system setting, the
input data, and the Map/Reduce functions. Because
the parameter space is large, they use a subspace
random enumeration method to find the approximate
optimal setting. This approach differs from ours in
at least two aspects. (1) The optimization goal is
different. Starfish aims to find the optimal setting of
the Hadoop system parameters for a fixed cluster that
minimizes the execution time of specific jobs, while
our approach assumes the system parameters are
already set but the scale of cluster is to be determined.
(2) The modeling method may result in large estima-
tion errors, as it excludes the performance variances
and the cost of Map and Reduce functions. However,
it is not important for their modeling purpose as long
as the model’s predict time costs are closely correlated
with the real costs, so that both the model and the

real cost function will reach the minimum around
the same parameter setting. In contrast, our approach
needs accurate estimation to have the constraints sat-
isfied.

The RoPE approach [1] aims to optimize com-
plex relational query execution plans that consist of
multiple MapReduce programs. Due to the changing
data distributions, e.g., reduce-phase data selectivity, a
fixed cost model does not work well and the execution
plan needs to be dynamically adjusted to optimize the
resource configuration and minimize execution time.
One important idea is to use run-time data statistics
to help decision making on the fly. However, only
heuristic rules or algorithms in traditional relational
query optimization are used in this approach, which
may improve the resource configuration compared
to the static execution plans, but may not reach the
optimal or even near-optimal solutions. In contrast,
our approach uses sample runs to learn the model
parameters. Starting a cluster and then dynamically
adjusting the configuration is not very efficient for our
application context.

Verma et al. [11] also considered the resource provi-
sioning problem for running MapReduce programs in
public clouds. In addition, they take system failures
into consideration and derive the theoretical bounds
when failure happens. They characterize a specific
job with a set of “job performance invariants”, a
similar idea to the S parameters in our modeling.
However, the modeling approach is entirely different
and seemingly rough in a sense that the cost is
modeled approximately linear to the amount of input
data. The failure modeling is theoretically valuable,
but the derived bounds are far from the possible
cost variances brought by data locality and system
performance fluctuation. It would be more valuable
to model these variances as our approach does.

6 CONCLUSION

Running MapReduce programs in the public cloud
raises an important problem: how to optimize re-
source provisioning to minimize the monetary cost
for a specific job? To answer this question, we be-
lieve a fundamental problem is to understand the
relationship between the amount of resources and
the job characteristics (e.g., input data and processing
algorithm). In this paper, we study the components
in MapReduce processing and build a cost function
that explicitly models the relationship between the
amount of data, the available system resources (Map
and Reduce slots), and the complexity of the Re-
duce function for the target MapReduce program.
The model parameters can be learned from test runs.
Based on this cost model, we can solve a number
of decision problems, such as the optimal amount of
resources that can minimize the monetary cost with
the constraint on monetary budget or job finish time.

10

We have also conducted a set of experiments on both
a in-house Hadoop cluster and on-demand Hadoop
clusters in Amazon EC2 to validate the approach.
The result shows that this cost model fits well on
four sample programs. We have also conducted a in-
depth error analysis to show the sources of potential
modeling errors. The results show that by using our
optimization approach we can save about 80% in
either time cost or monetary cost.

We plan to do some studies in the future. (1) We
will study the sample selection and model learn-
ing method to further improve the model quality
and reduce the cost of collecting training examples;
(2) we will conduct more experiments on different
MapReduce programs and on different types of EC2
instances; and (3) we will incorporate existing studies
on reducer skew balancing to understand the effec-
tiveness of our modeling method for the rebalanced
MapReduce processing.

ACKNOWLEDGMENT

This project is partly supported by the Ohio Board of
Regents and Amazon Web Services.

REFERENCES

[1] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, L. Stoica, and
J. Zhou, “Re-optimizing data-parallel computing,” in Proceed-
ings of the 9th USENIX conference on Networked Systems Design
and Implementation, ser. NSDI'12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 21-21.

[2] S. Babu, “Towards automatic optimization of mapreduce pro-
grams,” in Proceedings of the 1st ACM symposium on Cloud
computing. New York, NY, USA: ACM, 2010, pp. 137-142.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified data pro-
cessing on large clusters,” in OSDI, 2004, pp. 137-150.

[4] T. Hastie, R. Tibshirani, and]J. Friedman, The Elements of
Statistical Learning. Springer-Verlag, 2001.

[5] H. Herodotou and S. Babu, “Profiling, what-if analysis, and
cost-based optimization of mapreduce programs,” PVLDB,
vol. 4, no. 11, pp. 1111-1122, 2011.

[6] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of
mapreduce: An in-depth study,” in Proceedings of Very Large
Databases Conference (VLDB), 2010.

[7]1 K. Kambatla, A. Pathak, and H. Pucha, “Towards optimizing
hadoop provisioning in the cloud,” in USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud09), 2009.

[8] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune:
mitigating skew in mapreduce applications,” in Proceedings of
the 2012 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD "12. New York, NY, USA: ACM, 2012,
pp- 25-36.

[9]1 J. Neter, M. Kutner, C. Nachtsheim, and W. Wasserman, Ap-

plied Linear Statistical Models, 3rd Ed. =~ WCB/McGraw-Hill,

1996.

S. R. Ramakrishnan, G. Swart, and A. Urmanov, “Balancing

reducer skew in mapreduce workloads using progressive sam-

pling,” in Proceedings of the Third ACM Symposium on Cloud

Computing, ser. SoCC "12. New York, NY, USA: ACM, 2012,

pp. 16:1-16:14.

A. Verma, L. Cherkasova, and R. H. Campbell, “Resource

provisioning framework for mapreduce jobs with performance

goals.” in Middleware Conference, 2011, pp. 165-186.

G. Wang, A. Butt, P. Pandey, and K. Gupta, “A simulation ap-

proach to evaluating design decisions in mapreduce setups,”

in the IEEE/ACM Intl. Symposium on Modelling, Analysis and

Simulation of Computer and Telecomm. Systems, 2009.

T. White, Hadoop: The Definitive Guide. O’Reilly Media, 2009.

[10]

(1]

(12]

(13]

Keke Chen is an assistant professor in the
Department of Computer Science and Engi-
neering, and a member of the Ohio Center
of Excellence in Knowledge Enabled Com-
puting (the Kno.e.sis Center), at Wright State
University. He directs the Data Intensive
Analysis and Computing (DIAC) Lab at the
Kno.e.sis Center. He earned his PhD degree
from Georgia Institute of Technology in 2006,
his Master’s degree from Zhejiang University
in China in 1999, and his Bachelor’s degree
from Tongji University in China in 1996. All degrees are in Computer
Science. His current research areas include visual exploration of big
data, secure data services and mining of outsourced data, privacy of
social computing, and cloud computing. During 2006-2008, he was
a senior research scientist at Yahoo! Labs, working on web search
ranking, cross-domain ranking, and web-scale data mining. He owns
three patents for his work in Yahoo!.

James Powers has earned BS and MS de-
grees in Computer Science and is currently a
PhD candidate at Wright State University. He
is @ member of the Data Intensive Analysis
and Computing (DIAC) Lab. His research ar-
eas include big data analysis with an empha-
sis on practical applications of homomorphic
encryption for confidential computations on
big data in a public cloud. He has nearly
thirty years of experience in the design, de-
velopment, and management of large and
small scale computer systems in both commercial and government
settings. He holds certifications in a variety of technologies including
Teradata, Oracle, Linux, and Security +. He was awarded the De-
partment of Defense Superior Management Award by the Assistant
Secretary of Defense for his development of an in-transit visibility
system in support of Operation Desert Storm.

11

Shumin Guo is currently a PhD student in
the Department of Computer Science and
Engineering, and a member of the Data In-
tensive Analysis and Computing (DIAC) Lab,
at Wright State University, Dayton, OH, USA.
He received his Master’s degree in Electron-
ics Engineering from Xidian University, Xi'an
China, in 2008. His current research interests
are privacy preserving data mining, social
network analysis, and cloud computing.

Fengguang Tian earned his Master's de-
gree in Computer Science from Wright State
University in 2011, and Bachelor's degree
in Electronic Engineering from Beijing Uni-
versity of Posts and Telecommunications,
China. Currently, he is a software engineer
at IBM.

7 SUPPLEMENTARY MATERIALS
7.1 Diagrams for MapReduce Processing

Map Task

[l
Read - Map~> Partition/sort—):Combine:

)
1
1
1
1

==V

—
—
HDFS disk

Pull data

|)

[Shuffle—) Sort > Reduce—> WriteBack]

Reduce Task

Fig. 5. Components in Map and Reduce
tasks and the sequence of execution.

[M/mTrounds of Map Tasks
1

[Map Task] [Map Task] [
i Reduce
Results Task
Map Task Map Task Map Task
[apas][apas][apas] |:> Reduce
Task

[Map Task] [Map Task] [Map Task]
Time

Fig. 6. lllustration of parallel and sequential
execution in the ideal situation.

)

Map Task]

m Map Slots

R Reduce Slots

7.2 Sample Programs for Testing.

In this section, we describe the MapReduce programs
used in testing and give the complexity of each one’s
Reduce function, i.e., the g() function. If g() is in one
of the two special cases, the simplified cost model Eq.
10 is used.

WordCount is a sample MapReduce program in the
Hadoop package. The Map function splits the input
text into words and the result is locally aggregated by
word with a Combiner; the Reduce function sums up
the local aggregation results (word, count) by words
and output the final word counts. Since the number
of words is limited, the amount of output data to the
Reduce stage and the cost of Reduce stage are small,
compared to the data and the processing cost for the
Map stage. The complexity of the Reduce function,
g(), is linear to Reduce’s input data.

Sort is also a sample MapReduce program in the
Hadoop package. It depends on a custom partitioner
that uses a sorted list of N —1 sampled keys to define
the key range for each Reduce task. All keys such that
sample[i — 1] <= key < sample[i] are sent to Reduce
i. Then, the inherent MergeSort in the Shuffle stage
sorts the input data to the Reduce. This guarantees
that the output of Reduce i are all less than the output
of Reduce i+1. Both the Map function and the Reduce
function do nothing but simply pass the input to the
output. Therefore, the function g() is also linear to the
size of the input of Reduce.

PageRank is a MapReduce implementation of the
well-known Google’s PageRank algorithm. PageRank

12

can be implemented with an iterative algorithm and
applied to a graph dataset. PageRank values are up-
dated in multiple rounds until they converge. In one
round of PageRank MapReduce program, all nodes’
PageRank values are updated in parallel based on
the PageRank formula. Concretely, the Map function
distributes a share of each node’s PageRank to all its
outlink neighbors. The Reduce function collects the
shares from its neighbors and applies the PageRank
formula to update the PageRank. The Reduce com-
plexity function g() is also linear to the size of the
input of Reduce.

TableJoin is a MapReduce program that joins a
large file with a small file based on a designated key
attribute, which mimics the Join operation in rela-
tional database. The large files are the text files ran-
domly generated with RandomTextWriter. The small
file consists of 50 randomly generated lines using the
same method for generating the large text dataset.
The first word of each line in both types of file serves
as the join key. The Map function emits the lines of
the large and small input files. Each line of the small
file is labeled so that they can be distinguished from
the Map output. In the Reduce, the lines are checked
to find those with matched keys. If the lines from
both files are found matched, a cartesian product is
applied between the two sets of lines with the same
key to generate the output. Depending on the key
distribution, the size of output data may vary. In the
Reduce function, assume there is a A lines are from the
large file and p lines from the small file. The result of
cartesian product is Ay lines. Since p < 50 very small,
the complexity function g() is approximately linear to
the input A + p lines.

7.3 Details of Regression Analysis Result

Table 6 has the details for each regression model and
the goodness-of-fit (R?). R? > 0.9 indicates very good
models.

WordCount Sort PageRank TableJoin
Local | AWS | Local [AWS | Local | AWS [Local | AWS
Bo 51.8 0 20.6 0 25.9 37.7 475 3.6
B1 28.3 54.3 0.7 21.7 12.2 10.4 12.3 20.1
B2 0 0 0 0 0 0.2 0 0
B3 9.2 0 0 0 0 0 0 14.8
Ba 0 0 4.1 3.6 6.6 0 1.6 3.0
Bs 0 0 0 0 0 26.8 0 0
Bs 0.1 0 0.6 0.1 0.5 0 0.2 0
Bz 0.4 0 0 0 0 0 0 0
R? 0.98 0.95 0.97 0.93 0.98 0.97 0.96 0.84

TABLE 6
Result of regression analysis for the in-house cluster
and EC2 clusters. R? values higher than 0.90 indicate
good fit of the proposed model.

7.4 Details in Prediction Error Evaluation

Figure 7 shows the comparison between the actual
time cost and the predicted time cost for each sample

program running in in-house cluster and EC2 clusters,
respectively. The x-axis represents the actual running
time, and the y-axis the predicted time. With an ideal
model, all the points will be on the line y = z, which
is the solid line in the figures. These figures show that
the points are very close to the ideal line, indicating
excellent prediction accuracy.

7.5 Variance Analysis

The modeling process has included the error compo-
nents €, for the Map phase and ¢, for the Reduce
phase. Each task may have variant processing time,
due to the locality of data, the amount of data, the
network traffic, etc., which will eventually cause the
modeling error. We would like to understand how
signficant the variance of each component in the
whole MapReduce program can be, which can be used
to improve the modeling process.

Note that the variance caused by the unbalanced
load of reducers is not considered in our current
study. Recent studies on this problem [10], [8] has pro-
vided some possible solutions to evenly distribute re-
ducer’s workloads. These techniques can be adapted
to minimize or eliminate this variance.

With this exclusion, the possible sources of errors
in our study might be caused by (1) the locality of
data, i.e., fetching local data and remote data will have
significant different time cost; and (2) the performance
fructuation of network I/O and processing power in
the multi-process/multi-tenant environment.

Among the four sample programs, we believe
the Sort program is the best for observing theses
component-wise variances. The processing time of
each component in the MapReduce pipeline is basi-
cally determined by the amount of data processed by
that component. The Sort program does not reduce
the data in processing: it will pass all the data through
each component in the workflow. With uniformly
distributed input data, we can safely exclude the effect
of data skew and observe the variances contributed by
the components.

The Sort program utilizes the internal MergeSort
process in the Reduce phase to sort numeric values.
A special partitioning function is used to make sure
each Reduce task handle a specific range of values
[13]. Both the Map function and the Reduce function
just simply pass data from input to output, which
eliminate the variances brought by user-defined func-
tions. As the sample dataset is drawn from a uniform
distribution, each Reduce task will get an approxi-
mately same amount of data. As a result, we can
safely assume that the costs of the Map and Reduce
functions keep constant for different Map and Reduce
tasks.

This experiment is done with a EC2 cluster and
two sets of randomly generated data in size of 64GB
and 128GB, respectively. We use the MapReduce job

13

profiler developed by Herodotou et al. [5] to record
the costs of each phase. The Reduce phase is fur-
ther split into three components: Shuffle, Sort, and
Reduce+WriteBack.

Figure 8 shows the Map-phase cost distribution
with different numbers of Reduce tasks; Figure 9
shows the corresponding Reduce-phase cost distribu-
tion. The Map-phase cost keeps almost same with
changing numbers of Reduces and input data sizes,
which is consistent with our analysis. The Reduce-
phase cost decreases dramatically from 8 to 32 Re-
duces; after that, the cost reductions are minor, which
indicates that simply increasing the number of Re-
duce tasks is not cost-effective after certain thresh-
old. In fact, according to Table 6, the specific time
cost function is Tsort,quws(M,m,R) = 21.74M/m +
3.58 MlogM /R + 0.05M, which explains why the cost
of Reduce phase follows this pattern. Overall, most
absolute errors (standard deviations) are from the
Reduce phase - the Map phase has standard devia-
tions around 10 seconds, while the Reduce phase has
standard deviations around tens to hundreds seconds.

We further look at the error distribution in the
Reduce phase, in terms of the three major compo-
nents: Shuffle, Sort, and Reduce+WriteBack. Figure
10 and Figure 11 show the error distributions for
64GB data and 128GB data, correspondingly, which
also include the Map phase error for comprehensive
analysis. We can clearly observe that the Reduce
phase errors dominate the overall error distribution.
In particular, Shuffle and Reduce+WriteBack (mostly
WriteBack) dominate the error of Reduce phase. Both
involve network I/0. In most cases, Shuffle fetches
the data remotely, while in our experimental setting
WriteBack will create two replicas of each data block:
one for local and the other for remote. It matches our
understanding that the performance of network I/0O
may vary significantly, and thus is difficult to predict.

As Figure 10 and 11 show, the variance of Shuffle
cost drops significantly with the increasing number of
Reduce tasks, while the variance of WriteBack seems
not decreasing. Therefore, it is possible to improve the
modeling quality by separating the WriteBack compo-
nent from the whole workflow and also using 32 or
more Reduce tasks for generating training examples.

~
o

9;)

(5
o

t (secon

S
o

w
o

N

Time Cos
o

MHap

o

o

2000 -+

o WordCount
£
i= 1600 -
f =
) e it
S 1200 - o 8
3 »
x C
W —|deal
2 s
AWS-Ex
5 ¢ P
T 400 1 A A Local-Exp
a
0 . . . ,
0 500 1000 1500 2000
Actual Exeution Time (sec)
7000
PageRank
£6000
Z
5000 *
K]
5
24000 = |deal
¢
wi3000 ¢ AWS-Exp
-
[-
fg’zooo A Local-Exp
el
gwoo 1
0 : : : : . r)
0 1000 2000 3000 4000 5000 6000 7000

Actual Exeution Time (sec)

ime

Predicted Execution T

n w

=] =} 8
=3 =} =]
=])]

Predicted Execution Time
)
8

2000 +

1600 -

1200 -

800 -

400

14

Sort

= |deal
& AWS-Exp
A Local-Exp

0 1000 2000 3000 4000
Actual Exeution Time (sec)

Tableloin

——I|deal

* & AWS-Exp
A Local-Exp

0 - T T T
0 500 1000 1500 2000

Actual Exeution Time (sec)

Fig. 7. A comparison on model accuracy in the local cluster and EC2 clusters.

[164GB Data B 128GB Data

8 16 32 48 64

Number of Reduce Processes

Fig. 8. Map phase cost distribution of the Sort
program in the EC2 cluster.

5000 -+
4500 -
4000 -
3500 -
3000 -
2500 -+

[164GB Data m 128GB Data

2000 -+

1500 -
1000 -
500 -+
0 T T T T
8 16 32 48 64

Number of Reduce Processes

Reduce Time Cost (seconds)

Fig. 9. Reduce phase cost distribution of the Sort
program in the EC2 cluster.

15

250 - B Reduce+WriteBack 450 1 B Reduce+WriteBack
OSort 400 O Sort
5 200 1 B Shuffle S 350 - W Shuffle
E iy O Map _E =300 - O Map
2 8150 - Sw
] 0 Tygp -
o S 0 £
o o
T b T $200 -
s Q100 - 58
0 T 150 -
5 s & 100 |
- Bl m
0 ; ; ; : . 0 . . : . .
8 16 32 48 64 8 16 32 48 64
Number of Reduce Processes Number of Reduce Processes
Fig. 10. The distribution of standard deviations for Fig. 11. Map phase cost distribution of the Sort

the Sort program with 64GB input data. program in the EC2 cluster.

