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Abstract

With continued advances in communication network technology and sensing technology, there is an
astounding growth in the amount of data produced and made available through the cyberspace. Efficient
and high quality clustering of large datasets continues to be one of the most important problems in large-
scale data analysis. A commonly used methodology for cluster analysis on large datasets is the three-phase
framework of “sampling/summarization iterative cluster analysis disk-labeling”. There are three known
problems with this framework, which demand effective solutions. The first problem is how to effectively
define and validate irregularly shaped clusters, especially in large datasets. Automated algorithms and sta-
tistical methods are typically not effective in handling such particular clusters. The second problem is how
to effectively label the entire data on disk (disk-labeling) without introducing additional errors, including
the solutions for dealing with outliers, irregular clusters, and cluster boundary extension. The third problem
is the lack of research about the issues for effectively integrating the three phases. In this paper, we de-
scribe IVIBRATE — an interactive-visualization based three-phase framework for clustering large datasets.
The two main components of iVIBRATE are its VISTA visual cluster rendering subsystem, which invites
human into the large-scale iterative clustering process through interactive visualization, and its Adaptive
ClusterMap Labeling subsystem, which offers visualization-guided disk-labeling solutions that are effective
in dealing with outliers, irregular clusters, and cluster boundary extension. Another important contribution
of iVIBRATE development is the identification of special issues presented in integrating the two compo-
nents and the sampling approach into a coherent framework, and the solutions to improve the reliability
of the framework and to minimize the amount of errors generated throughout the cluster analysis process.
We study the effectiveness of the iVIBRATE framework through a walkthrough example dataset of a mil-
lion records and experimentally evaluate the iVIBRATE approach using both real-life datasets and synthetic
datasets. Our results show that iVIBRATE can efficiently involve the user into the clustering process and
generate high-quality clustering results for large datasets.

1 Introduction

Cluster analysis is a critical component in large-scale data analysis. Over the past decade, large datasets hav
been collected and analyzed in many application domains, varying from bioinformatics, information retrieval,



physics, geology, to marketing and business trend prediction. Many have reached the level of terabytes to
petabytes [26, 19]. There is a growing demand for efficient and flexible clustering techniques that can adapt to
the large datasets with complex cluster structure.

A dataset used in clustering is typically represented as a fabtensisting ofd dimensions (columns) and

N records (rows). A record can represent an event, an observation or some meaningful entity in practice,
while a dimension could be an attribute/aspect of the entity. The clustering algorithms try to partition the
records into groups with similarity measure [29]. A dataset can be large in terms of the number of dimensions
(dimensionality), the number of records, or both. The problem of high dimensionality (hundreds or thousands of
dimensions) is typically addressed by feature selection and dimensionality reduction techniques [11, 38, 56, 3].
In this paper, we will focus on cluster analysis for themericaldatasets with a very large number of records

(> 1 million records) and a medium number of dimensions (usuali) dimensions), assuming that the high
dimensionality has been reduced before datasets entering the iVIBRATE framework for cluster analysis.

1.1 General Problems with Clustering Large Datasets

Several clustering algorithms have aimed at processingititiee dataset in linear or near linear time, such
as WaveCluster [47], DBSCAN [15], and DENCLUE [23]. However, there are some drawbacks with these
approaches.

(1)Time Complexity of Iterative Cluster Analysis. Typically, cluster analysis continues after the cluster-

ing algorithm finishes in a run, unless the user has evaluated, understood and accepted the clustering pattern:
or results. Therefore, the user needs to be really involved in the iterative process of “clustering and analy-
sis/evaluation”. In this process, multiple clustering algorithms, and multiple runs of the same algorithm with
different parameter settings can be tested and evaluated. Even for a clustering algorithm with linear computa-
tional complexity, running such an algorithm on a very large dataset in multiple times could become intolerable.
Moreover, most cluster validation methods cost non-linear time [22, 30, 14]. When performed on the entire
large dataset, the validation of clusters hinders the performance improvement for the entire iterative process.

(2)Cluster Analysis on Representative Dataset vs. on Entire DatasdBearing the above problems in mind,

a number of approaches were proposed to perform clustering algorithms on the sample datasets or data sum
marization instead of the entire large dataset. For example, CURE [20] applies random sampling to get the

sample data and then runs a hierarchical clustering algorithm on the sample data. BIRCH [58] summarizes
the entire dataset into a CF-tree and then runs a hierarchical clustering algorithm on the CF-tree. This “sam-
pling/summarization — iterative cluster analysis” framework has been commonly recognized as a practical so-

lution to large-scale cluster analysis. Since the size of dataset is reduced with the sampling/summarization
techniques, any typical clustering algorithms and cluster validation techniques that have acceptable non-linear
computational complexity can be applied in cluster analysis.

However, the above two-phase framework misses the bridge between the clustering result of the representative
dataset and the requirement of retrieving cluster labels for the entire large dataset. There are some typical
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questions frequently asked about the entire large datasets, by the applications requiring cluster analysis: 1)
what is the cluster label for a particular data record? 2) what are the data records that belong to a particular
cluster? Therefore, we also need to extend the clustering result to the entire dataset, which introduces in the
third phase - labeling data on disk with the intermediate clustering result. Previous research on clustering with

the three-phase framework has been primarily focused on the first two phases. Surprisingly, very few studies
have considered the efficiency and quality of disk-labeling phase.

Disk-labeling also provides the opportunity to review and correct the errors generated by the first two phases.
For example, sampling/summarization tends to cause the loss of small clusters in the representative dataset
It is easy to understand that when the sample size is small, some small clusters might be lost. This is also
true when summarization is done in a high granularity. For example, when a CF-tree in BIRCH is relatively
small compared to the number of records, a leaf node will possibly cover a large spatial locality and we have to
consider the points in the leaf as one cluster. However, in real-life applications, such a leaf node may contain
several small clusters, which are not observable in the summarized clusters. Although many applications only
consider the large clusters, small clusters may become very significant for some applications. Thus, there is a
need for monitoring the small clusters, which are missed by applying sampling/summarization techniques in
the first phase.

————————————————————————— Anomalies -
Iterative Cluster Analysis 3

Sampling/ v : Cluster Labeling
e Clustering . .
summarization Evaluation entire dataset

Figure 1: Three phases for cluster analysis of large datasets, (Sampling/summarization —
Cluster Analysis — Disk Labeling)

(3) Problems with Irregularly Shaped Clusters. Many automated clustering algorithms work effectively in
finding clusters in spherical or elongated shapes but they cannot handle arbitrarily shaped clusters very well
[20]. Accordingly, the traditional validation methods, primarily based on statistical methods, cannot validate
arbitrarily shaped clusters effectively [22, 46].

In some applications, irregularly shaped clusters may be formed by combining two regular clusters or by split-
ting one large cluster based on domain knowledge. Most of the existing clustering algorithms do not allow the
user to participate in the clustering process until the clustering algorithm is completed. It is inconvenient to
incorporate domain knowledge into the cluster analysis, or to allow the users to steer the clustering process for
automated algorithms.

We argue that visualization techniques can play an important role in solving the problem of irregularly shaped
clusters in large datasets. Some visualization-based algorithms, such as OPTICS [1], tried to find the arbitrar-
ily shaped clusters, but they are applicable only to the datasets of a small manageable size, which is greatly
restricted by the computer system capability, i.e., the memory capacity, the CPU speed and the screen size.
Although visualization has shown unique advantages in handling arbitrarily shaped clusters, there is no re-
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search extending the visualization techniques to clustering very large datasets, where sampling/summarization
approaches have to be applied as the preprocessing stage of visualization systems.

(4)Problems with Disk Labeling. When disk labeling is used as the last phase of large-dataset clustering, it
uses the intermediate clustering result to assign a cluster label to each data record on disk. Without an effective
labeling phase, a large amount of errors can be generated when the intermediate clustering result is extended tt
the entire dataset.

The quality of labeling depends primarily on the precise description of cluster boundaries. All existing labeling
algorithms are based on very rough cluster descriptions [30], such as a centroid or a set of representative clustel
boundary points for a cluster. A typical labeling algorithm assigns each data record on disk to a cluster that
has centroid or the representative boundary points closest to this data record. Centroid-based labeling (CBL)
uses cluster center (centroid) only to represent a cluster; Representative-point-based labeling (RPBL) uses a se
of representative points on cluster boundary to describe the cluster. The latter is better since it provides more
information about the cluster boundary. With RPBL, the quality of boundary description mainly depends on
the number of representative points, which could be very large for some irregular cluster shapes or for large
clusters. However, it is not convenient for the user to determine how many representative points are sufficient
for a particular dataset.

Moreover, in many cases, the cluster boundary cannot be defined precisely with the sample dataset. More
importantly, the cluster boundaries continue to evolve as we incorporate more the labeled records during the
disk labeling phase. We call it the “cluster boundary extension” problem and will describe it in detail with our
solutions later in the paper.

1.2 The Scope and Contribution of the Paper

We have summarized four key problems in clustering large datasets: 1) the three-phase framework is necessan
for reducing the time complexity of iterative cluster analysis; 2) extending clustering result on the representative
dataset to the entire large dataset can raise problems; 3) clustering and validating irregularly shaped clusters in
large datasets is important but difficult; and 4) existing disk-labeling algorithms may result in large errors when
used to extend the intermediate clustering result to the entire dataset.

We also explicitly identify the boundary extension problem as an important challenge in the labeling phase.
The point density over the boundary could increase significantly as the number of labeled records increases,
which naturally leads to the boundary extension problem. When the sample size is much smaller than the size
of the large dataset, e.g< 1% of the original data records, boundary extension can cause large error too if
the labeling algorithms do not consider this phenomenon. Figure 2 shows the clusters evolving from the small
ones in the representative dataset to the larger ones in the entire dataset, where boundary extension results i
significant difference in cluster definition.

Boundary extension can cause another two important problems. 1) For the regular spherical clusters as showr
in Figure 2, existing labeling algorithms usually mistakenly assign all outliers to the nearby clusters, or treat
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Figure 2: Comparing the cluster boundary of small and large dataset (data points are
white)

the cluster members out of the original boundary as outliers. As a result, none of them can deal with outliers
and boundary extension effectively. For irregular cluster boundary, the situation becomes worse. 2) Bound-
ary extension might also result in the overlapping of different clusters, which are originally separated in the
representative set. This may require us to adjust the cluster definition.

To address all of the above problems, we propose the iVIBRATE framewaoak interactive visualization

based three-phase framework for clustering large datasets. The iVIBRATE framework includes the three phases
“Sampling— Visual Cluster Analysis- Visualization-based Adaptive Disk-labeling”. In this paper, we intro-

duce the two main components: visual cluster analysis and visualization-based adaptive disk-labeling, while
focusing on the important issues in integrating the three components in the iVIBRATE framework, and demon-
strating how to analyze very large datasets with the iVIBRATE framework.

In the clustering phase, we use visual cluster analysis, including visual clustering and visual cluster validation,
to allow the user to be more effectively involved in the iterative cluster analysis, reducing both the length of
single iteration and the number of iterations. We develop a visual cluster rendering system, VISTA, to perform
“visual cluster analysis”. The VISTA system interactively visualizes the multi-dimensional datasets (usually
<50 dimensions). It allows the user to interactively observe potential clusters in a series of continuously
changing visualizations. More importantly, it can incorporate the algorithmic clustering results, and serve as an
effective validation and refinement tool for identifying irregular clusters.

In the disk-labeling phase, we develop the Adaptive ClusterMap Labeling. ClusterMap encodes the irregular
cluster boundaries defined on the visualization generated by the VISTA subsystem and clearly distinguishes the
outliers. It extends the cluster boundary by clearly distinguishing the outliers, continuously detecting irregular
shaped clusters, and visually monitoring the anomalies in labeling process. As a result, the Adaptive Clus-
terMap labeling generates fewer errors than the existing disk-labeling algorithms, and thus effectively reduces
the error introduced by the first two phases.

When the three phases are integrated in the iVIBRATE framework, errors caused by the improper operations
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in the prior phases may propagate to the later phases. Visualization helps to detect and reduce such errors
We identify and analyze the issues related to the integration, and develop the theory and tools to monitor the
possible errors. The iVIBRATE framework is evaluated with real and synthetic datasets and results show that
iVIBRATE can efficiently incorporate the user into the clustering process to generate high-quality clustering
results for large datasets.

The rest of the paper is organized as follows. Section 2 reviews some related work. Section 3 presents the iVI-
BRATE framework. Section 4 and Section 5 introduce the two main components of the framework: the VISTA
visual cluster rendering system and the ClusterMap labeling algorithms. Section 6 describes the problems and
the solutions for integrating the three phases into the iVIBRATE framework. Section 7 reports the experimen-
tal results, demonstrating that the iVIBRATE approach can effectively discover and validate irregular clusters,
and the intermediate clustering result can be effectively extended to the entire large dataset through adaptive
ClusterMap labeling. We also present an example using the steps defined in iVIBRATE framework to explore
the very large real dataset: census dataset, in section 8.

2 Related Work

Clustering Large Data. We have described four challenges related to clustering large datasets: time complex-

ity (scalability), sampling/summarization based clustering, irregular clusters and disk-labeling. Although each

of these issues has been studied in the literature, there is surprisingly little study on how they impact on the
cluster quality when sampling/summarization, iterative cluster analysis, and disk labeling are integrated into a
unifying framework for large datasets with complex cluster structures.

Concretely, time complexity of clustering algorithm has been addressed from early on. K-means algorithm [29]
is the most popular algorithm with linear time complexity. However, most studies related to K-means assume
that the clusters are in spherical shapes. Recently, there are some other algorithms [47, 15, 23] started looking
at the problem of clustering irregular clusters in linear/near-linear time.

A general cluster analysis framework is described in a review paper by Jain [30], showing that cluster analysis
is usually an iterative process. One approach to address the scalability of iterative clustering analysis is the use
of the “sampling(summarization) — clustering—labeling” framework, represented by CURE [20] and BIRCH
[58]. However, the labeling phase and interactions between the phases are not sufficiently addressed.

Regarding summarization/sampling phase, similar to BIRCH summarization, Bradley et al. [4] suggest using
sufficient statistics to model the data summary. In comparison to summarization, sampling is used more exten-
sively for data analysis: commercial vendors of statistical packages (e.g., SAS) typically use uniform sampling
to handle large datasets. Vitter’s reservoir sampling [51] presents another efficient uniform sampling technique.
The main problem with uniform sampling is the loss of small clusters. CURE proposed a method to estimate
the minimum sample size given that the size of dataset and the smallest size of clusters are known. The mini-
mum sample size shall increase dramatically with the increase of dataset size. Thus, for a fixed sample size, the
small clusters should be monitored using a different approach to maintain the consistency in cluster analysis
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quality, especially in the disk labeling process. Another popular sampling approach is called density-biased
sampling proposed by Palmer et al. [41]. A density-biased sampling preserves the small clusters in sampling
process. However, this technigue also reduces the actual size of large clusters, introducing too much inconsis-
tency between the clusters in the sample set and the actual clusters in the entire large dataset. These problen
call for effective solutions that can improve the quality of both the iterative cluster analysis phase and the disk
labeling phase in order to reduce the impact of the errors introduced by sampling on the overall quality of the
data clustering process.

Another important issue in clustering large datasets is the problem of arbitrarily shaped clusters or so called
irregular shaped clusters. Dealing with arbitrarily shaped clusters is well-recognized as a challenging problem
in clustering research community. A number of clustering algorithms have aimed at this particular problem,
such as CURE [20], CHAMELEON [32], DBSCAN [15], DBCLASD [54], WaveCluster [47], DENCLUE

[23] and so on. The semi-automatic algorithm OPTICS [1], derived from the DBSCAN algorithm, shows that
visualization can be very helpful in cluster analysis. However, all these algorithms are known to be effective
only in low dimensional (typically<10D) datasets or in small/medium datasets with hundreds or thousands of
records.

The disk labeling solutions so far heavily depend on the concrete cluster representations generated at the itera
tive cluster analysis phase. Existing cluster representations can be classified into four categories [30] : centroid-
based, boundary-point-based (representative-point-based), classification-tree-based and rule-based represent
tions. Centroid is the most popular representation. Many clustering algorithms only generate centroids, for
example, K-means and most hierarchical algorithms. Good representative boundary points are often difficult to
extract. The most typical algorithm for generating the representative points is CURE [20]. Classification-tree-
based and rule-based representations are equivalent (each path in the classification tree can be represented a
rule) and not convenient to describe high-dimensional data or complicated clustering structure.

Document Clustering in IR and Linkage-based clustering in Network Analysis. Most of the work on
clustering large datasets can be roughly categorized into three areas: scientific/business data clustering [29, 30]
document clustering [53, 12, 44, 28, 45, 57, 49], and linkage-based clustering for large scale network analysis
[30, 21, 40].

In scientific/business data clustering, the data is already formalized as a set of multi-dimensional vectors (i.e., a
table). However, in document clustering, the original data is text data. Most document clustering techniques are
focused on the two steps before applying clustering algorithms: extracting keywords/constructing the numerical
features [56], and defining similarity measures [2]. Given the vector representation of documents and the
similarity measure, document clustering is to some extent similar to scientific/business data clustering. Since
document collection has become larger and larger with the wide spread of Internet-based applications, we
expect that the iVIBRATE framework described in this paper can also be applied to clustering of large sets of

documents.

Graph mining or linkage-based clustering [30] has received a growing interest in the recent years due to in-
creased interests in analyzing large-scale networks, such as peer to peer online communities [42], and social



network [40]. Linkage-based clustering is also used in clustering categorical datasets [21]. In comparison, most
of the business/scientific data clustering algorithms utilize the distances between multi-dimensional data points
(records) to compute and derive data clusters, while most of the linkage-based clustering algorithms utilize
the node connectivity as a main measurement to understand and derive interesting clustering structure of the
network. Thus, the linkage-based clustering algorithms aim at finding communities in netwagrkaips of

vertices within which connections are dense but between which connections are sparser. A commonalty of data
clustering, document clustering, and node clustering is the fact that they all emphasize on efficient algorithms
to speed up the clustering process of large datasets. However, the subtle differences between distance base
measure and connectivity-based measure may influence how the clustering algorithms are devised and what
factors are critical to the performance of the algorithms.

Due to the scope of our paper, we will confine our discussion to the general clustering problem to the business
and scientific datasets.

Visualization of Multidimensional Data. Information visualization has demonstrated great advantages in
multi-dimensional data analysis. Here we only discuss the scatter-plot-based techniques because they are th
most intuitive techniques for cluster visualization. The early research on general 2D-plot-based data visualiza-
tion is Grand Tour and Projection Pursuit [10]. Since there are numerous projections from a multidimensional
data space to a 2D space, Grand Tour and the Project Pursuit automatically interpolate the intermediate pro-
jections to connect several pre-selected projections. Yang [55] utilizes the Grand Tour technique to show
projections in an animation. Dhillon, et al. [13] aimed at precise visualization of the clusters, but the technique
is only effective for 3 clusters. When more than 3 clusters exist, this method needs the help of Grand Tour tech-
niques. In fact, the mathematical interpolation used in these models is computationally complex. since we can
fully utilize the human visual ability and the property of exploration tasks to simplify the visualization model
and get the satisfactory visualization more efficiently. The iVIBRATE visual rendering development (VISTA)
has shown that the special properties of the data exploration task (i.e., the clustering task in the context of this
paper) can be utilized in user interaction to find the satisfactory visualization more efficiently.

In addition, there are static multidimensional visualization techniques such as Scatterplot Matrices, coplots,
Parallel Coordinates [27], Glyphs [37], multidimensional stacking [35], prosection [8] and FastMap based vi-
sualization [16]. A nice tool, XvmdvTool [52], implements some of the above static visualization techniques.
However, these techniques are generally not designed for effectively discovering the clusters in very large
datasets. Many of them are limited by the dimensionality (10-20 dimensions at maximum), for example, Scat-
terplot Matrices and Parallel Coordinates. None of them are designed for very large number of records
neither can they be easily extended to the three-phase cluster analysis framework for large datasets.

Star Coordinates [31] is a visualization system designed to interactively visualize and analyze clusters. We
utilize the form of Star Coordinates and build #venapping model in our systena-mapping model extends

the ability of the original mapping [6]. RadViz [25] utilizes the same coordinates system with a non-linear
mapping function, but it is not suitable for cluster exploration. HD-Eye [24] is another interesting interactive
visual clustering system. HD-Eye visualizes the density-plot of the interesting projection of any two of the



k dimensions. It uses icons to represent the clusters and the relationship between the clusters. However, it
is difficult for the user to synthesize all of the interesting 2D projections to find the general pattern of the
clusters. In fact, visually determining the cluster distribution solely through user interaction is not necessary. A
more practical approach is to incorporate all available clustering information, such as the algorithmic clustering
results and the domain knowledge, into the visual cluster exploration.

3 The iIVIBRATE Framework

In this section, we first briefly describe the motivation and the design ideas of the iVIBRATE development, and
then present the components and working mechanism of iVIBRATE.

Motivation. In the three-phase framework, the cluster analysis involves the "clustering - analysis/evaluation”
iteration, which can be concretely described in the following steps:

1. Run the clustering algorithms with the initial setting of parameters.
2. Analyze the clustering results with statistical measures and domain knowledge.

3. If the result obtained in Step 2 is not satisfactory, adjust the parameters and re-run the clustering algo-
rithms, then go to Step 2 to evaluate the clustering result again until the satisfactory result is obtained.

4. If the result is satisfactory, then perform post-processing, which may include labeling the data records on
disk with the cluster labels.

Open problems. We first discuss a humber of open problems in the above steps, and then we describe how
iVIBRATE addresses these problems. Traditional statistical methods, such as variance and intra/inter cluster
similarity, are typically used in Step 2, which assume that the shape of cluster structure is hyper-sphere or hyper-
ellipse. As a result, these traditional statistical methods have difficulty in effectively validating the irregular
cluster shapes [14, 22]. Moreover, with automated algorithms, it is almost impossible to incorporate the domain
knowledge. The critical task in step 3 is to learn and determine the appropriate parameter settings. In the
absence of user experience, it is extremely difficult to determine the appropriate setting of parameters for a new
run. For example, CURE [20] requires the number of representative points and the shrink factor. DBSCAN [15]
needs propet andMinPtsto get satisfactory clusters. DENCLUE [23] needs to define the smoothness level
and the significance level. These parameter settings are different from dataset to dataset and depend primarily
on the users to try different parameters and find the “best” set of parameters by hand. Therefore, there is a
need for facilitating the users to find the appropriate parameter setting when automated algorithms are applied.
Finally, a coarse labeling algorithm tends to deteriorate the intermediate clustering result.

Bearing these problems in mind, we observed that, if the step 2 and 3 can be carefully combined together,
which means that the user can perform evaluation in the course of clustering and be able to refine the clusters
interactively, the length of an iteration would also be greatly reduced. In addition, the user would understand
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more about the dataset and thus be more confident in their judgment of the clustering results. This motivates us
to develop and promote the interactive visual cluster rendering approach.

Cluster Visualization and Visual Validation. Cluster visualization can improve the understanding of clusters.
Former studies [34] in the area of visual data exploration support the notion that visual exploration can help
in cognition. Visual representations can be very powerful in revealing trends, highlighting outliers, showing
clusters, and exposing gaps. According to the paper [48], with the right coding, human pre-attentive percep-
tual skills enable users to recognize patterns, spot outliers, identify gaps and find clusters in a few hundred
milliseconds. In addition, it does not require the knowledge of complex mathematical/statistical algorithms or
parameters [33].

Visualization is known to be the most intuitive method for validating clusters, especially clusters in irregular
shape. Since the geometry and density features of clusters, which are derived from the distance (similarity)
relationship, determine the validity of the clustering results, many clustering algorithms in literature use 2D-
plot of clustering results to visually validate their effectiveness on 2D experimental datasets.

Static vs. Dynamic Data Visualization.In general, multi-dimensional data visualization can be categorized
into static visualization or dynamic visualization. Static visualization displays the data with a fixed set of pa-
rameters, while dynamic cluster visualization allows the user to adjust a set of parameters, resulting in a series
of continuously changed visualizations. It is commonly believed that static visualization is not sufficient in
visualizing multi-dimensional data [33, 48], and it has been shown that clusters can hardly be satisfactorily
preserved in a static visualization [10, 13]. Therefore, we consider using interactive dynamic cluster visual-
ization in the iVIBRATE framework. We observe that a cluster can always be preserved as a point-cloud in
visual space through linear mappings. The only problem is that, the point-clouds may overlap with one another
and to find certain mapping that can satisfactorily separate the point clouds is mathematically complex. In the
iVIBRATE framework, we incorporate the combination of visual cluster clues and interactive rendering into the
iterative clustering analysis and refine the algorithmic clustering results with visual cluster clues and interactive
rendering, which enables us to identify these point-cloud overlaps quickly and intuitively.

Visualization-based Disk-labeling. Another unique characteristic of iIVIBRATE is its visualization-based
disk-labeling algorithms. We argue that a fine cluster visualization of a dataset can serve as the visual clus-
tering pattern of this dataset, where the cluster boundary can be precisely described and most outliers can be
clearly distinguished. We develop the basic ClusterMap labeling algorithm for obtaining better description of
cluster boundary and higher quality of disk-labeling. We extend the basic ClusterMap algorithm to adapt to the
boundary extension, and refer to this enhanced algorithm the Adaptive ClusterMap labeling algorithm.

Components and Working Mechanism. Figure 3 sketches the main components of iVIBRATE. We briefly
describe each of the main components and the method used to integrating them as follows.

e Visual Cluster Rendering The VISTA system can be independently used to render the clusters in a
dataset without incorporating any external information. It can also visualize the result of an automated
clustering algorithm or use the result to guide the interactive rendering. By interactively adjusting the
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Figure 3: The iVIBRATE framework

visual parameters, the user can visually validate the algorithmic clustering results through multiple con-
tinuously changing visualizations. Using a couple of rendering rules, which are easy to learn, the user
can quickly identify cluster overlaps and improve the cluster visualization. In addition, it also allows
the user to conveniently incorporate domain knowledge into cluster definition through visual rendering
operations. Semi-automated rendering method is also provided for larger number of dimensiois (

and< 100D).

Data Filter prepares the data for visualization. It handles missing values and normalizes the data. If the
dimensionality is too high, dimensionality reduction techniques or feature selection might be applied to
get a manageable number of dimensions. When the datasets grow past a million items and cannot be
easily visualized on a computer display, Data Filter also uniformly samples data to create a manageable
representative dataset, or extracts certain relevant subsets, for example, one specific cluster.

Label Selector selects the clustering result that will be used in visualization. While a clustering algorithm
finishes, it usually assigns a label to each data record. Label Filter extracts part of the labels corresponding
to the data records extracted by Data Filter.

Adaptive ClusterMap Labeling In the iVIBRATE framework, we introduce ClusterMapa new clus-

ter presentation, and the associated post-processing methods. ClusterMap makes the labeling result mos
consistent with the defined cluster distribution. Adaptive ClusterMap also automatically adjusts the clus-
ter boundary according to the accumulated labeled data records.

ClusterMap Observer is an interactive monitoring tool. It observes the snapshots, i.e. the changing
ClusterMaps during labeling. The snapshots may provide information about the bias of the representative
sample set, for example, the missing small clusters, and the anomalies in labeling, such as inappropriate
initial cluster boundaries 6.2.
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A user of iVIBRATE will perform the cluster analysis on a large dataset in the following seven steps. 1) The
large dataset is sampled to get a subset in manageable size (such as thousands or tens of thousands recor
sampled from over one million of records). 2) The sample set is used as an input to the selected automatic
clustering algorithms and to the VISTA visual rendering subsystem. The algorithmic clustering result provides
helpful information in the visual cluster rendering process. 3) The user interacts with the VISTA visual cluster
rendering system to find the satisfactory visualization, which visualizes the clusters in well-separated areas.
Since human vision is very sensitive to the gap between point clouds, which implies the boundary of clusters, the
interactive rendering works very well in refining vague boundaries or irregular cluster shapes. 4) A ClusterMap
is then defined on the satisfactory cluster visualization and used as the initial pattern in ClusterMap labeling.
5) The labeling process will adapt the boundary extension and refine the cluster definition in one pass through
the entire dataset. An additional pass might be needed to reorganize the entire dataset for fast processing o
queries. During the labeling process, the snapshots are saved periodically, which are then used to monitor the
abnormality during the labeling process. 6) The user can use the ClusterMap Observer to check the snapshots
and refine the extended ClusterMap. 7) To further observe the small clusters that may be omitted in the sampling
process, the data filtering component is used to filter out the labeled outliers and performs sampling/visual
rendering on the sampled outliers again (for details, see section 6.3).

In the following sections, we will introduce the two visualization-based subsystems with our focus on integrat-
ing the components into the framework so that the errors are effectively controlled.

4 VISTA Visual Cluster Rendering System

A main challenge in cluster visualization is cluster preservation, i.e., visualizing multi-dimensional datasets in
2D/3D visual space, while preserving the cluster structure. Previous studies have shown that preserving cluster
structure precisely in static visualization is very difficult, if not impossible, and computationally expensive
[33, 10, 55, 31, 48]. An emerging and more practical mechanism to address this problem is to allow the user to
interactively explore the dataset [33] and to distinguish the visibly inaccurate cluster structure, such as cluster
overlapping, broken clusters and false clusters (the situation where the outliers in the original space are mapped
to the same visual area) through visual rendering operations.

The iVIBRATE visual cluster rendering subsystem (VISTA) is designed to be a dynamic visual cluster explo-
ration system. It uses a visualization model, characterized by the max-min normalization anthépping to

produce a linear transformation that maps a multi-dimensional data point onto a data point in a 2D visual space,
each 2D point is annotated with a star-coordinate. This mapping model provides a set of visually adjustable
parameters for each dimension through éhparameters. By continuously changing one of the parameters,

the user can see the dataset from different perspectives. Since the linear mapping does not break the clusters
the clusters in multi-dimensional space are still visualized as dense point clouds (the “visual clusters”) in 2D
space. And the visible “gaps” between the visual clusters in 2D visual space indicagallgapsbetween

point clouds in the original high dimensional space. However, visible overlapping between the visual clusters
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Figure 4: lllustration ofx-mapping withk = 6

in the 2D space, i.e. the point clouds, may happen with certain parameter settings. We have developed a se
of interactive operations and designed several heuristic rendering rules in order to efficiently distinguish the
visual cluster overlaps. These developments have shown to be quite effective in achieving desired rendering
efficiency.

In the current prototype of iVIBRATE VISTA subsystem, the system processes only the datasets that support the

distance/similarity function defined by Euclidean distance, which is the most commonly used distance measure

in the applications. For presentation convenience, in the rest of the paper we refer to the datasets we considel
as the Euclidean datasets.

4.1 The Visualization Model

The VISTA visualization model consists of two linear mappirgsnax-min normalization followed byi-
mapping. The columns and rows of the datasets referred in the following discussion represent the dimensions
and data records, respectively.

Max-min normalization is used to normalize the columns in the datasets in order to eliminate the dominating
effect of large-valued columns. For a column with value bounds [min, max], max-min normalization scales a
valuew in the column into [-1, 1] as follows:

o 2(v — min) _q 1)

max — min

wherev is the original value and’ is the normalized value.a-mapping mapsk-D points onto the 2D
visual space while providing the convenience of visual parameter tuning. We deaenitagping as fol-
lows. Let a 2D point)(z,y) represent the image offadimensional §-D) max-min normalized data point
P(z1,...xi,...,25), z; € [—1,1] in 2D space.Q(z,y) is determined by the average of the vector sum of
the & vectorss;z;, wheres; = (cos(0;),sin(6;)),i = 1...k andé; € [0, 2x| are the star coordinates [31] that
represent thé dimensions on the 2D visual space. Formula 2 defiresapping.

k
Ay, 00) (@1, TR, 01, o) = (c/k) Zaixigi —3d (2)
=1
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i.e. a 2D point)(z, y) is determined by
k k
{z,y} = {(c/k) Y aimicos(0;) — mo, (¢/k) Y cvias sin(6;) — o} 3)
i=1 i=1

Here,o;(i = 1...k,o; € [—1,1]) provides the visually adjustable parameters, one for each of tilie
mensions.a; € [—1,1] covers a considerable range of mapping. Experimental results show that this range
combined with the scaling facteris effective enough for finding satisfactory visualizatiénis set to2ir /k

initially and can be adjusted afterwards. We also proved that adjustiatiies is often equivalent to a pair of

« adjustment plus zooming [6]. Therefofg,are always considered as a set of fixed numbges. (zg, yo) IS

the center of the display area.

a-mapping is a linear mapping, with any fixed setcof/alues. Without loss of generality, we set the center

translation(zg, yo) as(0,0). The mappingda,—a,,....ax=a, (21, - - -, Tx) Can be represented as the following
transformation.
(01)-cos(tr) | | “
cos(0q) - - - cos(0;
Aor=ar,....ap=ap (L1, -, Tk) =
TR sin(6y) - - - sin(6g)
af T

It is known that linear mapping does not break clusters but may cause overlapped clusters [33, 18]. Since
a-mapping is linear, there are no “broken clusters” in the visualization, i.e., the visual gaps between the point
clouds reflect the real gaps between the clusters in the original high-dimensional space. All we need to do
is to separate the possibly overlapped clusters, which can be achieved with the help of dynamic visualization
through interactive operations.

The mapping is adjustable hy,. By tuning«; continuously, we can see the effect of thtéh dimension to
cluster distribution in a series of smoothly changing visualizations, which can provide important clustering
clues. The dimensions that are important to clustering will caigggficant change® the visualization as the
correspondingy values are continuously changed.

«a-mapping based visualization is implemented in the VISTA subsystem as shown in Figure 5. The coordinates
are arranged around the display center andhtinddgets are designed for interactively adjusting eackalue.
However, the above visual design also limits the number of dimensions that can be visualized and manually ma-
nipulated. In the current prototype of VISTA, the users can comfortably manually render up to 50 dimensions.
Although the system can visualize more than 50 dimensions, we suggest using the semi-automated rendering
method that will be introduced in section 4.3.

4.2 The Rules for Interactive Visual Rendering

To understand the basic visual rendering rules, we should investigate the dynamic properties of the visual-
ization model, especially, the most important interactive operatianparameter adjustment (or simply;
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Figure 5: An implementation af-mapping

adjustment) a-adjustment changes the parameters defined in Eq. (2). Each change refreshes the visualization
in real time (about a couple of hundred milliseconds, depending on different hardware configuration and the
size of the dataset), generating dynamically changing visualizatiorsdjustment enables the user to find
thedominating dimension$o observe the dataset from different perspectives, and to distinguish the real clus-
ters from overlapping in continuously changing visualizations. Therefore, we should investigate the dynamic
properties ofv-adjustment operation.

Continuousa-parameter adjustment of one dimension reveals the effect of this dimension on the entire visu-
alization. LetX (z1,...,zx) andY (y1,...,yk), i, y; € [—1,1] represent any two normalized pointsirD
space. Lef|v]| represent the length of vectdr We define thevisual distancéetweenX andY is:

vdist(X,Y) = |[A(x1,.. Tk, 1,y Qyee oy ) — A(YLy ooy Yk Oy e ey Qg ooy )|
k

= |l(e/k) D ailwi — i)l (4)
=1

which means ifr; andy; are close, changing; does not change the visual distance betw&eandY a lot
— the dynamic visual result is thaf andY are moving together whem; changes. Meanwhile, neighboring
points ink-D space also have similar values in each dimension as Euclidean distance is employed. Thus, we can
conclude that the neighboring pointskifD space, which should belong to one cluster, not only are close to each
other in 2D space, but also tend to move together incaagjustment; while those points that are far away from
each other irk-D space may move together in som@djustment but definitely not in all-adjustments. This
property makesi-adjustment very effective in revealing the visual cluster overlaps introducedrbgpping.
In addition, point movement can also reveal the value distribution of individual dimension. If we adjust the
value of the dimensiohonly, the point movement can be represented by:

A() = Alx1,... T, 01y iy ey o) — AT, Ty 01y Oy Q)

= (c/k)(oi — a)wi5i (5)

15



which means that the points having largerwill be moving “faster” along the-th coordinate, and those
having the similatz; moving in a similar way. The initial setting @f values may not reveal the distribution

of an individual dimension as 6 shows. However, by looking at the density centers (the moving point cloud)
along thei-th axis asy; changes, we can easily estimate the value distributiagrtindimension. In Figure 6,

we sketch that point movement and point distribution can be interpreted intuitively with each other.

’ Movin
Apha- %:
% L]

f".-‘: adjustment density
g ‘a ; o |

- H v H
. / ! -y

L]
;;- 1 o 1 normalized
dim,

Beforealpha-adjustment Increasing alphaivalue

Figure 6:a-adjustment, dimensional data distribution and point movement

In interactive visual rendering, some dimensions show “significant change” on visualization in contirruous
adjustment, i.e., changing itsvalue results in distinct point clouds moving in different directions, or causes the
emergence of visible “gaps” between the point clouds. These dimensions play important roles in visual cluster
rendering and thus we name them as “visually dominating dimensions”, and the others as “the fine-tuning
dimensions”. The dominating dimensions usually have skewed distributions, where more than one distinctive
mode exist on the distribution curve. For example, dimensions with near uniform distribution are definitely
not dominating dimensions and dimensions with normal distribution are also less likely to be dominating but
possible useful in the refinement.

Since the main goal of VISTA interactions is to distinguish the possible visual cluster overlapping, we can
apply the following rules in visual rendering:

Visual Rendering Rule 1. Sequentially try rendering each dimension. If the dimension is a visually dominating
dimension, increase its value to certain degree so that the main point clouds are satisfactorily distinguished.

Visual Rendering Rule 2. Use the fine-tuning dimensions to polish the visualization. Adjust thealues
finely so that the visualization clearly shows the cluster boundaries.

Guided by the above simple visual rendering rules, a trained user can easily find the satisfactory visualizations.
While combined with the cluster labels generated by coarse automatic clustering algorithms (for example, K-
Means algorithm), the rendering becomes even easier. During the rendering process, we can intuitively validate
the algorithmic clustering results and conveniently incorporate the domain knowledge into the clustering pro-
cess [6], which are difficult for most automated clustering algorithms.
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4.3 Semi-automated Rendering

When the number of dimensions grows to a considerably large nuntb&6 @nd < 100 dimensions to the

VISTA system), manually rendering the dimensions becomes a difficult job. In the VISTA subsystem, we
provide a semi-automated rendering method to automate the rendering of this type of datasets. Together with
the visual rendering rules we have presented, the semi-automated rendering method can be quite efficient.

Concretely, our semi-automated rendering is performed in two stages: automatic random rendering (ARR)
followed by automatic dimension-by-dimension rendering (ADDR). A simple version of random rendering is
defined as follows. Let a datas€thaved dimensions andV records. Each dimension(l < ¢ < k) is
associated with an initial value, sayn;. Random rendering can be done in any number of rounds until some
rough pattern of cluster distribution is observed. In each roundgth&lue is changed by a small constant
amounte, (0 < e < 1), but the direction (increase or decrease) is randomly chosen forega@ince thex

values are bounded by 1 and -1, the change is “bounced” back at the bounds. By changinglines in

this way, rather than randomly assigning them in each round, we can observe that the visualization is more
smoothly changed. This type of continuity between the nearby visualizations is important to the user, since
the user’s reaction might be slower than the change of visualization. When a nice rough pattern is observed,
a few successive visualizations will be similar to the observed one, allowing the user to stop ARR around the
satisfactory pattern.

After a rough pattern is observed in random rendering, we switch the automated rendering from ARR to ADDR
for further refinement. In ADDR, for each dimensigny; is continuously and uniformly changed between [-
1,1], namely,«; increases by at each step from -1 to 1, and decreases-lbyfrom 1 to -1. When a more
refined cluster visualization is accepted by the user, ADDR for dimerigmatopped and moved to the next
dimension. ARR in the first stage helps to quickly find some sketch of the cluster distribution and ADDR in

1 2 2
1/ . /]J 1/

000
12" Y12 AT, 1

1 alpharange 1

Figure 7: Markov model of random rendering of one
dimension.

the second stage refines the sketch to get the final visualization. Essentially, the first stage provides the main
saving with respect to the number of interactions required to find a satisfactory sketch of cluster distribution
pattern, and is the dominating factor in determining how efficient the entire rendering will be. Therefore, we
below focus on analyzing and improving the performance of the first stage.

Without loss of generality, we simplify the model as follows: each increase/decrease will mavéotioertain
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fixed points, which is solely determined by the vatud-or example, it = 0.2, the serial of points would be
{-1,-0.8, -0.6, ..., 0.8, 1 Suppose that there aresuch points, including the two endpoints -1, and 1. For
simplicity, we call this set of points the set of points oy points for short.

Let P;, 1 < j < u be the probability of setting to be one of the: points between [-1,1]. We can model the
ARR process with a Markov chain (Figure 7). It follows tledt, = P = ... = P,_1 = 2P, [43], which
implies that ARR almost uniformly sets; to all values in [-1, 1] (except the two endpoints, which have lower
probability).

Now we define thex setting of the sketch visualization. Suppose that a sketch of cluster distribution can
be observed with the set of; value ranges, i.e., as long as thgvalue within the corresponding range, a
satisfactory cluster visualization will be observed. We model such a subrangeviath \; = [\;1, A\s2], and
|\;| as the number of the points that fall into the rangg;. Therefore, the probability that one ARR operation
finds the satisfactory sketch can be estimated by the equation 6.

Ml Pl el TR

p =21 172 =1 (6)
wooop 7 7

The above equation implies two important factors in terms of the efficiency of ARR. First, the number of effec-
tive dimensions, is in fact less thark varying from datasets to datasets. As the rendering rule 1 suggests, only
the “dominating dimensions” are significant to rendering. In other wordg\fi&: for the minor dimensions

can be approximately treated as 1. Second, the individual coverag@\#idfe can be increased by reducing

the effectivea: ranges. Based on the analysiscetidjustment (recall Section 4), smalley values tend to

hide the distribution detail over the dimensigrgood for polishing, but the larger values help to distinguish

visual cluster overlapping. Thus, in the ARR stage, we can choose to let ARR focus on the reduced ranges, say
[—1,—p4] and[g, 1] where0 < 5 < 1, for the dominating dimensions.

As observed in experiments, the rate of effective subrange the reduced range is often quite large, and
there are likely more than onk = (A4, ..., A\;) range combinations that can visualize the sketch of cluster
distribution. Therefore, combined with the rendering rules, it is quite efficient to use ARR as the first step in
rendering very high dimensional datasets.

However, ARR is not sufficient to find a detailed cluster visualization. A detailed cluster visualization might
confine);s to much smaller subranges, which requires the second stage, ADDR, to refine the sketch visualiza-
tion obtained by ARR. Our experiments show that by using the combination of ARR and ADDR, the cluster
visualization of census dataset (68 dimensions) can be captured in around 10 minutes.

5 ClusterMap Labeling

In the labeling phase of iVIBRATE, we use the adaptive ClusterMap labeling algorithm to effectively extend
the intermediate clustering results to the entire large dataset. The concepts of the ClusterMap and the extendec
ClusterMap are discussed in the paper [5]. Thus, we only provide an overview of the ClusterMap design to
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make this paper self-contained. We refer the readers to [5] for further details.

5.1 Encoding and Labeling Clusters with ClusterMap

ClusterMap is a convenient cluster representation derived from the VISTA cluster rendering subsystem. When
visual cluster rendering produces satisfactory visualization, we can set the boundaries of a cluster by drawing a
visual boundary to enclose it. Each cluster is assigned with a unique cluster identifier. After the cluster regions
are marked, the entire display area can be saved (represented) as a 2D byte array (Figure 8). Each cell in the 2L
array is labeled by an identifier a cluster ID (0) if it is within cluster region, or the outlier ID (=0), otherwise.

Since the size of array is restricted by the screen size, we do not need a lot of space to save it. For example, the
display area is only about 688*688 pixels on 1024*768 screen, slightly larger for higher resolution, but always
bounded by a few mega pixels. As shown in Figure 8, the Cluster Map array is often a sparse matrix too, which
can be stored more space-efficiently if necessary. Figure 9 is a visually defined ClusterMap of the 4D “iris”
dataset. The boundaries of cluster C1, C2 and C3 were defined interactively.

In addition to the 2D array, we need also to save the mapping parameters for the labeling purpose. These
parameters are listed in Table 1.

Cmazx;, Cmin; | The max-min bounds of each columjn=1... &
(z0,Y0) The center of the visualization
a Thek o parametersj =1...k
0; Thek 6 parametersj =1...k
¢ The scaling factor

Table 1: Mapping parameters for ClusterMap representation

ClusterMap representation has several advantages. First, in most situations, ClusterMap provides more details
than the centroid-based or representative-point-based cluster representation. Thus it is possible to preserve
the precision of intermediate clustering results in the labeling phase. Secondly, the cluster boundaries can be
adjusted conveniently to adapt to any special situations or to incorporate domain knowledge as we did with
the VISTA system. Thirdly, with ClusterMap the outliers can be better distinguished. We shall see later that
ClusterMap can also be conveniently used to adapt the extension of cluster boundary.

ClusterMap representation can be applied directly irbésic ClusterMap labelinglt works as follows. After

the ClusterMap representation is loaded into the memory, each item in the entire large dataset is scanned anc
mapped onto one ClusterMap cell. The mapping follows the same mapping model used in the visual rendering
system, which applies the max-min normalization followedbmapping. Suppose that the raw large dataset

is stored on disk in form olN-row by k-column table. We rewrite the formulas as follows:

Normalization:z}; = w; * (zi; — Cming) — 1 (7)

w; = 2/(Cmaxj — Cminy)

k K
a-mapping:z; = Y o (j)al; — z0,4i = Y tu(i)al; — vo (8)
p =1
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wherev,(j) = coycos(0;)/k, ¥(j) = ca;sin(f;)/k andw; can be pre-computed, and other parameters,
such as: andd; are the same as defined in the visualization model.

Sequentially, the algorithm reads théh item (z;; . . . ;) from thek-D raw dataset, normalizes and maps it
with formulas (3) and (4) to a 2D cell coordinate;, y;). From the cellz;, y;), we can find a cluster ID label
or outlier label depending on the ClusterMap definition.
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5.2 Adaptive ClusterMap for Boundary Extension

In the basic ClusterMap labeling, we assume that the cluster boundary defined on the sample set will not change
significantly during the labeling process. However, with the increase of labeled items, the density in the original
boundary areas will increase as well. Thus, the original boundary defined on sample set shall be extended to
some extent. An example has been shown in Section 1.2 (Figure 2). Boundary extension encloses the nearby
outliers into the clusters and may require the mergence of two nearby clusters if they become overlapped.
Figure 10 sketches the possible extension in ClusterMap in terms of point density with the attending of labeled
items.

Boundary extension is maintained by monitoring the point density around the boundary area. We have the
initial boundary defined in ClusterMap representation. We name the cells within the cluster boundary as the
“cluster cells” and the cells around the boundary area as the “boundary cells”. The initial boundary cells are
precisely defined as within a short distarcaway from the initial boundary. All non-cluster cells are “outlier

cells” including the boundary cells. We define the density of a cell on the map as the number of items having
been mapped to this cell. The density of boundary cells should be monitored in order to make decision on
boundary extension. A threshold density of céllis defined as two times of the average density of outlier
cells. If the density of a boundary cell grows dowith the attending of labeled items, the boundary cell is
turned into a cluster cell, which results in the extension of boundary. The non-cluster cells withidig@nce

from the old boundary cell become the new boundary cells. Since the boundary is on the 2D cells, we can use
cell as the basic distance unit and “city block” distance [50] as the distance function to defindigh@nce.

¢ is often a small number, for example, 1 or 2 blocks from the current boundagyows as the density in

the non-cluster area grows, so that the measuring of boundary extension keeps consistent with the density of
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non-cluster area.

To support the above adaptive algorithm, we need to extend the basic structure of ClusterMap. First, for each
cell, we need one more field to indicate whether it is a monitored non-cluster cell or not. We also need to
keep track of the number of points falling onto each cell. This information is saved at a “Density Map”. Since
the average noise level will inevitably rise with the increase of labeled itéstspuld be periodically updated
according to the average noise level. For detailed discussion of the ClusterMap algorithm, please refer to the
paper [5]

The Adaptive ClusterMap labeling algorithm can be performed in two scans: The first scan generates an ex-
tended ClusterMap and the second scan can be performed to build up a R-tree index on the map for efficient
access to the items on disk. After the first scan, the adjusted ClusterMap can be checked with the ClusterMap
Observer to identify the anomalies (section 6.2) and to make the final refinement. The second scan is very help-
ful for many clustering applications that involve similarity search [36] and data indexing based on the clustering
structure, which requires efficient access of the cluster members.

5.3 Complexity of the Labeling Algorithms

The two key factors that measure the effectiveness of the labeling algorithrasanmacyandcomputational

cost We have discussed the issues related to labeling outliers and irregular clusters, which can affect the
accuracy of labeling algorithms greatly. The computational cost is important since the labeling algorithm has
to deal with the entire large dataset. One way to estimate the cost of a labeling algorithm is to count the number
of necessary multiplications. For example, énB Euclidean distance calculation co§¥$k). In this section,

we analyze the cost of the four labeling algorithms: CBL, RPBL, Basic ClusterMap, and Adaptive ClusterMap.

Based on the formulas 7 and 8 given in section 5.1, we can roughly estimate the cost of the basic ClusterMap
labeling. Map reading and parameter reading cost little constant time due to the limited small map size. For
each item in the dataset, max-min normalization c6Xts) as shown by formula 7-mapping function costs

O(k) respectively to calculate the y coordinates with formula 8. Locating the cell in ClusterMap to get the
corresponding cluster ID costs constant time. Hence, the total cost for the entire datd8étNs), whereN is

the number of rows in the dataset. While the Adaptive ClusterMap runs with the two scans, the cost is roughly
two times of the Basic ClusterMap labeling, i.©.(6kN).

When kd-tree [17] or other multi-dimensional tree is used to organize the representative points or centroids, we
get the near-optimal complexity for the distance-comparison based labeling algorithmsd_tte number of
clusters andn be the number of representation points per cluster. The cost to find the nearest neighbor point in
kd-tree is at leadbg, (rm) distance calculation for RPBL dog,(r) for CBL. For a typical RPBL as reported

in the CURE paper, the number of representative points has to be greater thar>100) in order to roughly
describe the regular non-spherical cluster shapes (mainly, the elongated shapes). The number should increas
substantially if the irregular cluster shapes are detected. Conservatively, the cost of RPBL will beddtheast
normally a little higher than that of the basic ClusterMap. The cost of CBL should be alogyid)kN or
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Algorithm Complexity LDS data Census data
(N=1M, k=5,r =5) | (N=1M, k=68,7=3)
CBL [N log,(r), rkN] 4.67 56
RPBL [kN log,(rm), rmkN] 6.5 65
Basic ClusterMap 3kN 4.42 54
Adaptive ClusterMap ~ 6kN 8.69 108

Table 2: Cost estimation of the three algorithms

rkN if r is small and tree structure will increase the cost.

Both CBL and RPBL need a small amount of memapyrk) andO(rmk), respectively. Letv be the width
andh be the height of the 2D ClusterMap, the basic ClusterMap will ieédh) memory, which counts for
several megabytes in reality. Correspondingly, the adaptive ClusterMap need®#bout) memory.

Table 2 summarizes the complexities. The cost on two large datasets, LDS and Census data which will appear
in the later sections, are also listed in Table 2 to give a feeling of the real cost. For both datasetst to 20
and the time unit is second.

In summary, the Adaptive ClusterMap uses a little more time and space to label the datasets but this small
extra cost can bring the huge benefits as we have discussed. Moreover, we are able to apply more visualizatior
methods when integrating the ClusterMap method with the other two phases, which we will present in the
following sections.

6 Integrating the Three Phases

Integrating the three phases of iterative clustering process (Sampling, Visual Cluster Analysis, and Adaptive
ClusterMap Labeling) under the iVIBRATE framework presents an interesting and unique challenge. Since the
phases are interconnected in sequence, without proper operations in the earlier phases, the later phases mig|
be affected in terms of clustering quality and the errors could be propagated and aggravated in the later phases
In this section, we investigate two important issues in integrating the three phases. First, we study the effect of
sampling phase on the later two phases, primarily the impact on determining the max-min bounds from samples
(section 6.1) and exploring the small clusters hiding in outliers (section 6.3). Second, we analyze the effect of
Visual Cluster Analysis on the quality of Adaptive ClusterMap algorithm, and develop the anomaly monitoring

in the disk-labeling phase (section 6.2).

6.1 Determine the Max-min Bounds from Samples

The VISTA subsystem requires to determine the max-min bounds for normalization, denotéghby ;” and

“Cmin;”. These bounds are used not only in the rendering phase hy thaction but also in the labeling

phase by the ClusterMap algorithms, thus these bounds should be kept unchanged throughout the three-phas
clustering process. Max-min normalization is the first step in the VISTA visualization model (Section 4.1),
which prepares the data farmapping without loss of any information for visual cluster rendering. However,
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since the max-min bounds are obtained from the sample set, and they may differ from the actual bounds for
the entire datasets. When the bounds derived from the sample dataset does not represent a good approximatic
of the actual bounds of the entire dataset, such inappropriate estimation of bounds may cause additional errors
in the labeling phase. Therefore, an important problem to be addressed is how to determine the proper bounds
based on the sample set that are effective for both the cluster rendering phase and the Adaptive ClusterMap
labeling phase.

The effect of inappropriate bounds is twofold. First, if the max and the min bounds are too tight (i.e., the two
bounds are too close to one another), even though they enclose all samples, there might be high out-of-bounds
rates for the entire large dataset, which increases the amount of errors generated at the labeling phase. O
the other hand, if the max-min bounds are too loose, most values are scaled down to a narrow range and the
difference between the values cannot be observed efficiently in cluster rendering. Recall thatapping in

equation 2 of Section 4.1 shows two possible ways that we can adjust the visual parameters in order to observe
the visual difference between different values: one is to adjustithalues { < ¢ < k) and another is to

alter the scaling factat. Since thex values ¢, . . ., o) are restricted in the range of [-1, 1] for the purpose

of efficient interactive rendering, thus sometimes we might have to adjust the scalingcfaxiarge value,

which, however, could enlarge the entire visualization improperly so that some part of visualization falls out of
the visualization display area.

The first problem is addressed by the relationship between the sample value bounds and the sample size

we use the sample value bounds as the max-min bounds, analytically, how many sample points do we need in
order to find the bounds that are also good for all data points? The problem of bounds estimation based on the
sample data can be formalized as follows.

Let n denote the size of the sample dataset mdeénote the probability of points in the entire dataset covered

by the sample bounds. Since bounds estimation for each column is independent, without loss of generality, we
can treat the values from one column as samples of a random vakiaifleizen. We now estimate the bounds

for the random variabl& with the sample set, so that the bounds caw®p percent of the distribution ok

with certain confidence. This problem can be modeleticdsrance Interval9].

Definition 1. A tolerance intervalr < X < s) with tolerance coefficient is a random interval. Its ranger|
s] includes at leasd 00p percent of distribution with the probability.

In our case, we fix the two end points as the two order statish’pﬁ,andX(n), i.e. the max and min value of
the sample, for easy processing. The above definition then can be rephrased as:

P[P(Xq) <X < X)) 2p] =7 (9)

Let 'y (z) be the distribution function ok andU,,y andU|;) be the max and min values ofuniform samples
in[0, 1]. P(X1) < X < X(,,) is equal toF'x (X)) — Fx (X(n)) = Un) — Ury- Therefore, without knowing
the distribution ofX, we can find the distribution d¥,,) — U(y) instead, which is solely related to the order
statistics of uniform distribution. Let = U,y — Uy, it is easy to find the joint distribution with order

23



statistics. We can get the density distributiorlot= U,y — U(y), fu(u,v) as follows.

fu(u,v) =n(n — 1)u""2(1 — u) (10)
Now, sincey = P(U > p), we can get the following relation betweegnp, andn.

1
= n(n — Du" (1 — u)du
Y= / (0 — 1)u"2(1 - w)d (11)

The right side of the equation is tircomplete Beta functiofrepresented agtainc(1—p, 2, n—1) in Matlab).
Fixing one of the three parameteysp, andn, we can infer the relation between the other two parameters. We
are more interested in the range of the sample size for atesgehat the sample bounds can cover almost all
points in the entire dataset. By settingo a very high probability, 0.999, we get the relationship betwgen
and sample size as Figure 11 shows.
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At sample sizen ~ 13,000, the tolerance level almost reaches 100%, which means that we can confidently
say that the max-min value bounds of a sample set in size-6fl3, 000 or larger are the bounds which cover
99.9% records in the entire dataset. Note that the number 13,000 is induced without any assumption about the
data distribution and the sample size for real datasets. For real datasets that have some special distributions, th
sample size should be smaller as shown in section 8.

Our experiments with the first prototype of iVIBRATE shows that its VISTA cluster rendering subsystem can
comfortably handle up to 50,000 items with 30-50 dimensions in near real time, in a common computer system
environment (for example, CPU 1.5Ghz, memory 256M) [6]. Thus, the VISTA subsystem can also comfortably
render a large sample set > 13, 000), which contains the max-min bounds for the entire dataset.

As the second problem addressed, the initial max-min bounds based on the sample value bounds might also be
too wide, when the distribution is skewed as shown in Figure 12. In a skewed distribution, almost all points
are located within a narrow range, with small amount of points far away from the center. This can frequently
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happen in most real datasets. In this case, if we simply use the sample value bounds for normalization, the
cluster rendering subsystem may not work efficiently. In order to avoid such situations, we need to check the

histogram of data columns to identify the skews. If the skews are found, we may need to check the histogram

for the entire dataset to carefully narrow down the bounds. With the histogram of the entire dataset, we can

identify how much we can move the bounds to the center in order to make the out-of-bounds rate less than

1—np.

Based on the above analysis, we suggest the following steps to choose the normalization bounds for each
column.

1. Sample the dataset to get a sample set in size of 13,000 or more;

2. Find the max-min bounds of sample set as the initial normalization bounds for each column and build the
histograms for the columns with the sample set;

3. If some columns have very skewed distribution with some outliers, we build the histograms for these
columns with the entire dataset. The loose bounds can be narrowed down according to the histograms
for entire dataset, while maintaining the out-of-bounds rate-a®, e.g., p=0.999.

The cost of choosing the proper bounds for the dimensions is quite acceptable. If no skew is found in the second
step, the total cost i©(n), n is the sample size. Otherwise itG§ N), N is the size of the large dataset. Since
this is a one-time proces§,(N) is still not bad.

6.2 Monitoring the Anomalies in ClusterMap Labeling

Boundary extension can behave abnormally due to low sample rate, imprecise rendering result or inappropriate
setting of initial cluster boundary. We first discuss two possible anomalies in the ClusterMap labeling process,
and then introduce the methods to monitoring and handling these anomalies.
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e The first anomaly is the vague cluster boundary. The cluster boundary becomes vague soon after labeling
certain amount points, while normal boundary extension should be slow and happen uniformly around
the boundary throughout the entire labeling process. There are two situations that can cause the anomaly,
illustrated by Figures 13 and 14. First, the initial distances between the clusters are not defined appro-
priately due to the sample size or lack of visual refinement, which requires the user to tune the initial
ClusterMap, e.g., adjusting theparameters slightly in VISTA. This is illustrated by Figure 13. Second,
the other situation is the “bridging points” between the clusters, which are not dense enough in the sam-
ple set but they may form the “bridge” that connects the clusters later in the labeling process, as shown
in Figure 14. The user has to make decision based on the domain knowledge to either split the clusters
or merge them on the ClusterMap.

e The second anomaly is that the ordering of data records on disk may affect the boundary extension. For
example, a sequence of data is mapped to a focused boundary area at early stage of labeling thus the
boundary is extended in burst, but later on no more points are mapped to that area. As a result, this
area is falsely extended as a part of cluster. We observe that this error only happens in the situation
where such particular data records are stored together and the labeling is done according the original
ordering of data records on disk. This anomaly can be avoided by accessing the data records in perturbed
sequence. We use a method named “sequence perturbation” (Figure 15). To put it simply, if the large
data file is regarded as a block file, we equally divide the datasets s#gquences of blocks. In each
processing window, we read the data blocks at the head of each sequence and perturb the sequence of th
records in the blocks. Labeling these sequence-perturbed records can reduce the risk of non-uniformity
considerably in data ordering.
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Figure 15: Record perturbation
Figure 16: A snapshot of labeling a large

dataset, visualized with ClusterMap Ob-
server

In general, these anomalies can be monitored with the “snapshots” of labeling, which are visualized by the tool
“ClusterMap Observer”. Snapshots are a series of evolving ClusterMaps and density maps, which incorporate
the boundary extension, saved at some time interval during the first scan of Adaptive ClusterMap labeling. The
user can observe the snapshots with ClusterMap Observer. If the anomalies are observed, the user can terminat
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the labeling process early and returns to VISTA subsystem to adjust the original ClusterMap. Figure 16 shows
a snapshot of labeling a large dataset after 10 million records are labeled. The noisy areas around cluster A anc
B are not labeled as cluster cells since the density of these cells does not reach the threshold. Whether thes
cells should be included into clusters or not, may depend on the user’s requirement. However, the extended
boundary can always be edited with ClusterMap Observer, which makes the entire labeling process very flexible
and manageable.

6.3 Detect and Explore the Small Clusters

Missing small clusters is most likely caused by low sample rate, e.g. less than 1% of the entire dataset. The
small clusters may start to emerge as the labeling proceeds, which could be detected in the snapshots of labeling

If there are small clusters emerging, we can use the following filtering method to confirm and explore the small
clusters in detail. In the labeling phase, we run the Adaptive ClusterMap labeling to label all records, and
then extract the outliers only from the large dataset for visual rendering. If the outlier dataset is still large,
it is sampled and rendered in VISTA cluster rendering system again. Since the size of the outlier dataset is
usually much smaller than that of the original dataset, one additional sampling for the outlier dataset is often
sufficient to discover the small clusters in it. Similarly, the observed small clusters are markediti@nnal
ClusterMap. We can repeat this process until the size of the outliers becomes negligibly small. This process
might result in a couple of additional ClusterMaps representing the small clusters at different detail levels.
These ClusterMaps are used together to effectively label the interested small clusters.

In this process, the user can always control the “drill-down” level and the size of interested small clusters.
More flexibly, the user can select any interested area of ClusterMap and zoom in to observe the possible small
clusters in the corresponding portion of data only. This can be done iteratively, which results in a general
extended iVIBRATE framework for hierarchically exploring the clusters in very large datasets (Figure 17). In
short, under the iVIBRATE framework, users have more flexibility in monitoring and exploring the details in
clustering structure. To our knowledge, no one of the existing approaches has provided such flexibility.
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Figure 17: Iterative exploration in the extended iVIBRATE framework



7 EXPERIMENTS

This section presents three sets of experiments. The first set of experiments shows the effectiveness of VISTA
visual clustering rendering in finding irregularly shaped clusters. The second set of experiments shows that
ClusterMap can handle outliers and irregularly shaped clusters with low computational cost. The third set of
experiments demonstrates the advantage of Adaptive ClusterMap in dealing with large datasets. The results
show that this visualization powered framewakkBRATE is more reliable and flexible in clustering very

large datasets.

7.1 Datasets and Experiment Setup

The first set of experiments are conducted on a number of well-known datasets that can be found in UCI machine
learning databask These datasets, although small or median in size, have irregular cluster distribution, which

is an important factor for testing the effectiveness of the VISTA system. We carefully choose these datasets
with the following three factors in mind: 1) the current version of VISTA system only concerns the datasets
having a manageable number of numerical attributes; 2) clusters in most of the datasets are not in regular
spherical shape, the size of cluster may vary in a big range, and the distance between clusters can be so clos
that the algorithmic approaches can easily fail to distinguish; 3) the existing class labels can effectively indicate
the irregular clusters. For easy comparison, we also ignore the tiny clusters in some datasets, for example, in
“ecoli®” data and “shuttle” data.

Dataset N # of dim. | # of clusters
Breast-w 699 10 2
Crx 690 15 2
Ecoli 336 7 8
Hepatitis 155 19 2
lonosphere| 351 34 2
Iris 151 4 3
Wine 178 12 3
Shuttle.test| 14500 9 7

Table 3: The datasets used in visual rendering.

Two datasets are used for the second set of the experiments. One is the simulated dataset DS1 used in CURI
[20]. DS1 is a 2D dataset having five regular clusters, including three spherical clusters, two connected elliptic
clusters, and many outliers. In our experiments, DS1 is used to evaluate the effect of outliers on the labeling
algorithms. The second dataset is the “shuttle” dataset (STATLOG version, test dataset) introduced in the first
set of experiments. Itis a 9-dimensional dataset with very irregular cluster distribution. There are seven clusters
in this dataset, among which one is very large with approximately 80% of data items, and two are moderately
large with approximately 15% and 5% of data items, respectively. Others are tiny clusters and thus ignored in
comparison. “Shuttle” dataset is used to evaluate the effect of irregular clusters on the labeling process. These

Yhttp://www.ics.uci.edutmlearn/Machine-Learning.html
There are totally 8 attributes in Ecoli data, but one is the name of E.Coli, which is discarded in clustering.
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two datasets should show how ClusterMap avoids the common problems of the traditional algorithms.

In the third set of experiments, a simulated 5-dimension large dataset LDS with one million records is designed

to test the performance of Adaptive ClusterMap on very large datasets. Figure 26 shows a 10K sample set
visualized with VISTA system. LDS simulates 5 clusters — three are approximately spherical, and the other two

are in irregular shape. There are also about 1% outliers. LDS is well-designed so that we can approximately
predefine the control labels for entire dataset with small errors. This dataset is used to evaluate the effect of all
of the three factors: outliers, irregular clusters, and boundary extension.

The three labeling algorithms, CBL, RPBL, and ClusterMap are implemented in C++. RPBL is based on the
boundary points generated by the CURE clustering algorithm, which was known as a fine RPBL adapted for
non-spherical cluster. We run CURE clustering to get the boundary points with the following parameters: the
number of representative points is 20 and alpha (the shrink factor) is set to 0.5 as suggested. We also use
ANN (Approximate Nearest Neighbor) C++ library from University of Maryland at College Park to construct
kd-trees for RPBL and CBL in order to improve the performance of nearest neighbor search.

7.2 Visual Cluster Rendering

In this section we will introduce the experimental result concerning the power of visual cluster rendering system
in finding clusters. The VISTA visual clustering system was implemented in3Java

When we finish the interactive cluster rendering, we mark the cluster areas, in which the points are respectively
labeled with the cluster ID. With the original labels in the datasets, we can define the items that are wrongly
clustered as the errors, the number of which divided by the size of the dataset is the error rate of visual cluster
rendering result.
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Figure 19: Visual rendering cost (GVR) on the

Figure 18: Comparison of error rates on the ex- -
experimental data

perimental data

First, we use unguided visual rendering (UGV), where no external information is incorporated, to find the
visual partition. Unguided visual rendering only depends on the visually observed dense-point areas and the
gaps between the areas to discern the clusters and the cluster boundaries. Since there is visual bias on th

Shttp://disl.cc.gatech.edu/VISTA
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visualization, the visual rendering sometimes may trap in local minima, where some visual cluster overlaps
are not distinguished. It has been shown that solely depending on visual information to define the clusters is
error-prone [10, 24] due to the mapping for visualization.

We could possibly avoid the local minima by incorporating some external information, either from the result of
the clustering algorithms or from the domain knowledge. This results in the second rendering method “guided
visual rendering (GVR)". In our experiment, ten of labeled items from each cluster are randomly selected
serving as the “landmarks” in GVR.

We also compare the visual rendering with two algorithms, K-means and CURE algorithms to see the possible
improvement. CURE clustering [20] is recognized as one that can deal with irregular cluster shapes in some
degree, and K-means is the most popular algorithm. Both algorithms use the normalized data as input. The
K-means results shown in Figure 18 are the best result in ten runs.

Figure 20: Visualization of Figure 21: Visualization of Figure 22: Visualization of
“wine” data “Ecoli” data “shuttle” data

The experimental result shows that neither CURE or K-means can deal irregularly shaped clusters very well, and
UGV may also trap in some local minima for some datasets, for example, “breast-w (breast-cancer-wisconsin)”
and “wine” (Figure 20). However, by combining the external information we can improve the UGV result to
some extent. For example, “Iris” and “Ecoli” (Figure 21) datasets have very clear cluster structure thus the
UGV and GVR yield almost the similar results. But in rendering “shuttle” (Figure 22), we need the help of the
landmark points to distinguish the clustering structure, as the domain-specific clusters are formed by merging
or splitting some irregular clusters.

In addition, the average interaction time (GVR) of five trained users (Figure 19) indicates that it is not difficult
for a trained user to find a satisfactory visualization with the help of the visual rendering rules introduced in
section 4.2.

7.3 Outliers and Irregular Cluster Shapes

We have discussed three different labeling algorithms: Representative-Point Based Labeling (RPBL), Centroid-
Based Labeling (CBL), and ClusterMap (basic ClusterMap in this set of experiments). In this section we study
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the performance and error rates in labeling the outliers and irregularly shaped clusters.

We run VISTA to get the ClusterMaps in map resolution688 x 688. The cost to rebuild a ClusterMap
structure in memory is about 34@60ms, which can be ignored for processing very large datasets. Both
DS1 and shuttle datasets show that the estimation of costs is appropriate — all three are linear and the basic
ClusterMap is almost the fastest one (Figure 23). Linear complexity is good enough for a one-time building
process.

The DS1 dataset is used to show the effect of outliers on the algorithms. The result shows that the error rate
of ClusterMap is much lower than the other two algorithms. From the visualization of labeling results, we
observed that CBL can suffer from both the variant cluster sizes, the distance between clusters and the outliers.
Particularly, we take a look at the visualization of RPBL result (Figure 24), which clearly shows that the outliers
are labeled as the members of the nearby cluster and some points in the cluster boundary are incorrectly labelec
too.
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Figure 23: Labeling outliers and irregularly shaped clusters

“Shuttle” dataset has very irregular clusters. Without the incorporation of domain knowledge, the intermediate
clustering will not be satisfactory. If not impossible, it is very difficult for the automated clustering algorithms
to incorporate such important external information. We use the shuttle dataset to show that the error in inter-
mediate clustering result will propagate to and might be amplified in labeling phase with the existing labeling
algorithms. With the increase of labeled records, the error rate of RPBL increases to the level similar to that
of CBL, due to its lack of ability dealing with the very irregular cluster shapes. The basic ClusterMap labeling
keeps consistent with the VISTA cluster rendering result and thus has much lower error.
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Figure 24: Outliers are labeled asFigure 25: Visualization of the Figurcla 26:f I\_/Ii;galization of 10K
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ters tle data

7.4 Adaptive ClusterMap on Large Dataset

This experiment on the large dataset LDS mainly shows the scalability and effectiveness of Adaptive Clus-
terMap algorithm, especially in dealing with outliers and boundary extension.
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Figure 27: Performance on LDS Figure 28: Error rate on LDS

The progressive plots of time cost and error rate are shown in Figure 27 and 28. The performance curve
shows that the two-stage cost of Adaptive ClusterMap labeling will be a little greater than the other algorithms,

however, it still keeps linear in terms of the number of labeled records. If the second stage is not necessary
for some applications as we discussed, the first stage will only cost as little as CBL. Therefore, the Adaptive

ClusterMap labeling is still scalable to the number of records.

From the error rate curves (Figure 28), we can observe the difference and the trend between the four algorithms.
Basically, RPBL and CBL have higher error than the ClusterMap labeling algorithms due to the lack of ability
dealing with outliers and imprecise boundary definition. Since the clusters are well-separated, as the number of
labeled records increases, RPBL and CBL basically have the similar labeling results and thus the error rates are
very close (they are overlapped in the figure). The basic ClusterMap does not consider the boundary extension,
therefore, has higher error than Adaptive ClusterMap. The error of Adaptive ClusterMap tends to decrease with
the increasing number of labeled records, because the more the labeled records are incorporated,the better th
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Adaptive ClusterMap labeling can approximate the real cluster boundary.

8 Exploring Clusters in Very Large Census Data: a Comprehensive Example

In this section, we analyze the clusters in a real large datasie¢ 1990 Census dataset using the iVIBRATE
framework. The procedure revisits most of the concepts, methods, and models we have presented in the previ-
ous sections. Concretely, it includes max-min bounds checking and refining in the sampling phase, rendering
the sample dataset with the VISTA subsystem in the visual cluster analysis phase, using adaptive ClusterMap
labeling to label the entire dataset in the disk-labeling phase, and analyzing the small clusters missed by sam-
pling. We will start with the description of the dataset,

8.1 Dataset

The very large “US Census 1990 Détds used in this empirical study to show the effectiveness and flexibility

of the iIVIBRATE framework. This dataset is a discretized version of the raw census data, originally used by
the paper [39] in studying the relationship between the sampling approach and the effectiveness of Expectation-
Maximization (EM) based clustering algorithms for very large datasets. This dataset is very large in terms of
both the number of records and the number of attributes. After dropping many of the less useful attributes in
the raw dataset, the total number of preserved attributes still reaches 68. It also contains more than 2 million
(2,458,284) records, about 352 megabytes. Since the dataset is a discretized version, we also run an entropy
based categorical clustering/validation algorithm (ACE algorithm for finding a sub-optimal partition and BkPlot
for determining the best Ks) [7] under the iVIBRATE framework to cross-validate the result.

8.2 Sampling and Bounds

In section 6.1, we have formally analyzed the out-of-bounds rate in terms of the sample size. Note that the anal-
ysis is good for any data distributions, which actually results in a quite conservative estimate to the appropriate
sample size (around 10,000 sample records) guaranteeing the global bounds included in the sample dataset. |
order to verify this observation, we try two sets of sample datasets: 5K-record and 10K-record, respectively.
Each set consists of 10 sample sets, generated by uniformly sampling the entire census dataset. By checking
the bounds, we find only two 5K-record sample sets having 1 and 2 attributes, respectively, missing the maxi-
mum discretized values, which cause less than 0.1% out-of-bounds rate for the entire dataset. However, all of
the 10K-record datasets include the global bounds. This demonstrates that the estimated threshold in sectior
6.1 is indeed a conservative number. By checking the histograms, we confirm that it is unnecessary to adjust
the initial max-min bounds for effective rendering. Therefore, both 5K-record and 10K-record sample datasets
should be fine for effective visual rendering.

“In UCI KDD Archive http://kdd.ics.uci.edu/databases/census1990/USCensus1990.html
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8.3 Visual Cluster Rendering

Due to the large dimensionality, manually rendering the data with the dimension-by-dimension method is not
recommended for the census dataset. The nhew semi-automated rendering method: automatic random renderin
(ARR) followed by automatic dimension-by-dimension rendering (ADDR) (section 4.3) is used in visually
rendering a set of 10K-record sample census datasets in this experiment.

Recall that ARR is a randomized process, visual rendering with ARR can result in different visualizations. We
conduct visual rendering 5 times to see the difference between the rendering results. By comparing the initial
visualization results, the two visually well-separated clusters are confirmed as the same clusters in all of the
five renderings. We list some numbers about the interactive visual rendering in Table 4. The rendering time is
the wall-clock time with the unit of half minute. Due to the high dimensionality and dense cloud, the average
rendering time is about 10 minutes much higher than those shown in Figure 19. Automatic random rendering
(ARR) can quickly identify the sketch of cluster distribution (2 clusters) in about 2 minutes, while automatic
dimension-by-dimension rendering (ADDR) should take longer time to refine the visualization. In Table 4, only
the number of records in C1 and C2, are shown, the rest of the 10K records are regarded as outliers. "Shared”
represents the percentage of the points in current rendering result that are also shared by the other renderin

results.
No. | Random Rendering (minutes) Automatic DDR (minutes)| C1 (pts) | C1 Shared (%)| C2 (pts) | C2 Shared (%)
1 2.0 8.0 2001 93.0% 7546 87.4%
2 15 9.0 2198 84.7% 7610 86.7%
3 2.0 7.0 2070 89.9% 7252 90.9%
4 25 8.5 2040 91.2% 7403 89.1%
5 15 7.0 2189 85.0% 7508 87.8%

Table 4: Rendering the 10K-record sample census dataset.
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We show three of the five visualizations in Figure 29, 30, and 31. All three clearly show the two major clusters.
Figure 29 and 30 also show that C2 could potentially have two subclusters. Cluster validation with the entropy
criterion [7] shows that the “best K” for clustering census dataset should be 3 or 2 (Figure 34), which implies
that the initial visual clue about the possible existence of three clusters could be true. Similarly, Figure 30 and
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31 show that C1 may have some fine structure, which we can also further refine if necessary.

By exploring the clusters C1 and C2 separately, we identify that C2 indeed contains two sub-clusters. We do
not show the separated rendering result but the refined visualization of three clusters only (Figure 32). The
result is confirmed by the entropy-based cluster validation method. Figure 33 shows that the visually separated
clusters match well with the clusters labeled by the entropy-based ACE categorical clustering algorithm [7].
Note that from the algorithmic result, we are not able to identify the outliers and the initial cluster boundary,
but with the VISTA system we are able to interactively define the initial cluster boundary. Figure 32 also shows
the initial cluster boundary which is used to generate the ClusterMap for the labeling phase.
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Figure 33: Visualization of ACE Census dataset
clustering result

Figure 32: Final result of visual
rendering with initial boundary
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In summary, from the above procedure, we show that the combination of the automatic clustering/validation
algorithms and the visual rendering method can really help to cross-validate and improve each other. Therefore,
cluster analysis under the iVIBRATE framework can provide truly insightful results with higher confidence
level.

8.4 ClusterMap Labeling

Visually clustering the census data in the iVIBRATE framework is a procedure of visual data exploration
(Unguided Visual Rendering as defined earlier.), in the sense that no initial clustering clues, such as domain
knowledge, are provided. For the LDS dataset in Section 7.4, we can predefine the exact cluster labels with little
error and compare the labeling results with the exact cluster labels. However, because of the lack of control
labels for the census dataset, we need to change the way of evaluating the labeling algorithms.

As we have initially observed, Adaptive ClusterMap labeling, together with monitoring with “ClusterMap
Observer”, gives much less labeling error and the result becomes closer to the exact cluster labels with the
increase of labeled records. Without the exact control labels for the census dataset, we want to see the difference
between the results of other labeling algorithms and the Adaptive ClusterMap only, which should be consistent
with our interpretation about the features of the labeling algorithms in Section 7.4.
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Figure 35 shows the performance curve of the three labeling algorithms similar to what we observed for the
LDS dataset. Figure 36 shows the percentage of difference between the compared algorithms and the adaptive
ClusterMap labeling. Since the three clusters are reasonably shaped and distributed, RPBL and CBL have no
big difference as shown in Figure 36. The difference between RPBL/CBL and Adaptive ClusterMap tends to
decrease with the increase number of labeled items, due to the automatic boundary extension including more
and more points previously regarded as outliers. At the point a large number of records, for example, 1 Million
records, are labeled, most of the difference should come from outliers. Similarly, the increase of difference
between the basic ClusterMap and the adaptive version is solely caused by boundary extension.

Figure 37 demonstrates the cluster and boundary definition after labeling 1 million records. The boundary is
evenly extended around the original boundary, therefore, the initial ClusterMap definition is very good. C2 and
C3 tend to merge, but C1 is still clearly separated from C2 and C3. Whether to merge C2 and C3 or not may
depend on the domain knowledge.

8.5 Exploring the Small Clusters

Some outliers emerge with high density as labeled in Figure 37. Therefore, it might be worthwhile to visualize
the outliers only. Labeling the first million records results in 70632 records, about 7% of the total, labeled as
outliers. We sample the outliers again to gain a 10K-record sample set, which is visualized as Figure 38. The
initial visualization with the same parameters used in labeling clearly shows that clusters could emerge in the
areas Al, A2, A3. By rendering this dataset, we find 5 clusters (the left panel in Figure 38). O1 is mapped to
the boundary of the original cluster C2, therefore it should be outliers around C2. 02 and O3 mapped to the
areas A2 and A3 respectively, showing the evidence of new clusters in these areas. O4 and O5 are mapped tc
the same area Al, which visualizes the delicate structure hiding in Al.

Observing the proximity of the small clusters to the three identified main clusters in Figure 38, we find that O4
and O5 may have close relation to the main cluster C1, and O2 and O3 seem some kind of extension of the
main cluster C2.2. Merging them to the main clusters or not should depend on the domain knowledge.
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Figure 38: Exploring possible small clusters hiding in outliers

In summary, the adaptive ClusterMap labeling and the small cluster analysis with the census dataset demonstrate
the effectiveness and flexibility of iVIBRATE framework in processing very large datasets. With the iVIBRATE
framework, the cluster-boundary extension, outlier labeling, and small cluster detection, can be performed and
monitored in a visual way, which greatly improves the precision of clustering and increases the confidence
about the clustering result.

9 CONCLUSION

We have described iVIBRATE- an interactive-visualization based three-phase framework for clustering large
datasets, focusing on two main components: VISTA visual cluster rendering system and Adaptive ClusterMap
Labeling. The VISTA subsystem allows users to interactively view the potential clusters in continuously chang-
ing visualizations. More importantly, it can incorporate, validate, and refine the results of any automated cluster-
ing algorithms. It is especially effective for dealing with irregularly shaped clusters. To improve the efficiency

of visual rendering, we give the heuristic rendering rules and propose a new semi-automated rendering method:
automatic random rendering plus automatic dimension-by-dimension rendering for higher dimensb@al (
and<100D) datasets. The adaptive ClusterMap labeling subsystem preserves the irregular cluster boundary de-
fined in VISTA subsystem, clearly distinguishes the outliers and provides effective mechanisms for fine-tuning
and flexible refinement of boundary extensions during the disk labeling phase. We also discussed the issues
and solutions in integrating the sampling approach and the two main components into iVIBRATE framework,
which help to maintain the reliability of the entire framework.

Experimental results show that, by incorporating visual cluster rendering and visualization-based disk labeling,
the iVIBRATE approach not only considerably improves the quality of intermediate clustering results on the
representative set with irregular shaped clusters, but also effectively extends the results to the entire large datase
with low computational cost.
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The IVIBRATE framework presents a very flexible and intuitive approach for exploring clusters in large
datasets, which is also an open framework for incorporating existing clustering methods with the power of visu-
alization. We believe there will be many interesting issues in applying and extending the iVIBRATE framework
in the future.
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