PrivateGraph: A Cloud-Centric System for Spectral
Analysis of Large Encrypted Graphs

Sagar Sharma and Keke Chen
Data Intensive Analysis and Computing (DIAC) Lab, Kno.e.sis Center
Department of Computer Science and Engineering, Wright State University, Dayton, OH
Email: {sharma.74, keke.chen}@wright.edu

Abstract—Graph datasets have invaluable use in business
applications and scientific research. Because of the growing
size and dynamically changing nature of graphs, graph data
owners may want to use public cloud infrastructures to store,
process, and achieve graph analytics. However, when outsourcing
data and computation, data owners are at burden to develop
methods to preserve data privacy and data ownership from
curious cloud providers. This demonstration exhibits a prototype
system for privacy-preserving spectral analysis framework for
large graphs in public clouds (PrivateGraph) that allows data
owners to collect graph data from data contributors, and store
and conduct secure graph spectral analysis in the cloud with
preserved privacy and ownership. This demo system lets audience
to interactively learn the major cloud-client interaction protocols:
the privacy-preserving data submission, the secure Lanczos and
Nystrom approximate eigen-decomposition algorithms that work
over encrypted data, and the outcome of an important application
of spectral analysis - spectral clustering. In the process of demon-
stration the audience will understand the intrinsic relationship
amongst costs, result quality, privacy, and scalability of the
framework.

I. INTRODUCTION

From social networks, mobile, and web applications, to
biomedical research, large graphs have become an important
data source, providing great value in both business and sci-
entific research. Particularly, spectral analysis of graphs gives
important results pertinent to community detection, PageRank,
and spectral clustering. Despite their utility, their size and dy-
namic nature make large graphs expensive to store, maintain,
and analyze. Hence, data owners may rely on cloud services
for storage and analysis so as to eliminate the need to establish,
operate, and maintain expensive in-house infrastructures.

However, outsourcing storage and analytics to cloud brings
serious concerns of data privacy and ownership. External
adversaries and curious employees at the cloud provider can
potentially gain unauthorized accesses to outsourced data and
intermediate computation results [3], [7]. It is hence crucial
to investigate privacy-preserving mechanisms for outsourcing
data and analytics to the cloud.

Two common generic privacy preserving approaches: fully
homomorphic encryption (FHE) and secure multi-party gar-
bled circuits (GC) [4] can theoretically construct the privacy-
preserving versions of most data mining algorithms, including
spectral analysis. Nevertheless, they are too expensive to be
practical. The current best implementation of FHE schemes [2]
results in large ciphertext (e.g., a 4-byte integer will become

about 100 kilobytes - 25,000 times of size increase) and expen-
sive homomorphic multiplication (e.g., about 10 milliseconds
for a single multiplication). On another example, the privacy-
preserving matrix factorization solution for recommendation
systems [5] using garbled circuits incurs 40 gigabytes of
communication cost in one iteration of factoring a small-size
100 x 100 matrix.

We recently proposed the privacy-preserving spectral anal-
ysis framework for large graphs in public clouds [8], a cloud-
centric framework that enables data owners to privately store
and analyze large graph datasets with untrusted public cloud.
Distributed data contributors contribute to a graph database in
the cloud with encrypted submissions using a certain additive
homomorphic encryption (AHE) scheme, such as Paillier
scheme [6] and pairing scheme [1] that have much lower
costs than the current FHE schemes. The data owner interacts
with the cloud to run one of the two privacy-preserving graph
spectral analysis algorithms to get the top-k eigenvectors.

Specifically, the framework includes a privacy-preserving
distributed sparse graph data submission algorithm based on
differential privacy that allows data contributors to attain
personalized privacy while maintaining graph sparsity. It uses
pseudo homomorphic multiplication and random data mask-
ing mechanisms to enable cloud-side homomorphic matrix
computations essential to constructing the secure Lanczos
and the secure Nystrom algorithms for the core operation:
eigendecomposition. For a N-node graph, the cloud-client
collaborative algorithms we developed ensure all operations of
complexity O(N?) happen in the cloud with preserved scal-
ability, while only those computations of complexity O(N)
fall upon client’s responsibility. The communication costs also
remain O(N) to make the whole framework practical.

To help readers fully understand the ideas behind the frame-
work, we develop the PrivateGraph interactive demonstration
system that consists of the following components: 1) the user
interface for selecting/adding/updating graph data, and setting
sparsity and privacy parameters for data submission, 2) the
user interface for setting up and running the secure Lanczos
and Nystrom algorithms, 3) the implementation of the core
algorithms in both the cloud and the client sides, 4) the
visualization of the result of spectral clustering, and 5) the
statistics of the storage, computation, and communication costs
for the involved parties.

II. PRIVATEGRAPH ARCHITECTURE

Figure 1 shows the PrivateGraph framework and the in-
volved three parties: the public cloud (server), the data owner
(client), and data contributors. The data owner periodically
runs graph algorithms on the evolving graph datasets to
generate models. It also generates the public-private key
pair and distributes the public key to the data contributors.
Data contributors upload encrypted graph data (i.e., edges)
to the cloud through secure interfaces. Alternatively, the data
owner can also directly upload to the cloud any in-house
graph datasets collected via other channels. The cloud and
data owner collaboratively run the secure eigen-approximation
algorithms over encrypted dataset residing in the cloud without
compromising privacy. The expensive operations O(N?) are
carried out by the cloud while the lighter computations O(N)
by the client.

Threat Model: Data contributors’ privacy, data-ownership,
and privacy of data in between computations are the assets at
stake [10]. PrivateGraph preserves these assets from “honest
but curious” cloud without compromising the utility of graph
datasets.

~ 2

Data Owner

l Models

Model
consumers

On-demand
Processing
Cluster

Cloud

Data contributors

Fig. 1: The PrivateGraph framework. Distributed users con-
tribute to the graph data which is encrypted and stored in
public cloud. The graph spectral analytics happen with cloud-
data owner collaboration.

A. Sparse data submission

In order to use the AHE schemes for encryption the message
space is converted to non-negative integers. For matrices in the
real value domain, we apply a reversible affine transformation
which preserves d decimal places: For a real value a,

g(a) =10% + 7, (1)

where 7 is a positive value large enough to convert the
smallest negative value to a non-negative.

Let us work on the spectral analysis problem for the nor-
malized graph Laplacian matrix that can be used for spectral
clustering [9]. Each data contributor represents one or a few
nodes in the graph, and contributes to the corresponding row(s)
of this graph matrix.

For an undirected graph, let D be the diagonal matrix with
node degrees on its diagonal - D;; represents the degree of
node ¢, 7 = 1..N. Let W be the adjacency matrix such that W;;
=1 if and only if the edge (4, j) exists, and W;; = 0 otherwise.
For undirected graphs, W is a symmetric matrix, where
each row(column) of W represents the corresponding node’s
adjacency edges. The normalized graph Laplacian matrix L
is L =1 — D~ 'W, where I is the N by N identity matrix.

Specifically, for each row of the Laplacian matrix, say L;, its
element [;;,j = 1..N is:

li; = 1 ifi=7
0 otherwise

Encoding and encrypting the entire vector in a dense format
is straightforward, i.e. convert each element of the row with
Eq. 1 and then encrypt with the AHE scheme. Next, we focus
on the sparse encoding and encryption of matrix for its cost-
saving benefit.

Most graphs in popular applications are sparse. It is desir-
able to skip encrypting some of the zero entries to save storage,
communication, and computation costs, while still providing
sufficient protection to privacy. We design an algorithm that
protects the privacy of node degrees and links using differential
privacy while preserving data sparsity and authenticity.

First, we transform the Laplacian matrix L without affecting
its eigen structure. Let v be a sufficiently large positive integer
such that |y/D;;], where D;; is the degree of node i, for all
1 = 1..N, are also positive integers with necessary precision
preserved. Let H = ~(I — L), which converts entries to
positive and preserves the sparsity of L. Let top-k (or bottom-
k) eigenvectors of a graph matrix be the eigenvectors corre-
sponding to the largest (or smallest) k eigenvalues, k = 1..IV.
We have the following Proposition, the proof for which is
included in the original paper [8].

Proposition 1: The top-k eigenvectors of H are the same as
the bottom-k eigenvectors of L.

Note that the bottom-k eigenvectors of L are used for spectral
clustering [9].

With the above transformation and proposition, we present
our bin-based graph disguising algorithm as Algorithm 1.
Each node (data contributor) injects the fake edges (i.e., the
encrypted zero entries in the matrix) into the edge submission,
so that the differential privacy is satisfied to disguise node
degrees and the existence of edge, which are critical to existing
privacy attacks [10]. The number of noisy edges is affected
by the bin that the node degree falls in, so that the sparsity is
better preserved. Note that these encrypted zero entries cannot
be distinguished from other entries and keep the authenticity
of the spectral analysis results.

Algorithm 1 Privacy preserving sparse submission (H, €, d; ;).

1: input: B: histogram provided by the data owner. e: user selected parameter for e-
differential privacy. d; ;: the actual node degree.

2: find the bin that contains d; ;, whose upper bound and lower bound are U; and L;,
respectively;

b+ (UL — Li)/e;

: g <+ b%x3.912;// for b = 1 the g value is at 3.912, which scales with b;

: draw a value §; ; from the distribution Laplace (0, b);

Dk lal+di s

. add the d;,; real links to the list with the sparse encoding;

. randomly choose k; ; edges from the rest N — d; ; edges and encode them as the
encrypted zero entries;

[N Ko WU I NYIV)

submit the d; ; + k; ; items.

9:
B. Privacy-preserving Lanczos algorithm

The Lanczos algorithm is an iterative method for finding the
top-k eigenvectors. In the following, we let the matrix A repre-
sent any graph matrix including the previously defined matrix

H. The Lanczos iterations for a matrix Ayxn start with
a random N-dimensional vector by, and the most expensive
operation in each iteration - the matrix-vector multiplication
bi = Abi_l.

The secure Lanczos algorithm consists of two key ideas.
(1)The pseudo homomorphic matrix-vector multiplication
E(Ab;_y) = f(E(A),bi41) in the cloud, working with the
encrypted graph matrix E(A) and the encrypted vector bi_1
which is a perturbation of the original vector b;_;. (2) The
cost-effective algorithms for generating the perturbed bi_1
from b; 1 and recovering Ab; | from Ab;_1 in O(N). These
algorithms provide strong security guarantee that b;_1 cannot
be distinguished from any vector sampled uniformly at ran-
dom.

The cloud-side pseudo homomorphic computation of
E(Ab;_1) can be easily cast to a matrix-row based parallel
algorithm such as MapReduce and Spark.

Algorithm 2 Privacy-preserving Lanczos Algorithm with AHE
schemes

1: bg < random N-dimensional vector and encrypt E(bg); // data owner
2: download E(bg), compute E(A;bg), and send back to data owner; // each data
contributor
for ¢ <— 1 to ¢ do:
3 b;_1 < perturbation based on {bg, .., bi_2} and seed vectors
{s1,..,5n} and upload b;_1; // data owner
4: compute E(Ab;_1); // cloud
S: download and decrypt E(Ab;_1); // data owner
6: recover b; from Ab;_1; // data owner
7 i1 — b?bi,l; // data owner
8 wi—1 4+ b; —ajbi—1 — Bi—1bi—2
where b; = 0 for ¢ < 0; // data owner

9: Bi < |lwi—1]||; // data owner
10: b; <= wi_1/Bs; // data owner
11: end for

12: Decompose the trigonal matrix T+ consisting of {c;} and {8;} to get the
eigenvectors.// data owner

C. Privacy-preserving Nystrom Algorithm

In a plain setting, the cloud subsamples the matrices C'n x
and W, x., from the entire matrix Ay, and sends W to
the data owner. The data owner decomposes W and sends
back the result U, xx and Agxy. Finally, the cloud computes
the result V' = Umxk.A,;Xlk and C'V, which is sent to the data
owner. The privacy problem with above steps is that the cloud-
side computation of C'U,, kA,;Xl i requires Up,p and Agyp,
in plaintext, which reveals the eigen-structure of W and thus
breaches privacy.

The privacy of V' is achieved by a disguising and recovering
protocol that is similar to the one we use for the Lanczos
algorithm. Specifically, there are three key aspects of the
protocol. (1) Data owner will submit a masked V matrix:
V=V+A mod q, so that V cannot be distinguished from
any uniformly drawn random matrix, which can be formally
proved. (2) The expected result C'V can be recovered at a cost
O(kN) from CV that is provided by the cloud with the pseudo
homomorphic multiplication E(CV) = E(C)V. (3) The data
owner only needs to download O(kN) encrypted data. The
demonstrated system will show the detail of generating the
A matrix and the auxiliary data that the cloud and the data
contributors need to compute.

Encrypted
Graph Data E(H)

ey Lanczos O(N?)
Operations

Data Encoding Encrypted Data

]
& Encryption J

Set Privacy & Sparsity
Settings

1

Lanczos O(N)

H |
1| Set Lanczos W' Results
! Operations =t
'
'
|
1
it
T
1
1

Parameters

'
OR

Set Nystrom
Parameters

Nystrom O(N) |1 | Results [Nystrom o(N2)
Operation: Operations

L T

K-Means Algorithm for Cloud side
Clustering Ei

O(N) Operations

Top k eigenvectors
of matrix H

Client side

Fig. 2: The PrivateGraph workflow. The gray boxes represent
the back-end while the white boxes are client facing.

III. DEMONSTRATION

This demonstration is intended to give an interactive expe-
rience for the audience to understand the PrivateGraph frame-
work. Users of the demo system get to select/create/update
graph datasets, tune the data submission parameters including
privacy and sparsity setting, select the eigen-approximation
method and related parameters, and finally observe the spectral
clustering results with cluster visualization, and check the
statistical summary. Several synthetic small graph datasets
will be provided for users to play with the live system. This
demonstration consists of following two parts.

Introduction. A poster will introduce the PrivateGraph
framework, explain its components, and summarize its perfor-
mance with real graph datasets. The poster will also identify
problems and challenges with related existing methods and
how PrivateGraph uniquely addresses those problems.

Live System. A fully interactive implementation of Pri-
vateGraph framework will be presented to the audience. One
can interact with the client program and perform following
tasks: 1) Create/update graph datasets, 2) Tune the sparsity
and privacy parameters for data submission, 3) Submit the
graph data to the cloud server, 4) Select eigen-approximation
algorithm and set its parameters, 6) Receive eigenvectors and
visualize the result of spectral clustering, and 7) Observe the
statistical measures and the cost distribution between cloud
and client.

A. Demonstration workflow

The audience follows the step-by-step workflow during the
demonstration after a guided explanation of the poster outlined
in Figure 2.

1) Select one of the existing graph datasets, or start with an
editable custom graph.

2) Set privacy and sparsity parameters. Then submit the
graph data to the cloud provider.

3) Pick either secure Lanczos or secure Nystrom method
for eigen-approximation and set corresponding parameters.
For Lanczos, specify the number of iterations and number of
clusters required for spectral clustering. For Nystrom, specify
the sampling rate and number of clusters.

4) Wait for the cloud-client protocol to finish the eigen-
approximation steps.

5) Conduct graph spectral clustering on the obtained eigen-
vectors in the client.

6) Observe the visualization of the graph clustering result
and the statistical summary outlining the cost distribution
between client and cloud.

B. Live System

Our live system consists of these major components: 1) the
fully interactive front-end user interface or the client program
for parameter settings and issuing commands; 2) the data
sparse encoding and encryption system, 3) the cloud-client
Lanczos and Nystrom algorithms, 4) the K-means algorithm
for clustering eigenvectors, 5) the cluster visualization and
statistics summarization tool.

The client-side interface allows audience to create/update
graph datasets and performs task described in step one of the
demonstration work-flow in section III-A. Figure 3 gives the
wireframe for the client interactive program.

Cloud-PPSA Client X

@ Select Dataset

Facebook

Custom Dataset
Nodes 20
Edges 50

Twitter
GPlus
Custom

@ Data Sparsity

[Csparse | oense |

[Edit Graph]

@ Select Algorithm

[tanczos | nystrom]

Sparse settings

Lanczos Parameters
Differential Privacy Epsilon Gg Number of iterations
Number of clusters

[Use Optimal Parameters

o)

0.0 1.0

O Use Optimal Settings

Paillier Modulus
[Piversis [iozap

Number of bins

Fig. 3: PrivateGraph Client-side Interface. Users can select
preset datasets or add and modify their own datasets, and tune
data submission and eigenapproximation parameters.

In the background, the data encoding and encryption system
will transform graph data to a matrix and encrypt it with de-
sired Paillier security level. The differential privacy parameter,
€, is used to determine the level of sparsity and generates the
fake random edges. Each of the privacy-preserving algorithms
of Lanczos and Nystrom operates collaboratively between
client and cloud. The Lanczos method incurs several rounds
of communication between client and cloud while Nystrom
method incurs one round of communication. The client side
will need to decrypt the intermediate results during the com-
putations.

We use graph spectral clustering to illustrate the effective-
ness of the algorithms. After getting the top-k eigenvectors
of the H matrix, the client side locally applies the K-means
algorithm on the eigenvectors to determine the clusters. The
visualization tool is used to graph the clusters and present it to
the audience. The result quality is computed by the tool and
visually verified by the audience. The live system will also
keep track of computation and communication cost between
client and cloud and summarize the result in the end. By tuning
the parameter settings in the Lanczos or Nystrom algorithm,
users can observe their effect on the clustering results and
also the costs incurred in both the cloud and the client. Thus,
the audience will get a good understanding of the intricate
relationship between cost and result quality. Fig 4 shows the

output screen shown to the audience upon completion of the
workflow.

PrivateGraph Client X
Clustering Graph Dataset Summary Tuning Summary
Nodes 23 Paillier Modulus: 1024 bits
Sparse setting &: 0.1
Edges 26
e e ° Py 9 Lanczos 12 iterations
o960 o0 ®| | Density 0.098 K-means 10 iterations
o'® e o®
. Spectral Clustering Result — Cost Distribution ———————
o0 Cloud Storage 6.8KB
e e Result Quality 90.0% Cloud Computation 2.0 secs
Total Time 3.0 secs Client Computation 1.0 secs
Client Communication 120.0 KB

Fig. 4: PrivateGraph Client-side Result Screen. Users get a
visualized clustering result, summary of result quality and
distribution of cost.

IV. SUMMARY

The PrivateGraph demonstration showcases the key com-
ponents of the published privacy-preserving spectral analy-
sis framework for large graphs in public clouds [8], which
successfully balances privacy and utility in outsourced graph
analysis. The demonstration provides the audience with back-
ground knowledge of the privacy-problem in outsourced data
analytics and then exhibit the proposed solution for graph
spectral analysis with a poster, a presentation, and a live
system. The audience will partake in the data submission
mechanism, tune the privacy level and data sparsity, select
an eigen-approximation method and related parameters, and
observe the spectral clustering results including cluster visu-
alization, clustering quality, and the cost distribution between
cloud and client.

REFERENCES

[1] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-dnf formulas on
ciphertexts. In Proceedings of the Second International Conference on
Theory of Cryptography, TCC’05, pages 325-341, Berlin, Heidelberg,
2005. Springer-Verlag.

[2] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully ho-
momorphic encryption without bootstrapping. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, ITCS *12,
pages 309-325, New York, NY, USA, 2012. ACM.

[3] A. Chen. Gereep: Google engineer stalked teens, spied on chats. Gawker,
http://gawker.com/5637234/, 2010.

[4] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party
computation using garbled circuits. In Proceedings of the 20th USENIX
Conference on Security, SEC’11, pages 35-35, Berkeley, CA, USA,
2011. USENIX Association.

[5] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and
D. Boneh. Privacy-preserving matrix factorization. In Proceedings of
the 2013 ACM SIGSAC conference on Computer and communications
security, pages 801-812, New York, NY, USA, 2013. ACM.

[6] P. Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In EUROCRYPT, pages 223-238. Springer-Verlag, 1999.

[71 T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds. In Proceedings of the 16th ACM conference on Computer and
communications security, CCS 09, pages 199-212, New York, NY,
USA, 2009. ACM.

[8] S. Sharma, J. Powers, and K. Chen. Privacy-preserving spectral analysis
of large graphs in public clouds. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security, ASIA CCS ’16,
pages 71-82, New York, NY, USA, 2016. ACM.

[9] U. von Luxburg. A tutorial on spectral clustering.
Computing, 17(4):395-416, 2007.

[10] B.Zhou, J. Pei, and W. Luk. A brief survey on anonymization techniques
for privacy preserving publishing of social network data. SIGKDD
Explor. Newsl., 10(2):12-22, Dec. 2008.

Statistics and

