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Abstract—Running MapReduce programs in the public ~Amazon EC2 nodes. There are also scfidtsr users to
cloud introduces the important problem: how to optimize manually setup Hadoop/MapReduce on EC2 nodes.
resource provisioning to minimize the financial charge for Running a Hadoop cluster on top of the public cloud
a specific job? In this paper, we study the whole process . - .
of MapReduce processing and build up a cost function that shows dlfferent feat'ures from a private Hadqop clustestFir
explicitly models the relationship between the amount of input ~ for each job a dedicated Hadoop cluster will be started on
data, the available system resources (Map and Reduce slots), a number of virtual nodes. There is no multi-user or multi-
and the complexity of the Reduce function for the target job resource competition happening within such a Hadoop
MapReduce job. The model parameters can be leamned from —,qter Second, it is now the user’s responsibility to set

test runs with a small nhumber of nodes. Based on this cost . .
model, we can solve a number of decision problems, such as the appropriate number of virtual nodes for the Hadoop

the optimal amount of resources that can minimize the financial ~ cluster. The optimal setting may differ from application to
cost with a time deadline or minimize the time under certain  application and depend on the amount of input data. To our

financial budget. Experimental results show that this cost model  knowledge, there is no effective method helping the user
performs well on tested MapReduce programs. make this decision.

Keywords-MapReduce; Cloud Computing; Resource Provi- The problem of optimal resource provisioning involves
sioning; Performance Modeling two intertwined factors: the cost of provisioning the vatu
nodes and the time to finish the job. Intuitively, with a large
|. INTRODUCTION amount of resources, the job can take shorter time to finish.

With the deployment of web applications, scientific com- However, resources are provisioned at cost. It is tricky to
puting' and sensor networks, a |arge amount of data Caﬁnd the best Setting that minimizes the cost. With other
be collected from users, applications, and the environmengonstraints such as a time deadline or a financial budget
For example, user clickthrough data has been an importari@ finish the job, this problem appears more complicated.
data source for improving web search relevance [7] and We propose a method to help the user make the decision of
for understanding online user behaviors [17]. Such datasefesource provisioning for running the MapReduce programs
can be easily in terabyte scale; they are also continuousliy public clouds. This method is based on the proposed
produced. Thus, an urgent task is to efficiently analyzesthesMapReduce cost model that has a number of parameters
large datasets so that the important information in the daté0 be determined for a specific application. The model
can be promptly captured and understood. As a flexiblgarameters can be learned with tests running on a small
and scalable parallel programming and processing modefiumber of virtual nodes and small test data. Based on the
recently MapReduce [5] (and its open source implementatio§0st model and the estimated parameters, the user can find
Hadoop) has been widely used for processing and analyzinge optimal setting by solving certain optimization prohte
such large scale datasets [15], [6], [14], [9], [4], [12]. Our approach has several unique contributions.

On the other hand, data analysts in most companies, re- « Different from existing work on the performance anal-
search institutes, and government agencies have no luaury t  ysis of MapReduce program, our approach focuses on
access large private Hadoop/MapReduce clouds. Therefore, the relationship among the number of Map/Reduce
running Hadoop/MapReduce on top of the public cloud has  slots, the amount of input data, and the complexity
become a realistic option for most users. In view of this re- of application-specific components. The resulting cost
quirement, Amazon has developed the Elastic MapRéeduce model can be represented as a linear model in terms
that runs on-demand Hadoop/MapReduce clusters on top of  of transformed variables. Linear models provide robust

laws.amazon.com/elasticmapreduce/. 2e.g., wiki.apache.org/hadoop/AmazonEC2



generalization power that allows one to determine theAlgorithm 1 The WordCount MapReduce program
parameters with the data collected on small scale testsl: map(file) ‘

« Based on this cost model, we formulate the importants: for ff,";“’:a'c'ﬂew'gﬁ..j f,':stjhl linedo
decision problems as several optimization problems.4: Emit((w, 1))
The resource requirement is mapped to the number O’EQ ende?(ﬂ for
Map/Reduce slots; the financial cost of provisioning
resources is the product between the cost function ang: e k. .
the acquired Map/Reduce slots. With the explicit cost3: d «0;
model, the resultant optimization problems are easy tog, " 52" " "%
formulate and solve. 6: end for

« We have conducted a set of experiments to validate” EMt(w. 4):
the cost model. The experimental result shows this

cost model fits the data collected from four tested

model prediction also shows low error rates. Here comes the difficult decision problem for the user: how
many nodes would be appropriate for a specific job, which

The entire paper is organized as follows. In Section 2, ~° 7 "~ . ; .
we introduce the MapReduce Programming model and th il minimize the financial charge and guarantee the job to
e finished on time? We start exploring this problem with

normal setting for running Hadoop on the public cloud. In e the MapReduce’ ¢ model
Section 3, we analyze the execution of MapReduce prograrﬁn analysis on the MapRreduce's cost model.

and propose the cost model. In Section 4, the aforementioned 1. CosTMODEL OF MAPREDUCE

decision problems on resource provisioning are formulated ) _ )

as several optimization problems based on the cost model. In ' this section, we analyze the components in the whole
Section 5, we present the experimental results that Va"datMapReduce execution process and derive a cost model in

the cost model. In Section 6, the related work on MapReducé"™s Of the input data, the application-specific compiexit
performance analysis is briefly discussed. and the available system resources. This cost model is the

core component for solving the resource prediction and

Il. PRELIMINARY optimization problems.
Although MapReduce has been a common concept in
program languages for decades, MapReduce programming Map Task
for large-scale parallel data processing was just recentl N "',“1
proposed by Dean et al. in Google [5]. MapReduce is mord 624 Map Partition/sort=> Combine

than a programming model - it also includes the system - —
i iobs i i HDFS
support for processing the MapReduce jobs in parallel in a o _

large scale cluster. A popular open source implementatiol Hprs _
of the MapReduce framework is Apache Hadoop that als Pull data Reduce Task I
includes the underlying Hadoop Distributed File System _
(HDFS). Copy = Sort > Reduce—> WriteBack

It is best to understand how MapReduce programming
works with an example - the WordCount program. TheFigure 1.  Components in Map and Reduce tasks and the sequénce o
following code snippet shows how this MapReduce progranf*ecution-
works. WordCount counts the frequency of word in a large

document collection. Its Map program partitions the mpUtparaIIeI processing. The Map phase is executed before the

lines |n‘t<? words and emits tuple(‘m,,l) for aggregation, Reduce phaseas Figure 1 shows. However, in each phase
where ‘w’ represents a word and ‘1’ means the occurrence

. many Map or Reduce processes are executed in parallel.
of the word. In the Reduce program, thg tuples with the'I'o clearly describe the MapReduce execution, we would
same word are grouped together and their occurrences e 1o distinguish the concepts d¥lap/Reduce sloand
summed up to get the final result.

When deploying a Hadoop cluster on a public cloud, WeMap/Reduce processtach Map (or Reduce) process is

X éaxecuted in a Map (or Reduce) slot. A slot is a unit of
need to request a number of virtual nodes from the clou . .

. . computing resources allocated for the corresponding pro-
and start them with a system image that has the HadoogesS According to the svstem capacity. a computing node
package preinstalled. In addition, the user's data mayleesi ) 9 Y hacity, puting
in the cloud storage system, e.g., Amazon S3, for which th
Had_OOp s_yster_n needs to be appropriately Conflgured' The 3The Copy operation in the Reduce phase overlaps the Map phésen
configuration files are passed to the corresponding masterMap’s result is ready, Copy may start immediately.

The MapReduce processing is a mix of sequential and

Ec}:an only accommodate a fixed number of slots so that the



processes can be run in the slots in parallel without serious In addition to the cost of Map and Reduce processes, the
competition. In Hadoop, the Tasktracker running in eachsystem has some additional cost managing and scheduling
slave node has to set the number of Map slots and ththe M Map processes and tlieReduce processes. Based on
number of Reduce slots. A common setting for a multi-corethis understanding, we analyze the cost of each Map process
computer is to have two Map or Reduce slots per core. Let'sind Reduce process, respectively, and then derive thellovera
assume there arex Map slots and- Reduce slots in total cost model.
over all slave nodes. Map Process

We define a Map/Reduce process as a Map/Reduce ta§< b o .
running on a specific slot. By default, in Hadoop each Map A Map process can be divided into a number of se-
process handles one chunk of data (e.g., 64MB). Thereforéluéntial components, including Read, Map, Sort/Partjtion
if there areM chunks of data) Map processes in total and optionally Combine, as Figure 1 shows. We understand
will be scheduled, which are assigned to theslots. In this process in term of a data flow - data sequentially flow
the ideal casen Map processes occupy the slots and through each component apd the cost of each component
run in parallel - we call it one round of Map processes.depends on the amount of input data.
If M > m, which is normal for large dataset)M /m] The first component is reading a block of data from the
Map rounds are needed. Different from the total numbedisk, which can be either local or remote data block. Let’s
of Map processes, the number of Reduce processesisay assume the average cost is a functioq of the size of. data
can be set by the user and determined by the applicatioflock b: i(b). The second component is the user defined
requirement. Similarly, ifR > r, more than one round of Map function, the complexity of which is determined by
Reduce processes are scheduled. In practice, to avoid ti@e input data sizé, denoted asf(b). The Map function
cost of scheduling multiple rounds of Reduce processes, th®ay output data in size oy, (b) that is often a linear

number of Reduce processes is often set to the same as #ction to the input sizéy. The output will be a list of
less than the number of Reduce slots in the cléster (key,value) pairs. The result will be sorted by the key and
partitioned intoR shares for theR Reduce processes. We

[M/mrounds of Map Processes denote the cost of partitioning and sorting witto,, (b)).
0 : ] Since the partitioning process uses a hash function to map
[ Map ][ Map ] [ Map ] the keys, the cost(o,, (b)) is independent ofk. Let’s skip
Process Process \ntermedi the Combiner component temporarily and we will discuss

Process Reduce
Results Process

the situation having the Combiner component later.
In summary, the overall cost of a Map process is the sum
of the costs (without the Combiner component):

Lomer, (e, ) Lomer, | =
Time Py, = i(b) + f(b) + s(om (D). 1)

Map Map Map
Process Process Process
This cost is only related to the size of the data blécind
Figure 2. lllustration of parallel and sequential exeautia the ideal the complexity of the Map function. It is independent of the
it iation. .
Stitation parameterd\/,R andr.

m Map Slots

R Reduce Slots

Figure 2 illustrates the scheduling of Map and Reduce3. Reduce Process

processes to the Map and Reduce slots in the ideal situation. The Reduce process has the components: Copy, Merge-
In practice, in one round Map processes may not finishsot Reduce and WriteResult. These components are also
exactly at the same time - some may finish earlier or |ate§equentially executed in the Reduce process.

than others due to the system configuration, the disk I/O, aAgsume thek keys of the Map result are equally dis-
the network traffic, and the data distribution. But we canyiputed to theR Reduce processedn the Copy component
use the total number of rounds to roughly estimate the total;.n Reduce process pulls its shares, k£R keys and the
time spent in the Map phase. We will consider the Va”anc%orresponding records, from thé Map processes’ outputs.

in cost modeling. Intuitively, the more available slotseth Thus the total amount of data in each Reduce will be
faster the whole MapReduce job can be finished. However,

in the pay-as-you-go setting, there is a tradeoff between th br =M -0n,(b)-k/R. (2)

amount of the resources and the amount of time to ﬁnishl-he Copy cost is linear tby, denoted as(br). A Merge-

the MapReduce job. Sort follows to merge thé// shares from the Map results
4In general, the number of Reduce procesgesis not larger than the while keeplng the records sorted, which has the compIeX|ty

number of Map output keys, because one Reduce process hamgiesr O(bglogbr), denoted asns(br).

more output keys. In many applications, the number of Map outpys

is so large thatR is often set to the number of all available Reduce slots  ®For this reason, the user normally seleBt$o satisfyk > R. If R > k,
to optimize the performance [19]. only k£ Reduces are actually used.



The Reduce function will process the data with someor unmodeled factors in the system. We leave the discussion
complexity g(br) that depends on the real application. on the itemg(M/R) later.
Assume the output data of the Reduce function has an The simplicity of the linear model has several advantages.
amounto,(br), which is often less thaby. Finally, the If this model is valid, it will allow us to robustly estimate
result is duplicated and written back to multiple nodeshwit the time complexity of larger data (i.e., largkf) and more

the complexity linear tw, (br), denoted asvr(o,(bg)). resources (largem and R) based on the model parameters
In summary, the cost of the Reduce process is the sum afstimated with the small settings &f, m, andR. It can also
the component costs, reduce the complexity of solving the related optimization
problems.
@, = c(br) + ms(br) + g(br) + wr(oy(br)),  (3) With Combiner. In the Map process, the Combiner

. function is used to aggregate the results by the key. If there
C. Putting All Together arek keys in the Map output, the Combiner function reduces
According to the parallel execution model we describedthe Map result tok records. The cost of Combiner is only
in Figure 2, the overall time complexity’ depends on the subject to the output of the Map function. Thus, it can be
number of Map rounds and Reduce rounds. By includingncorporated into the parametgr. However, the Combiner
the cost of managing and scheduling the Map and Reduckinction reduces the output data of the Map process and thus
processe® (M, R), which is assumed to be linearid and  affects the cost of the Reduce phase. With the Combiner, the
R, we represent the overall cost as amount of data that a Reduce process needs to pull from the
M R Map is changed to
T= [R]@W,,Jr( 19, + ©(M, R). 4)

r

br = Mk/R. (6)

We are more interested in the relationship among the totabjnce the important factorl and R are still there, the cost
time 7', the input data sizé/ x b, the user defined number gqel (Equation 5) applies without any change.

of Reduce processés, and the number of Map and Reduce  Fynction g(). The complexity of Reduce function has

slots,m andr. If we use a fixed block siz&in the analysis, to e estimated with the given application. There are some
the cost of each Map proces$,,, is fixed. The cost of gpecial cases that the) item can be removed from Equation
each Reduce proces®,, is subject to the factod/ and 5 f 4() is linear to the size of the input data, then its contri-
R. Since the user setting is often the same as or less pytion can be merged to the fact6s, becausey(M/R) ~
than the number of Reduce slois,we let[R/r] = 1. To M/R. Similarly, if its complexity is O(2 log(1L)), its
make it more convenient to manipulate the equation, we alsgontripution can be merged f&. In these two special cases,
remove[] from [M/m] by assumingd > m and M/m  the cost model is simplified to
is an integer. After plugging in the equations 2 and 3 and
keeping only the variabled/, R, andm in the cost model, (M, m, R) =

i M M M M
we get the detailed model B0 +ﬂ1g +BQ§ +ﬁ3§10g(—)

R
Ty(M,m, R) = +BaM + B5R + e, @)
Bo + 615 + 52§ + ﬁ3§ log(ﬁ) In practice, many applications can be covered by the special
M cases.
+g(§) + BaM + B5R + €, ) Observations. Let's look closer to the parameters of the

simplified modelT;. First, let's fix M and R. We have
where3; are the parameters describing the constant factorsy, 1/m. This relationship indicates that when is
T:1(M,m, R) is not linear to its variables, but it is linear gjready large, the increase of will not bring significant
to the transformed componentsf/m, M/R, 47 log(%),  performance gain. In particular, i#/ is smaller tharm,
g(M/R), M, and R. The parametep; defines the con- increasingn will not gain, at all. Second, let's fi*/ andm.
tribution of each components in the model. Concretely;Then, the function of? is more complicated, involvingg,
1 represents the fixed Map cost,,; §, represents the 1/R and(log R)/R. We will have to depend on experiments
parameter associated with the cost of Copy and WriteBaclky explore the function of?. Finally, if we fix m and R
in the Reduce phasg; represents the parameter associatethng increase the data size, the complexity might be
with the MergeSort component in the Reduce phaseand  dominated by the itermif log(2). A Combiner function
Bs represent the parameters for the cost associated with thgyn significantly reduce the weight of this item.
management cosd(), i.e., we assume the cost is linearly
associated with the number of Map and Reduce slots: V. OPTIMIZATION OF RESOURCEPROVISIONING
O(M, R) = B4M + B5R; By represents some constant, and With the cost model we are now ready to find the optimal
€ represents the noise component that covers the unknowsettings for different decision problems. We try to find the



best resource allocation for three typical situations:with The above optimization problem can also be slightly
certain limited amount of financial budget; (2) with certain changed to describe the problem that the user simply wants
time constraint; (3) and without any constraint. We forntella to find the most economical solution for the job without time
these problems as optimization problems based on the codeadline, i.e., the constraiff (m, R) < 7 is removed.
model. Note that theTs; model parameters might be specific for
In all the scenarios we consider, we assume the model particular type of VM instance that also determines the
parameters are determined with sample runs in small scalearameters: and~. Therefore, by testing different types of
settings. We also assumg) function is one of the two VM instance and applying this optimization repeatedly on
simple cases. Therefore, the simplified mo@iglis applied.  each instance type, we can also find which instance type is
Since the input data is fixedy is constant. For simplicity, the best.
we also consider all general MapReduce system configura- With the concrete setting of th&; model parameters
tions [1], [6] are fixed for both small and large scale sesling (i.e.,«; be positive or negative), these optimization problems
With this setup, the time cost function becomes can be convex or non-convex [2]. However, they are in the
as  aslogR category of well-studied optimization problems - there are
TR +asR - (8) plenty of papers and books discussing how to solve these
optimization problems. Therefore, we will skip the details

o
T3(m,R) = ap + =24
m

where
of solving these problems.
ag = Bo+ BiM, V. E
. EXPERIMENTS

ag = Ble . . .
as = BoM + ByMlog M, We design and conduct a set of experiments to validate

B0 the formulated cost model. We first give the setup of the
Q3 = —p3M,

experiments, including the experimental environment and
ay = B the datasets. Four tested programs are used in experiments:
In the virtual machine (VM) based cloud infrastructure WordCount, TeraSort, PageRank and Join. We then run a

(e.g., Amazon EC2), the cost of cloud resources is calalilate"UMber of rounds of the tested programs and collect the
based on the number of VM instances used in time unitd@t@ for regression analysis and model prediction.
(typicglly in hours). According tq the capacity of a virt_ual A. Experimental Setup

machine (CPU cores, memory, disk and network bandwidth),

a virtual node can only have a fixed number of Map/Reduce Hardware anpl Hadqop Configuration. The experiments
slots. Let's denote the number of slots per node aShus, are conducted in our inhouse 16-node Hadoop cluster. Each

the total number of slots: + r required by a on-demand N°de has two quad-core 2.3Mhz AMD Opteron 2376, 16GB
Hadoop cluster can be roughly transformed to the numbef?€Mory, a}nd two SOOG_B hard drives, conneqteq with a
of VMs, v, as gigabit switch. The version 0.21.0 of Hadoop is installed
@) in the cluster. One node serves as the master node and the
other as the slave nodes. The single master node runs the
If the price of renting one VM instance for an houristhe  JobTrackerand theNameNodewhile each slave node run
total financial cost is determined by the reswifl3(m, R).  both theTaskTrackerand theDataNode Each slave node is
Since we usually sek to , it follows that the total financial ~ configured with eight Map slots and six Reduce slots (about
cost for renting the Hadoop cluster is two concurrent processes per core). Each Map/Reduce pro-
wTs(m, R) = u(m + R)T3(m, R) /7. (10)  Cess uses 400MB memory. _The data block size is set to 64
MB. We use the Hadoop fair scheduler to control the total
Therefore, given a financial budget the problem of  number of Map/Reduce slots available for different testing
finding the best resource allocation to minimize the job timejops.
can be formulated as Datasets. We use a number of generators to generate
minimize Ty(m, R) (11) testing datasets_ for the b_enchmark programs. (1) We revised
) the RandomWriter tool in the Hadoop package to use a
subject to u(m + R)Ts(m, R)/y < ¢, Gaussian random number generator to generate random float
m >0, and R > 0. numbers. This data is used by the Sort program. (2) We
If the constraint is about the time deadlindor finishing @S0 revised the RandomTextWriter tool to generate text

the job, the problem of minimizing the financial cost can beda@t@ based on a list of 1000 words randomly sampled from

v=(m+r)/y.

formulated as the system dictionary /usr/share/dict/words. This datése
o used by the WordCount program and the TableJoin program.
minimize u(m + R)T3(m, R) /v (12)  (3) The third dataset is a synthetic random graph dataset.

subject to T5(m, R) < 7,m >0, and R > 0. Each line of the data starts with a node ID and its initial



PageRank, followed by a list of node IDs representing the Join is an MapReduce program that joins a large file and
node’s outlinks. Both the node ID and the outlinks area small file based on a designated key, which mimics the
randomly generated integers. Each type of data consists dbin operation in relational database. The large files ae th
150 1GB files. For a specific testing task, we will randomlytext files randomly generated with RandomTextWriter. The
choose a number of the 1GB files to simulate different sizesmall file consists of 50 randomly generated lines using the
of input data. same method for generating the large text dataset. The first
word of each line in both types of file serves as the join
B. Tested Programs. . . . :
key. The Map function emits the lines of the input large and

We describe the MapReduce programs used in testing angha|| files. Each line of the small file is labeled so that they
give the complexity of each one’s Reduce function, i.e., the;gn pe distinguished from the Map output. In the Reduce,
9() function. If () is linear to the input data, the simplified the Jines are checked. If the lines from both files are found,
cost model Eq. 7 is used. _ a cartesian product is applied between the two sets of lines

WordCount is a sample MapReduce program in the i, generate the output. Depending on the key distribution,
Hadoop package. The Map function splits the input textihe size of output data may vary. In the Reduce function,
into words and the result is locally aggregated by wordassyme there is A lines are from the large file and lines
with a Combiner; the Reduce function sums up the locakom the small file. The result of cartesian productiis

aggregation resultgword, count) by words and output the |ines. Sincey < 50 very small, the complexity function()
final word counts. Since the number of words is limited, s approximately linear to the input -+ 1 lines.

the amount of output data to the Reduce stage and the cost
of Reduce stage are small, compared to the data and tie. Model Analysis
processing cost for the Map stage. The complexity of the \we run a set of experiments to estimate the model
Reduce functiong(), is linear to Reduce’s input data. parameters; for the four programs. We randomly select the
Sort s also a sample MapReduce program in the HadoOR a|yes for the three parametets, m, and R. The number
package. It depends on a custom partitioner that uses @lsortgf gata chunksl/ is calculated by the number of selected
list of V—1 sampled keys that define the key range for each gp files (one file has 1024/64 = 16 blocks). The number of
Reduce. As a result, all keys such that safiplel] <= Map slotsm is controlled by setting the maximum number
key < sampl¢i] are sent to Reduce Then, the inherent of Map siots in thefair scheduler R is randomly set to a
MergeSort in the Shuffle stage sorts the input data to thémper smaller than the total number of Reduce Slots in the
Reduce. This guarantees that the output of Reduce i are aék/stem.
less than the output of Reduce i+1. Both the Map function * g5, each tested program, we generate 25 to 60 random
and the Reduce function do nothing but simply pass thesettings of< M,m,R >. M is randomly selected from
input to 'the output. Therefore, the functig) is also linear o integers1 ... 150] x 16, i.e., the number of 1GB files
to the size of the input of Reduce. . x 16 blocks/file.R is randomly selected from the integers
PageRankis a MapReduce implementation of the well 1;  50]. Since changingn will need to update the sched-
known Google's PageRank algorithm [3]. PageRank is anjer setting, we limit the choices of: to 30,60,90,and 120
iterative algorithm applied on a graph dataset. Assume eachs eachm. For each setting, we record the time (seconds)
node p; in the graph has a PageRamRR(p;). M (p;) used to finish the program.
represents the set of neighboring nodesgppthat have an Regression Analysis.With z; = M/m, =5 = M/R,
outlink pointing top,. L(p;) is the total number of outlinks w3 = Mlog(M), z, = M, andzs = R, we can conduct a
the nodep; has.d is the damping factor andv is the R

— R
) ) linear regression on the transformed cost model
total number of nodes. The following equation calculates

the PageRank for each noge T(w1, 72,23, 24,75) = Bot 121+ Per2+ B33+ Baza+P575.

PR(p;) . . (14)

PR(p;) = (1—d)/N +d Z < (13)  Table | shows the result of regression anaRisiB? is a
p;EM(p;) (p;) measure for evaluating the goodness of fit in regression

PageRank values are updated in multiple rounds until thejnodeling. R% = 1 means a perfect fit, whild* > 90%
converge. In one round of PageRank MapReduce progranfldicates a very good fit. o

all nodes’ PageRank values are updated in parallel based onFigure 3, 4, 5, and 6 show the goodness of fit in a more
the above equation. Concretely, the Map function distebut intuitive way. To make the presentation clearer, we sort the
a share of each node’s PageRank, iRR(p;)/L(p;), to experimental results by the time cost in an ascending order.
all its outlink neighbors. The Reduce function collects theThe solid lines represent the real times observed in the
shares from its neighbors and applies the equation to ldeateGWe used the existing linear regression package in Matlabttthé

the P_aQERank- _The complexity functigq) is also linear to e, An improvement on modeling would consider more constaath
the size of the input of Reduce. asf; > 0, fori > 0.



o s\gl(ée _2572”22 4;9R70 f;'go Table Il shows the relative error rates in leave-one-out
B1 | 30.00 047 5516 | 2.07 cross validation. For comparison, we also list the result of
B2 | -042 | -0.83 | -68.08 | -4.50 testing on training data. The result confirms these models
Ps | 006 | 1.61 | 1684 | 2.20 are robust and perform well
Bi | 0.02 0.63 2.43 0.42 P :
Bs | -0.95 5.91 165 | -0.37 :
wC Sort PR Join
2

R | 0.9969 | 0.9689 | 0.9161 | 0.9895 Testontraining| 9.27% | 16.77% | 8.97% | 14.82%

Table | Leave-one-out | 10.43% | 18.74% | 12.32% | 16.83%

RESULT OF REGRESSION ANALYSISR2 VALUES ARE ALL HIGHER THAN Table II
0.90,INDICATING GOOD FIT OF THE PROPOSED MODEL AVERAGE RELATIVE ERROR RATES OF THE LEAVEONE-OUT CROSS

VALIDATION AND OF THE TESTING RESULT ON TRAINING DATA FOR THE
FOUR PROGRAMS

experiment and the '+ marks represent the predicted times
using the fitted model. The closer the two, the better quality V1. RELATED WORK

the model has. All of the four figures show excellent fit.
The recent research on MapReduce has been focused on

25 s understanding and improving the performance of MapRe-
N . I duce processing in a dedicated private Hadoop cluster. The
+ Predicted Time ] + Predicted Time configuration parameters of Hadoop cluster are investigate
in [6], [1] to find the optimal configuration for different
types of job. In [18], the authors simulate the steps in
MapReduce processing and explore the effect of network
A topology, data layout, and the application I/O charactiess
U Sequentiaip Sequential ID to the performance. Job scheduling algorithms in the multi-
o - _ - user multi-job environment are also studied in [20], [16],
V\'/g‘rlégoi-m (GF(;ttrlggnéZ?. model foi"s%:geo r‘tL(GO rF(;tJ'r’]‘dgs)t.he model for  [51], These studies have different goals from our work, but
an optimal configuration of Hadoop will reduce the amount
of required resources and time for jobs running in the
public cloud as well. A theoretical study on the MapReduce
T e Ny programming model [10] characterizes the features of mixed
sequential and parallel processing in MapReduce, which
justifies our analysis in Section Ill.
MapReduce performance prediction has been another im-
portant topic. Kambatla et al. [8] studied the effect of the
setting of Map and Reduce slots to the performance and
' " Sequentialin ' Seqentiald observed different MapReduce programs may have different
_ N o N CPU and /O patterns. A fingerprint based method is used
E'rggrrz > ( J;'f:)”fnghse)_mo‘je' for Jo'f,'g’;é‘;a%k (zglttcm dtsh)‘_? model for 15 predict the performance of a new MapReduce program
based on the studied programs. Historical execution traces

Note that the purpose of this experiment is to show the®f MapReduce programs are also used for program profiling
effectiveness of the cost model. Different Hadoop clustergind performance prediction in [11]. For long MapReduce
should result in different model parameters. jobs, accurate progress indication is important, whicHde a

Cross Validation. We also perform a leave-one-out cross Studied in [13]. A strategy used by [8], [11] and shared by
validation to study the prediction accuracy of the modeke Th OUr approach is to use test runs on small scale settings to
leave-one-out cross validation runsrirrounds if there are. ~ Characterize the behaviors of large scale settings. Haweve
training examples, i.e., the tuples @i/, m, R,T). In each these approaches do not study an explicit cost function that
round, it uses one of the examples as the testing example ¢an be used in optimization problems. '
and the othem — 1 examples for training the model. The ~MapReduce has been used in handling many data in-
accuracy is defined as the average relative errors (ARE) ové@nsive problems. MapReduce and Parallel databases are
the n rounds of testing. LeC; be the real cost and; be ~ compared on relational data analysis jobs in [15], [6]. A
the estimated cost by the trained model in the roand/e ~ few data mining algorithms have been developed based
calculate ARE with the following equation. on MapReduce, including PLANET [14] for tree ensem-
n . ble learning, PEGASUS [9] for mining peta-scale graphs,
ARE = 1 Z |Ci = Cil (15) MapReduce EM algorithm [4], and MapReduce based text

n Ci mining [12].
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VIlI. CONCLUSION

[7]

Running MapReduce programs in the public cloud raises
the important problem: how to optimize resource provision-
ing to minimize the financial cost for a specific job? In this [8]
paper, we study the components in MapReduce processing
and build a cost function that explicity models the rela-
tionship between the amount of data, the available systenmgj
resources (Map and Reduce slots), and the complexity of
the Reduce function for the target MapReduce program.
The model parameters can be learned from test runs wit
small scale settings on the target program. Based on th
cost model, we can solve a number of decision problems,
such as the optimal amount of resources that can minimize
the financial cost with the constraints of financial budget o1l
time deadline. We have also conducted a set of experiments
to validate the model. The result shows that this cost model
fits well on four tested programs.

Due to the time limitation, we were not able to conduct[12]
experiments in the public cloud. An important ongoing work
is to run experiments on Amazon EC2 nodes. The virtuat13]
machine based EC2 nodes will have different CPU, /O,
and networking characteristics from our inhouse cluster.
However, since the MapReduce execution model is not

changed regardless of small or large cluster, private oligpub
cloud, we believe the effects of these system level factor

can be captured by the model parameters.
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