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Abstract—Running MapReduce programs in the public
cloud introduces the important problem: how to optimize
resource provisioning to minimize the financial charge for
a specific job? In this paper, we study the whole process
of MapReduce processing and build up a cost function that
explicitly models the relationship between the amount of input
data, the available system resources (Map and Reduce slots),
and the complexity of the Reduce function for the target
MapReduce job. The model parameters can be learned from
test runs with a small number of nodes. Based on this cost
model, we can solve a number of decision problems, such as
the optimal amount of resources that can minimize the financial
cost with a time deadline or minimize the time under certain
financial budget. Experimental results show that this cost model
performs well on tested MapReduce programs.
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I. I NTRODUCTION

With the deployment of web applications, scientific com-
puting, and sensor networks, a large amount of data can
be collected from users, applications, and the environment.
For example, user clickthrough data has been an important
data source for improving web search relevance [7] and
for understanding online user behaviors [17]. Such datasets
can be easily in terabyte scale; they are also continuously
produced. Thus, an urgent task is to efficiently analyze these
large datasets so that the important information in the data
can be promptly captured and understood. As a flexible
and scalable parallel programming and processing model,
recently MapReduce [5] (and its open source implementation
Hadoop) has been widely used for processing and analyzing
such large scale datasets [15], [6], [14], [9], [4], [12].

On the other hand, data analysts in most companies, re-
search institutes, and government agencies have no luxury to
access large private Hadoop/MapReduce clouds. Therefore,
running Hadoop/MapReduce on top of the public cloud has
become a realistic option for most users. In view of this re-
quirement, Amazon has developed the Elastic MapReduce1

that runs on-demand Hadoop/MapReduce clusters on top of

1aws.amazon.com/elasticmapreduce/.

Amazon EC2 nodes. There are also scripts2 for users to
manually setup Hadoop/MapReduce on EC2 nodes.

Running a Hadoop cluster on top of the public cloud
shows different features from a private Hadoop cluster. First,
for each job a dedicated Hadoop cluster will be started on
a number of virtual nodes. There is no multi-user or multi-
job resource competition happening within such a Hadoop
cluster. Second, it is now the user’s responsibility to set
the appropriate number of virtual nodes for the Hadoop
cluster. The optimal setting may differ from application to
application and depend on the amount of input data. To our
knowledge, there is no effective method helping the user
make this decision.

The problem of optimal resource provisioning involves
two intertwined factors: the cost of provisioning the virtual
nodes and the time to finish the job. Intuitively, with a larger
amount of resources, the job can take shorter time to finish.
However, resources are provisioned at cost. It is tricky to
find the best setting that minimizes the cost. With other
constraints such as a time deadline or a financial budget
to finish the job, this problem appears more complicated.

We propose a method to help the user make the decision of
resource provisioning for running the MapReduce programs
in public clouds. This method is based on the proposed
MapReduce cost model that has a number of parameters
to be determined for a specific application. The model
parameters can be learned with tests running on a small
number of virtual nodes and small test data. Based on the
cost model and the estimated parameters, the user can find
the optimal setting by solving certain optimization problems.

Our approach has several unique contributions.

• Different from existing work on the performance anal-
ysis of MapReduce program, our approach focuses on
the relationship among the number of Map/Reduce
slots, the amount of input data, and the complexity
of application-specific components. The resulting cost
model can be represented as a linear model in terms
of transformed variables. Linear models provide robust

2e.g., wiki.apache.org/hadoop/AmazonEC2



generalization power that allows one to determine the
parameters with the data collected on small scale tests.

• Based on this cost model, we formulate the important
decision problems as several optimization problems.
The resource requirement is mapped to the number of
Map/Reduce slots; the financial cost of provisioning
resources is the product between the cost function and
the acquired Map/Reduce slots. With the explicit cost
model, the resultant optimization problems are easy to
formulate and solve.

• We have conducted a set of experiments to validate
the cost model. The experimental result shows this
cost model fits the data collected from four tested
MapReduce programs very well. The experiment on
model prediction also shows low error rates.

The entire paper is organized as follows. In Section 2,
we introduce the MapReduce Programming model and the
normal setting for running Hadoop on the public cloud. In
Section 3, we analyze the execution of MapReduce program
and propose the cost model. In Section 4, the aforementioned
decision problems on resource provisioning are formulated
as several optimization problems based on the cost model. In
Section 5, we present the experimental results that validate
the cost model. In Section 6, the related work on MapReduce
performance analysis is briefly discussed.

II. PRELIMINARY

Although MapReduce has been a common concept in
program languages for decades, MapReduce programming
for large-scale parallel data processing was just recently
proposed by Dean et al. in Google [5]. MapReduce is more
than a programming model - it also includes the system
support for processing the MapReduce jobs in parallel in a
large scale cluster. A popular open source implementation
of the MapReduce framework is Apache Hadoop that also
includes the underlying Hadoop Distributed File System
(HDFS).

It is best to understand how MapReduce programming
works with an example - the WordCount program. The
following code snippet shows how this MapReduce program
works. WordCount counts the frequency of word in a large
document collection. Its Map program partitions the input
lines into words and emits tuples〈w, 1〉 for aggregation,
where ‘w’ represents a word and ‘1’ means the occurrence
of the word. In the Reduce program, the tuples with the
same word are grouped together and their occurrences are
summed up to get the final result.

When deploying a Hadoop cluster on a public cloud, we
need to request a number of virtual nodes from the cloud
and start them with a system image that has the Hadoop
package preinstalled. In addition, the user’s data may reside
in the cloud storage system, e.g., Amazon S3, for which the
Hadoop system needs to be appropriately configured. The
configuration files are passed to the corresponding master

Algorithm 1 The WordCount MapReduce program
1: map(file)
2: for each line in the filedo
3: for each wordw in the linedo
4: Emit(〈w, 1〉)
5: end for
6: end for

1: reduce(w, v)
2: w: word, v: list of counts.
3: d← 0;
4: for eachvi in v do
5: d← d + vi;
6: end for
7: Emit(〈w, d〉);

and slave nodes, and the Hadoop cluster then gets started.
Here comes the difficult decision problem for the user: how
many nodes would be appropriate for a specific job, which
will minimize the financial charge and guarantee the job to
be finished on time? We start exploring this problem with
an analysis on the MapReduce’s cost model.

III. C OST MODEL OF MAPREDUCE

In this section, we analyze the components in the whole
MapReduce execution process and derive a cost model in
terms of the input data, the application-specific complexity,
and the available system resources. This cost model is the
core component for solving the resource prediction and
optimization problems.

Read � Map� Partition/sort� Combine

Copy � Sort � Reduce� WriteBack

HDFS

block
Local 

disk

Pull data

HDFS

file

Map Task

Reduce Task

Figure 1. Components in Map and Reduce tasks and the sequence of
execution.

The MapReduce processing is a mix of sequential and
parallel processing. The Map phase is executed before the
Reduce phase3, as Figure 1 shows. However, in each phase
many Map or Reduce processes are executed in parallel.
To clearly describe the MapReduce execution, we would
like to distinguish the concepts ofMap/Reduce slotand
Map/Reduce process. Each Map (or Reduce) process is
executed in a Map (or Reduce) slot. A slot is a unit of
computing resources allocated for the corresponding pro-
cess. According to the system capacity, a computing node
can only accommodate a fixed number of slots so that the

3The Copy operation in the Reduce phase overlaps the Map phase- when
a Map’s result is ready, Copy may start immediately.



processes can be run in the slots in parallel without serious
competition. In Hadoop, the Tasktracker running in each
slave node has to set the number of Map slots and the
number of Reduce slots. A common setting for a multi-core
computer is to have two Map or Reduce slots per core. Let’s
assume there arem Map slots andr Reduce slots in total
over all slave nodes.

We define a Map/Reduce process as a Map/Reduce task
running on a specific slot. By default, in Hadoop each Map
process handles one chunk of data (e.g., 64MB). Therefore,
if there areM chunks of data,M Map processes in total
will be scheduled, which are assigned to them slots. In
the ideal case,m Map processes occupy them slots and
run in parallel - we call it one round of Map processes.
If M > m, which is normal for large datasets,⌈M/m⌉
Map rounds are needed. Different from the total number
of Map processes, the number of Reduce processes, sayR,
can be set by the user and determined by the application
requirement. Similarly, ifR > r, more than one round of
Reduce processes are scheduled. In practice, to avoid the
cost of scheduling multiple rounds of Reduce processes, the
number of Reduce processes is often set to the same as or
less than the number of Reduce slots in the cluster4.
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Figure 2. Illustration of parallel and sequential execution in the ideal
situation.

Figure 2 illustrates the scheduling of Map and Reduce
processes to the Map and Reduce slots in the ideal situation.
In practice, in one round Map processes may not finish
exactly at the same time - some may finish earlier or later
than others due to the system configuration, the disk I/O,
the network traffic, and the data distribution. But we can
use the total number of rounds to roughly estimate the total
time spent in the Map phase. We will consider the variance
in cost modeling. Intuitively, the more available slots, the
faster the whole MapReduce job can be finished. However,
in the pay-as-you-go setting, there is a tradeoff between the
amount of the resources and the amount of time to finish
the MapReduce job.

4In general, the number of Reduce processes,R, is not larger than the
number of Map output keys, because one Reduce process handlesone or
more output keys. In many applications, the number of Map outputkeys
is so large thatR is often set to the number of all available Reduce slots
to optimize the performance [19].

In addition to the cost of Map and Reduce processes, the
system has some additional cost managing and scheduling
theM Map processes and theR Reduce processes. Based on
this understanding, we analyze the cost of each Map process
and Reduce process, respectively, and then derive the overall
cost model.

A. Map Process

A Map process can be divided into a number of se-
quential components, including Read, Map, Sort/Partition,
and optionally Combine, as Figure 1 shows. We understand
this process in term of a data flow - data sequentially flow
through each component and the cost of each component
depends on the amount of input data.

The first component is reading a block of data from the
disk, which can be either local or remote data block. Let’s
assume the average cost is a function of the size of data
block b: i(b). The second component is the user defined
Map function, the complexity of which is determined by
the input data sizeb, denoted asf(b). The Map function
may output data in size ofom(b) that is often a linear
function to the input sizeb. The output will be a list of
〈key, value〉 pairs. The result will be sorted by the key and
partitioned intoR shares for theR Reduce processes. We
denote the cost of partitioning and sorting withs(om(b)).
Since the partitioning process uses a hash function to map
the keys, the costs(om(b)) is independent ofR. Let’s skip
the Combiner component temporarily and we will discuss
the situation having the Combiner component later.

In summary, the overall cost of a Map process is the sum
of the costs (without the Combiner component):

Φm = i(b) + f(b) + s(om(b)). (1)

This cost is only related to the size of the data blockb and
the complexity of the Map function. It is independent of the
parametersM ,R andr.

B. Reduce Process

The Reduce process has the components: Copy, Merge-
Sort, Reduce and WriteResult. These components are also
sequentially executed in the Reduce process.

Assume thek keys of the Map result are equally dis-
tributed to theR Reduce processes5. In the Copy component,
each Reduce process pulls its shares, i.e.,k/R keys and the
corresponding records, from theM Map processes’ outputs.
Thus, the total amount of data in each Reduce will be

bR = M · om(b) · k/R. (2)

The Copy cost is linear tobR, denoted asc(bR). A Merge-
Sort follows to merge theM shares from the Map results
while keeping the records sorted, which has the complexity
O(bR log bR), denoted asms(bR).

5For this reason, the user normally selectsR to satisfyk ≥ R. If R > k,
only k Reduces are actually used.



The Reduce function will process the data with some
complexity g(bR) that depends on the real application.
Assume the output data of the Reduce function has an
amount or(bR), which is often less thanbR. Finally, the
result is duplicated and written back to multiple nodes, with
the complexity linear toor(bR), denoted aswr(or(bR)).

In summary, the cost of the Reduce process is the sum of
the component costs,

Φr = c(bR) +ms(bR) + g(bR) + wr(or(bR)), (3)

C. Putting All Together

According to the parallel execution model we described
in Figure 2, the overall time complexityT depends on the
number of Map rounds and Reduce rounds. By including
the cost of managing and scheduling the Map and Reduce
processesΘ(M,R), which is assumed to be linear toM and
R, we represent the overall cost as

T = ⌈
M

m
⌉Φm + ⌈

R

r
⌉Φr +Θ(M,R). (4)

We are more interested in the relationship among the total
time T , the input data sizeM × b, the user defined number
of Reduce processesR, and the number of Map and Reduce
slots,m andr. If we use a fixed block sizeb in the analysis,
the cost of each Map process,Φm, is fixed. The cost of
each Reduce process,Φr, is subject to the factorM and
R. Since the user settingR is often the same as or less
than the number of Reduce slots,r, we let ⌈R/r⌉ = 1. To
make it more convenient to manipulate the equation, we also
remove⌈⌉ from ⌈M/m⌉ by assumingM ≥ m andM/m
is an integer. After plugging in the equations 2 and 3 and
keeping only the variablesM , R, andm in the cost model,
we get the detailed model

T1(M,m,R) =

β0 + β1
M

m
+ β2

M

R
+ β3

M

R
log(

M

R
)

+g(
M

R
) + β4M + β5R+ ǫ, (5)

whereβi are the parameters describing the constant factors.
T1(M,m,R) is not linear to its variables, but it is linear
to the transformed components:M/m, M/R, M

R
log(M

R
),

g(M/R), M , and R. The parameterβi defines the con-
tribution of each components in the model. Concretely,
β1 represents the fixed Map costΦm; β2 represents the
parameter associated with the cost of Copy and WriteBack
in the Reduce phase;β3 represents the parameter associated
with the MergeSort component in the Reduce phase;β4 and
β5 represent the parameters for the cost associated with the
management costΘ(), i.e., we assume the cost is linearly
associated with the number of Map and Reduce slots:
Θ(M,R) = β4M + β5R; β0 represents some constant, and
ǫ represents the noise component that covers the unknown

or unmodeled factors in the system. We leave the discussion
on the itemg(M/R) later.

The simplicity of the linear model has several advantages.
If this model is valid, it will allow us to robustly estimate
the time complexity of larger data (i.e., largerM ) and more
resources (largerm andR) based on the model parameters
estimated with the small settings ofM , m, andR. It can also
reduce the complexity of solving the related optimization
problems.

With Combiner. In the Map process, the Combiner
function is used to aggregate the results by the key. If there
arek keys in the Map output, the Combiner function reduces
the Map result tok records. The cost of Combiner is only
subject to the output of the Map function. Thus, it can be
incorporated into the parameterβ1. However, the Combiner
function reduces the output data of the Map process and thus
affects the cost of the Reduce phase. With the Combiner, the
amount of data that a Reduce process needs to pull from the
Map is changed to

bR = Mk/R. (6)

Since the important factorsM andR are still there, the cost
model (Equation 5) applies without any change.

Function g(). The complexity of Reduce function has
to be estimated with the given application. There are some
special cases that theg() item can be removed from Equation
5. If g() is linear to the size of the input data, then its contri-
bution can be merged to the factorβ2, becauseg(M/R) ∼
M/R. Similarly, if its complexity is O(M

R
log(M

R
)), its

contribution can be merged toβ3. In these two special cases,
the cost model is simplified to

T2(M,m,R) =

β0 + β1
M

m
+ β2

M

R
+ β3

M

R
log(

M

R
)

+β4M + β5R+ ǫ, (7)

In practice, many applications can be covered by the special
cases.

Observations. Let’s look closer to the parameters of the
simplified modelT2. First, let’s fix M and R. We have
T2 ∼ 1/m. This relationship indicates that whenm is
already large, the increase ofm will not bring significant
performance gain. In particular, ifM is smaller thanm,
increasingm will not gain, at all. Second, let’s fixM andm.
Then, the function ofR is more complicated, involvingR,
1/R, and(logR)/R. We will have to depend on experiments
to explore the function ofR. Finally, if we fix m and R
and increase the data sizeM , the complexity might be
dominated by the itemM

R
log(M

R
). A Combiner function

can significantly reduce the weight of this item.

IV. OPTIMIZATION OF RESOURCEPROVISIONING

With the cost model we are now ready to find the optimal
settings for different decision problems. We try to find the



best resource allocation for three typical situations: (1)with
certain limited amount of financial budget; (2) with certain
time constraint; (3) and without any constraint. We formulate
these problems as optimization problems based on the cost
model.

In all the scenarios we consider, we assume the model
parameters are determined with sample runs in small scale
settings. We also assumeg() function is one of the two
simple cases. Therefore, the simplified modelT2 is applied.
Since the input data is fixed,M is constant. For simplicity,
we also consider all general MapReduce system configura-
tions [1], [6] are fixed for both small and large scale settings.
With this setup, the time cost function becomes

T3(m,R) = α0 +
α1

m
+

α2

R
+

α3 logR

R
+ α4R (8)

where

α0 = β0 + β4M,

α1 = β1M,

α2 = β2M + β4M logM,

α3 = −β3M,

α4 = β5.

In the virtual machine (VM) based cloud infrastructure
(e.g., Amazon EC2), the cost of cloud resources is calculated
based on the number of VM instances used in time units
(typically in hours). According to the capacity of a virtual
machine (CPU cores, memory, disk and network bandwidth),
a virtual node can only have a fixed number of Map/Reduce
slots. Let’s denote the number of slots per node asγ. Thus,
the total number of slotsm + r required by a on-demand
Hadoop cluster can be roughly transformed to the number
of VMs, v, as

v = (m+ r)/γ. (9)

If the price of renting one VM instance for an hour isu, the
total financial cost is determined by the resultuvT3(m,R).
Since we usually setR to r, it follows that the total financial
cost for renting the Hadoop cluster is

uvT3(m,R) = u(m+R)T3(m,R)/γ. (10)

Therefore, given a financial budgetφ, the problem of
finding the best resource allocation to minimize the job time
can be formulated as

minimize T3(m,R) (11)

subject to u(m+R)T3(m,R)/γ ≤ φ,

m > 0, and R > 0.

If the constraint is about the time deadlineτ for finishing
the job, the problem of minimizing the financial cost can be
formulated as

minimize u(m+R)T3(m,R)/γ (12)

subject to T3(m,R) ≤ τ,m > 0, and R > 0.

The above optimization problem can also be slightly
changed to describe the problem that the user simply wants
to find the most economical solution for the job without time
deadline, i.e., the constraintT3(m,R) ≤ τ is removed.

Note that theT3 model parameters might be specific for
a particular type of VM instance that also determines the
parametersu andγ. Therefore, by testing different types of
VM instance and applying this optimization repeatedly on
each instance type, we can also find which instance type is
the best.

With the concrete setting of theT3 model parameters
(i.e.,αi be positive or negative), these optimization problems
can be convex or non-convex [2]. However, they are in the
category of well-studied optimization problems - there are
plenty of papers and books discussing how to solve these
optimization problems. Therefore, we will skip the details
of solving these problems.

V. EXPERIMENTS

We design and conduct a set of experiments to validate
the formulated cost model. We first give the setup of the
experiments, including the experimental environment and
the datasets. Four tested programs are used in experiments:
WordCount, TeraSort, PageRank and Join. We then run a
number of rounds of the tested programs and collect the
data for regression analysis and model prediction.

A. Experimental Setup

Hardware and Hadoop Configuration. The experiments
are conducted in our inhouse 16-node Hadoop cluster. Each
node has two quad-core 2.3Mhz AMD Opteron 2376, 16GB
memory, and two 500GB hard drives, connected with a
gigabit switch. The version 0.21.0 of Hadoop is installed
in the cluster. One node serves as the master node and the
other as the slave nodes. The single master node runs the
JobTrackerand theNameNode, while each slave node run
both theTaskTrackerand theDataNode. Each slave node is
configured with eight Map slots and six Reduce slots (about
two concurrent processes per core). Each Map/Reduce pro-
cess uses 400MB memory. The data block size is set to 64
MB. We use the Hadoop fair scheduler to control the total
number of Map/Reduce slots available for different testing
jobs.

Datasets. We use a number of generators to generate
testing datasets for the benchmark programs. (1) We revised
the RandomWriter tool in the Hadoop package to use a
Gaussian random number generator to generate random float
numbers. This data is used by the Sort program. (2) We
also revised the RandomTextWriter tool to generate text
data based on a list of 1000 words randomly sampled from
the system dictionary /usr/share/dict/words. This dataset is
used by the WordCount program and the TableJoin program.
(3) The third dataset is a synthetic random graph dataset.
Each line of the data starts with a node ID and its initial



PageRank, followed by a list of node IDs representing the
node’s outlinks. Both the node ID and the outlinks are
randomly generated integers. Each type of data consists of
150 1GB files. For a specific testing task, we will randomly
choose a number of the 1GB files to simulate different sizes
of input data.

B. Tested Programs.

We describe the MapReduce programs used in testing and
give the complexity of each one’s Reduce function, i.e., the
g() function. If g() is linear to the input data, the simplified
cost model Eq. 7 is used.

WordCount is a sample MapReduce program in the
Hadoop package. The Map function splits the input text
into words and the result is locally aggregated by word
with a Combiner; the Reduce function sums up the local
aggregation results〈word, count〉 by words and output the
final word counts. Since the number of words is limited,
the amount of output data to the Reduce stage and the cost
of Reduce stage are small, compared to the data and the
processing cost for the Map stage. The complexity of the
Reduce function,g(), is linear to Reduce’s input data.

Sort is also a sample MapReduce program in the Hadoop
package. It depends on a custom partitioner that uses a sorted
list of N−1 sampled keys that define the key range for each
Reduce. As a result, all keys such that sample[i − 1] <=
key < sample[i] are sent to Reducei. Then, the inherent
MergeSort in the Shuffle stage sorts the input data to the
Reduce. This guarantees that the output of Reduce i are all
less than the output of Reduce i+1. Both the Map function
and the Reduce function do nothing but simply pass the
input to the output. Therefore, the functiong() is also linear
to the size of the input of Reduce.

PageRank is a MapReduce implementation of the well
known Google’s PageRank algorithm [3]. PageRank is an
iterative algorithm applied on a graph dataset. Assume each
node pi in the graph has a PageRankPR(pi). M(pi)
represents the set of neighboring nodes ofpi that have an
outlink pointing topi. L(pj) is the total number of outlinks
the nodepj has. d is the damping factor andN is the
total number of nodes. The following equation calculates
the PageRank for each nodepi.

PR(pi) = (1− d)/N + d
∑

pj∈M(pi)

PR(pj)

L(pj)
(13)

PageRank values are updated in multiple rounds until they
converge. In one round of PageRank MapReduce program,
all nodes’ PageRank values are updated in parallel based on
the above equation. Concretely, the Map function distributes
a share of each node’s PageRank, i.e.,PR(pj)/L(pj), to
all its outlink neighbors. The Reduce function collects the
shares from its neighbors and applies the equation to update
the PageRank. The complexity functiong() is also linear to
the size of the input of Reduce.

Join is an MapReduce program that joins a large file and
a small file based on a designated key, which mimics the
Join operation in relational database. The large files are the
text files randomly generated with RandomTextWriter. The
small file consists of 50 randomly generated lines using the
same method for generating the large text dataset. The first
word of each line in both types of file serves as the join
key. The Map function emits the lines of the input large and
small files. Each line of the small file is labeled so that they
can be distinguished from the Map output. In the Reduce,
the lines are checked. If the lines from both files are found,
a cartesian product is applied between the two sets of lines
to generate the output. Depending on the key distribution,
the size of output data may vary. In the Reduce function,
assume there is aλ lines are from the large file andµ lines
from the small file. The result of cartesian product isλµ
lines. Sinceµ ≤ 50 very small, the complexity functiong()
is approximately linear to the inputλ+ µ lines.

C. Model Analysis

We run a set of experiments to estimate the model
parametersβi for the four programs. We randomly select the
values for the three parametersM , m, andR. The number
of data chunksM is calculated by the number of selected
1GB files (one file has 1024/64 = 16 blocks). The number of
Map slotsm is controlled by setting the maximum number
of Map slots in thefair scheduler. R is randomly set to a
number smaller than the total number of Reduce Slots in the
system.

For each tested program, we generate 25 to 60 random
settings of< M,m,R >. M is randomly selected from
the integers[1 . . . 150] × 16, i.e., the number of 1GB files
× 16 blocks/file.R is randomly selected from the integers
[1 . . . 50]. Since changingm will need to update the sched-
uler setting, we limit the choices ofm to 30,60,90,and 120
- for eachm. For each setting, we record the time (seconds)
used to finish the program.

Regression Analysis.With x1 = M/m, x2 = M/R,
x3 = M

R
log(M

R
), x4 = M , andx5 = R, we can conduct a

linear regression on the transformed cost model

T (x1, x2, x3, x4, x5) = β0+β1x1+β2x2+β3x3+β4x4+β5x5.
(14)

Table I shows the result of regression analysis6. R2 is a
measure for evaluating the goodness of fit in regression
modeling.R2 = 1 means a perfect fit, whileR2 > 90%
indicates a very good fit.

Figure 3, 4, 5, and 6 show the goodness of fit in a more
intuitive way. To make the presentation clearer, we sort the
experimental results by the time cost in an ascending order.
The solid lines represent the real times observed in the

6We used the existing linear regression package in Matlab to fit the
model. An improvement on modeling would consider more constraints such
asβi ≥ 0, for i > 0.



WC Sort PR Join
β0 66.66 -271.22 469.70 19.60
β1 30.00 0.47 55.16 2.07
β2 -0.42 -0.83 -68.08 -4.50
β3 0.06 1.61 16.84 2.20
β4 0.02 0.63 2.43 0.42
β5 -0.95 5.91 1.65 -0.37
R2 0.9969 0.9689 0.9161 0.9895

Table I
RESULT OF REGRESSION ANALYSIS. R2 VALUES ARE ALL HIGHER THAN

0.90, INDICATING GOOD FIT OF THE PROPOSED MODEL.

experiment and the ’+’ marks represent the predicted times
using the fitted model. The closer the two, the better quality
the model has. All of the four figures show excellent fit.

���������
���

� �� �� �� �� �������������� � !" #$%&' ()
*+,- ./0+12+3/45+3./0+

Figure 3. Fitting the model for
WordCount (60 rounds).
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Figure 4. Fitting the model for
TeraSort (60 rounds).
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Figure 5. Fitting the model for Join
program (40 rounds).
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Figure 6. Fitting the model for
PageRank (25 rounds).

Note that the purpose of this experiment is to show the
effectiveness of the cost model. Different Hadoop clusters
should result in different model parameters.

Cross Validation. We also perform a leave-one-out cross
validation to study the prediction accuracy of the model. The
leave-one-out cross validation runs inn rounds if there aren
training examples, i.e., the tuples of(M,m,R, T ). In each
round, it uses one of then examples as the testing example
and the othern − 1 examples for training the model. The
accuracy is defined as the average relative errors (ARE) over
the n rounds of testing. LetCi be the real cost and̂Ci be
the estimated cost by the trained model in the roundi. We
calculate ARE with the following equation.

ARE =
1

n

n∑

i=1

|Ci − Ĉi|

Ci

(15)

Table II shows the relative error rates in leave-one-out
cross validation. For comparison, we also list the result of
testing on training data. The result confirms these models
are robust and perform well.

WC Sort PR Join
Test-on-training 9.27% 16.77% 8.97% 14.82%
Leave-one-out 10.43% 18.74% 12.32% 16.83%

Table II
AVERAGE RELATIVE ERROR RATES OF THE LEAVE-ONE-OUT CROSS

VALIDATION AND OF THE TESTING RESULT ON TRAINING DATA FOR THE

FOUR PROGRAMS.

VI. RELATED WORK

The recent research on MapReduce has been focused on
understanding and improving the performance of MapRe-
duce processing in a dedicated private Hadoop cluster. The
configuration parameters of Hadoop cluster are investigated
in [6], [1] to find the optimal configuration for different
types of job. In [18], the authors simulate the steps in
MapReduce processing and explore the effect of network
topology, data layout, and the application I/O characteristics
to the performance. Job scheduling algorithms in the multi-
user multi-job environment are also studied in [20], [16],
[21]. These studies have different goals from our work, but
an optimal configuration of Hadoop will reduce the amount
of required resources and time for jobs running in the
public cloud as well. A theoretical study on the MapReduce
programming model [10] characterizes the features of mixed
sequential and parallel processing in MapReduce, which
justifies our analysis in Section III.

MapReduce performance prediction has been another im-
portant topic. Kambatla et al. [8] studied the effect of the
setting of Map and Reduce slots to the performance and
observed different MapReduce programs may have different
CPU and I/O patterns. A fingerprint based method is used
to predict the performance of a new MapReduce program
based on the studied programs. Historical execution traces
of MapReduce programs are also used for program profiling
and performance prediction in [11]. For long MapReduce
jobs, accurate progress indication is important, which is also
studied in [13]. A strategy used by [8], [11] and shared by
our approach is to use test runs on small scale settings to
characterize the behaviors of large scale settings. However,
these approaches do not study an explicit cost function that
can be used in optimization problems.

MapReduce has been used in handling many data in-
tensive problems. MapReduce and Parallel databases are
compared on relational data analysis jobs in [15], [6]. A
few data mining algorithms have been developed based
on MapReduce, including PLANET [14] for tree ensem-
ble learning, PEGASUS [9] for mining peta-scale graphs,
MapReduce EM algorithm [4], and MapReduce based text
mining [12].



VII. C ONCLUSION

Running MapReduce programs in the public cloud raises
the important problem: how to optimize resource provision-
ing to minimize the financial cost for a specific job? In this
paper, we study the components in MapReduce processing
and build a cost function that explicitly models the rela-
tionship between the amount of data, the available system
resources (Map and Reduce slots), and the complexity of
the Reduce function for the target MapReduce program.
The model parameters can be learned from test runs with
small scale settings on the target program. Based on this
cost model, we can solve a number of decision problems,
such as the optimal amount of resources that can minimize
the financial cost with the constraints of financial budget or
time deadline. We have also conducted a set of experiments
to validate the model. The result shows that this cost model
fits well on four tested programs.

Due to the time limitation, we were not able to conduct
experiments in the public cloud. An important ongoing work
is to run experiments on Amazon EC2 nodes. The virtual
machine based EC2 nodes will have different CPU, I/O,
and networking characteristics from our inhouse cluster.
However, since the MapReduce execution model is not
changed regardless of small or large cluster, private or public
cloud, we believe the effects of these system level factors
can be captured by the model parameters.
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