RASP-Boost: Confidential Boosting-Model
Learning with Perturbed Data in the Cloud

Keke Chen and Shumin Guo
Data Intensive Analysis and Computing Lab, Kno.e.sis Center
Department of Computer Science and Engineering
Wright State University, Dayton, OH 45435
Email: {keke.chen, guo.18}@wright.edu

Abstract—Mining large data requires intensive computing resources
and data mining expertise, which might be unavailable for many users.
With widely available cloud computing resources, data mining tasks can
now be moved to the cloud or outsourced to third parties to save costs.
In this new paradigm, data and model confidentiality becomes the major
concern to the data owner. Data owners have to understand the potential
trade-offs among client-side costs, model quality, and confidentiality
to justify outsourcing solutions. In this paper, we propose the RASP-
Boost framework to address these problems in confidential cloud-based
learning. The RASP-Boost approach works with our previous developed
Random Space Data Perturbation (RASP) method to protect data confi-
dentiality and uses the boosting framework to overcome the difficulty of
learning high-quality classifiers from RASP perturbed data. We develop
several cloud-client collaborative boosting algorithms. These algorithms
require low client-side computation and communication costs. The client
does not need to stay online in the process of learning models. We have
thoroughly studied the confidentiality of data, model, and learning pro-
cess under a practical security model. Experiments on public datasets
show that the RASP-Boost approach can provide high-quality classifiers,
while preserving high data and model confidentiality and requiring low
client-side costs.

1 INTRODUCTION

Most data mining tasks require a good understanding of the
mining techniques, time-consuming parameter tuning, algo-
rithm tweaking, and sometimes algorithm innovation. They
are normally resource-intensive and often need the expertise
of applying data-mining techniques in a large-scale parallel
processing cluster. As a result, many data owners, who have
no sufficient computing resources or data-mining expertise,
cannot mine their data.

The development of cloud computing enables at least two
solutions. First, if data owners have the data-mining expertise
but not the computing resources, they can rent public cloud
resources to process their data with low costs and in a short
time. A 100-node cluster built with small virtual machine
instances in Amazon EC2 costs less than 10 dollars per hour
and is ready in a few minutes. Second, if data owners do not
have the expertise, they can also outsource their data-mining
tasks to data-mining service providers, known as Mining as
a Service (MaaS) in the context of cloud computing. For

example, Kaggle (kaggle.com) provides such a service and
also crowd-sources data mining tasks to the public.

In spite of all these benefits of cost saving and elasticity of
resource provisioning, the unprotected mining-with-the-cloud
approach has at least three drawbacks.

o The exported data may contain private information. The
Netflix prize, as a successful example of outsourced
mining, has to be suspended due to privacy breach of
the shared data [1].

o The data ownership is not protected. Once published, the
dataset can be accessed and used by anyone. As data
has become an important property for many companies,
protecting data ownership is in top priority.

e The ownership of the mined models is not protected.
Curious cloud service providers can easily learn the
unprotected models, and make profits by sharing them
with other parties, which may seriously damage the data
owner’s interests.

As a result, data owners have realized that without protecting
data and model confidentiality they will have to keep their
data mining tasks in-house.

The previous studies on privacy preserving data mining
(PPDM) [2], data anonymization [3], and differential privacy
[4] have distinct system settings and privacy requirements from
our study (see Related Work for details). They normally aim to
share data and mined models with untrusted parties without
leaking the individual’s private information in the data. Our
goal is to prevent sharing data and models with untrusted
parties.

While confidentiality is the major concern in outsourced
mining, the expense of a confidential solution needs to justify
the cost saving purpose of outsourced computing. Among all
the related costs, the data owner is more conscious about the
in-house processing costs required by a confidential learning
solution. Specifically, such client-side costs include in-house
pre- and post- processing, and the communication between the
client and the cloud/the service provider. A practical solution
has to minimize these client-side costs.

Model quality is as important as good confidentiality and
low client-side costs. Depending on the specific applications,



sacrificing a small amount of model quality to achieve other
benefits could be quite acceptable to users. An important study
is to understand how this trade-off happens and what the
optimal trade-off is.

The Scope of Research. We propose the RASP-Boost
framework to address the key aspects of confidential cloud-
based learning: data confidentiality, model confidentiality,
model quality, and the client-side costs. Our current work
focuses on confidentially learning boosting classification mod-
els with RASP perturbed training data exported to untrusted
clouds or data-mining service providers. The data in the cloud
is protected by the RASP (RAndom Space Perturbation) data
perturbation [5]. We propose several client-cloud collaborative
learning methods, aiming to find the best trade-off among the
key aspects.

The key problem is to compute with the “protected data”.
The current well-known approaches include Fully Homo-
morphic Encryption (FHE) [6] and Garbled Circuits (GC)
[7]. FHE enables homomorphic additions and multiplications
on encrypted data without decrypting them. This approach
theoretically allows any function to be implemented with an
FHE scheme. However, the current most efficient schemes are
still far from practical use [6], [8]. In particular, the current
schemes will generate large-size ciphertext, (e.g., one plaintext
value is turned to about 100K ciphertext), making the cost of
outsourced mining difficult to justify. Garbled Circuits allow
the data owner to encode a computation circuit based on secure
gates and then outsource it to the cloud for evaluation. The
data can be encrypted by simply adding uniformly random
noises, and the circuits are used to de-noise and conduct
data mining operations [7], [9]. However, all the gates are
based on bit operations, and each gate evaluation involves
two-party communication. Specifically, for each gate the data
owner needs to send four encrypted 80-bit values, and thus
the communication costs are very high.

We notice that in the outsourced mining context (Figure 1),
the client side can take a small amount of computational re-
sponsibility with low communication costs. This factor might
be used to simplify the protocol design. The key is to minimize
the client-side costs to justify the benefits of cost saving for
outsourced computing. We will design different algorithms to
address this issue.

Another key idea is using the boosting method to address
the difficulties brought by the perturbed data. Specifically,
RASP perturbation only allows low-quality models (i.e., non-
optimal linear classifiers) to be learned from perturbed data.
The boosting model is an ensemble of a set of weighted weak
classifiers, each of which can give prediction accuracy barely
higher than a random guess. In existing boosting algorithms,
such weak classifiers are selected from a large hypothesis
space to be locally optimal. Our approach studies the ef-
fect of a relatively small pool of randomly generated weak
classifiers for boosting. This strategy is applied to minimize
the client side’s work and preserve the confidentiality of the
weak classifiers. Our result shows that boosting with such
randomly generated weak classifiers can still produce high-
quality models.

With these key ideas in mind, we studied the collaborative

learning algorithms under the RASP-Boost framework. Our
research has several unique contributions.

1) We identify the urgent need and the challenges of
confidential classifier learning in the cloud or with data-
mining service providers. We also propose four mea-
sures: data confidentiality, model confidentiality, model
accuracy, and client-side costs to holistically evaluate a
confidential learning method.

2) The proposed approach can utilize the RASP perturba-
tion method to protect data and model confidentiality,
which provides much stronger confidentiality guarantee
than other perturbation methods such as geometric data
perturbation [10] and random projection perturbation
[11].

3) As we originally design the RASP perturbation method
for outsourced database services (i.e., range queries and
kNN queries) [5], it was unknown whether it can be
used for confidential cloud mining or not. We design
algorithms to generate weak classifiers with random
half-space range queries, and then use the boosting
framework to construct high-quality models from these
weak classifiers. Our experiments show that two of
the four candidate methods can generate high-quality
models with accuracy very close to the optimal boosting
models.

4) Due to the unique properties of RASP perturbation,
we can prove that the confidentiality of data, model,
and learning process is satisfactorily guaranteed. In
particular, we develop a new method to evaluate model
confidentiality that directly links to model quality and
attack evaluation.

The remaining sections are organized as follows. First, we
present the related work in Section 2. Next, we give the
notations and theoretical background in Section 3. Then, we
present the RASP-Boost framework and the security model in
Section 4. In Section 5, we discuss the four algorithms for the
client to generate base classifiers and for the cloud to search
and find optimal one in boosting iterations. We also analyze the
related costs and the confidentiality guarantee of the proposed
approach. Section 6 focuses on the experimental evaluation
of the costs and performance of these algorithms to find the
best candidate. It also shows the model confidentiality of the
proposed methods for several carefully selected real datasets.

2 RELATED WORK

Previous studies on privacy-preserving data mining (PPDM)
are often based in the context of sharing data and mined
models without leaking individual data records. Thus, the con-
fidentiality of data and model is not the major concern, but the
private information hidden in the shared data is. Three groups
of techniques have been developed in PPDM. (1) Additive
perturbation techniques that hide the real values by adding
noises [2]. Because the resultant models are not protected, they
are not appropriate for outsourced mining. (2) Cryptographic
protocols that enable multi-party collaborative mining without
leaking either party’s private information [12]. These protocols
typically do not move the original data to another party, but



exchange intermediate results, which are proved not breaching
data privacy. However, the learned models are shared by
the participants. (3) Data anonymization [3] that disguises
personal identities or virtual identifiers in the shared data. It
only protects personal identities, while the sensitive attributes
and the resultant models are not protected.

Some of the PPDM work also targets on outsourced mining,
such as geometric data perturbation [10] and random projec-
tion perturbation [11], which can be applied to cloud-based or
data-mining-service based mining. They typically transform
both the data and the learned models, trying to protect the
confidentiality of both. The RASP-Boost framework also
works for these methods. However, these two perturbation
methods are subject to distance-based attacks [13] and the
ICA attack [10], providing much weaker protection than the
RASP perturbation.

Fully Homomorphic Encryption [14] envisions an ideal
scenario for confidential cloud computing. It allows basic
operations: addition and multiplication to be done on the
encrypted data without the need of decryption. Theoretically,
once the basic homomorphic operations are implemented, any
functions can be built up on top of them. However, the
current solutions are way too expensive to be used in practice
[8], [15]. Some operations such as comparison and division
are very expensive. The ciphertext is also too large to be
practical for encrypting large datasets with the current solution
- one value will be encoded as a 100KB ciphertext [6]. ML
Confidential [16] uses a building block of the current best FHE
implementation: the Ring-LWE based encryption to encrypt
data for computing functions that require a small number of
multiplications. It also suffers from most problems with the
current FHE implementation.

Recently, efficient implementations of Garbled Circuits
(e.g., FastGC [7]) are also applied to confidential cloud-based
computing. The data owner encodes both data and the circuits
that securely compute certain functions on the encoded data,
and exports them to the cloud. The cloud then interacts with
the data owner to execute the circuits. The whole process
does not leak additional information. However, since each gate
of the circuit has to be encoded and each gate evaluation
has to involve both parties, the client-side computation and
communication costs are extremely high. Nikolaenko et al. [9]
implemented a garbled circuit for matrix factorization, where
the communication cost is about 40GB for a small 4096 x4096
matrix.

Bost et al. [17] address a related problem in cloud-based
learning: privately evaluating an already learned model in the
cloud. Assume the model is already learned, encoded in a
secure form, and hosted in the cloud. The users of the model
will submit encrypted input data and privately interact with
the cloud via the proposed protocols to find the result of the
prediction. The protocols do not leak additional information
to a curious cloud provider. However, privately evaluating a
function on a dataset has much lower computation and storage
complexity than privately learning a model from a dataset. It
would be interesting to study the possibility of using their
building blocks to construct algorithms learning models from
datasets.

Secure database outsourcing has similar security assump-
tions to confidential cloud mining. The major database compo-
nents are moved to the cloud to save costs. Typical techniques
include order preserving encryption (OPE) [18], crypto-index
[19], and secure kNN [20]. However, if the dimensional data
distributions are known, OPE and crypto-index cannot protect
data confidentiality. CryptDB [21] uses OPE for some database
query operations and thus provides weak security guarantee
on distributional attacks. Note that although OPE is one
component of the RASP perturbation method, RASP does not
preserve dimensional order after the A transformation, which
invalidates the distributional attacks on OPE [5].

3 THEORETICAL BACKGROUND

First, we will give the notations and basic concepts used in this
paper. Then, we will briefly introduce the RASP perturbation
method and its important properties to make the paper self-
contained.

3.1 Notations and Definitions

Our work will be focused on classifier learning on numeric
datasets. Classifier learning is to learn a model ¢ = f(z) from
a set of training examples R = {(z;,t;),i = 1... N}, where
N is the number of examples, z; € R? is a d-dimensional
feature vectors describing an example, and ¢; is the label (or
target value) for the example - if we use ‘+1’ and ‘-1’ to
indicate two classes, t; € {—1,+1}. The learning result is a
function t = f(x), i.e., given any known feature vector x, we
can predict the label ¢ for the example z. The quality of the
model is defined as the accuracy of prediction on the testing
set T that has the same structure.

We will use the boosting framework [22] in our approach to
preserving model quality in cloud mining. A boosted model is
a weighted sum of n base classifiers, H(z) = >\ ; a;hi(x),
which has the following features. (1) The base models h;(x)
can be any weak learner, of which the accuracy is slightly
higher than a random guess. For example, it has >50%
accuracy for the two-class problem. (2) «;, ; € R, are
the weights of the base models, which are learned by using
algorithms such as AdaBoost [22].

In general, a weak learner can be treated as a simple
decision rule, such as:

if h(z) <0 then t=-1, otherwise t=+1,

for the two-class case. One of the simple weak learners is
linear classifier (LC): h(z) = w’x + b, where w € R¥ and
b € R are to be learned from examples. With linear classifiers,
h(z) is a hyperplane and f(x) < 0 defines a half space.

An even simpler weak learner is decision stump (DS). Let
X denote the j-th dimension of the feature vectors and a be
some constant in X;’s domain. A condition X; < a can be
used as a decision rule, for example,

if X; <a then t=-1; otherwise, t=1.

Note that X; < a can be represented in the form of a
hyperplane w”z 4+ b < 0 as well, by setting b = —a and
all dimensions of w to 0 except for dimension j, w; to 1.
Thus, decision stump is also a linear classifier.



3.2 RASP perturbation

The random space perturbation method (RASP) works on
vector datasets. For each d-dimensional original vector x;, the
RASP perturbation can be described in three steps.

1) The vector z; is transformed by applying an or-
der preserving encryption' (OPE) [18], denoted as
Eope(Kopg,z;) (and E(x;) for simplicity), where
Kopg is the OPE key. The OPE scheme is used to
transform the distribution of j-th dimension X; to a
normal distribution N (y;,07) with dimensional order
preserved, where the distribution parameters, the mean
1; and the standard deviation o, are selected as a part
of the OPE key.

2) The transformed vector is extended to d + 2 dimensions
as z; = ([Eope(Koprg,x:)|",1,v;)T: the (d + 1)-th
dimension is always 1; the (d + 2)-th dimension, v;, is
drawn from a random number generator RG that gener-
ates values from the normal distribution N (pq42,035, ),
with v; > vy, where v is set to such a constant that the
probability of having v; < vg is negligible so that the
distribution of the selected values keeps normal.

3) The (d+2)-dimensional vector is further transformed to

yi = RASP(:ZM/;A,KOPE)
= A(Eopr(Kopp,z:)",1,v)", (1)

where A is a (d + 2) x (d 4+ 2) randomly generated
invertible matrix.

Note that A is the secret key matrix shared by all vectors,
but v; is randomly generated for each individual vector. As a
result, the same original vector x; can be mapped to different
y; in the perturbed space due to the randomly chosen v;,
which provides the desired indeterministic feature. Because
of the dimensional OPE transformations, the y vectors makes
approximately normal distribution with the major population
around the origin, which is resilient to a certain kind of attack
as discussed later.

Secure Half-Space Query. The RASP perturbation ap-
proach enables a secure query transformation and processing
method for half-space queries [5]. A simple half-space query
is like X; < a, where X; represents the dimension ¢ and
a is a scalar. It can be transformed to an encrypted half-
space query in the perturbed space: y7 Qy < 0, where y is
the perturbed vector, and @ is the (d + 2) x (d + 2) query
matrix, which can be done as follows. Note that X; —a < 0 is
equivalent to (X; —a)(V —vg) < 0, where V is the appended
noise dimension in z; which guarantees V — vy > 0. Let
zi = (E(z:)T,1,v;)7 be the intermediate extended vector, i.e.,
z; = A7 1y;. The two parts X; —a and V — vy are transformed
to 27w and v 2, respectively, where u = (w?, —E(a),0)T, w
is the dimension indication vector: all entries are zero except
for the dimension i set to 1, and v = (0,...,—vp, )T is a
vector with all entries zero except for the last two. Plug in
z = A7y, we get the quadratic form y? (A=H)TuvT A=y <

1. For any value pairs in the original space, if they have an order, say
a < b, then we also have the same order Eopgr(a) < Eopg(b).

0. Thus, we have
Q=ANHTuwTA™ 2)

Under the security assumptions, which will be described later,
as long as the matrix A keeps confidential, there is no effective
method to recover the condition X; < a from the exposed
matrix ().

The half-space queries can be generalized to general linear
queries. However, it would be difficult to convert a linear
query, say w'z + b < 0, in the original space to a query
in the RASP-perturbed space, because of the non-linear OPE
transformation. Instead, we can design linear queries based on
the intermediate space and derive the query matrix (), where
each record s; = F(x;). A linear function f(z) = u’z with
u = (w?, —b,0)T is g(s) = wTs + b in the OPE transformed
d dimensional space. f(z) can be readily mapped to the final
perturbed space, giving the query matrix (). This method will
be used in our design of general linear classifier.

4 THE RASP-B0o0ST FRAMEWORK

We will briefly describe the procedure of learning with the
cloud or the mining service provider, and the security model
in this context.

Using cloud infrastructure services for mining and using
data mining services are slightly different in terms of the
level of user involvement in the mining process. Figure 1)
shows the interactions between the cloud and the client. The
data owner prepares protected data (e.g., perturbed datasets),
P = F(D), and auxiliary data (e.g., queries), exporting them
to the cloud. Then, they use the cloud resources to mine
models. Data owner needs to take care of all the mining
steps, which may include multiple interactions between the
client and the cloud. This two-party framework gives more
flexibility for the design of confidential mining algorithms as
you can expect the client side to be an integrated part of the
mining process. In contrast, with data mining services, the data
owner only provides the perturbed data and auxiliary data in
the beginning and is notified when the models are ready. In this
setting, the data owner prefers not staying online in the process
of mining, and thus, ideally, the intermediate interactions
should be minimized or eliminated. Our design will consider
eliminating the interactions in the middle of learning so that
they can be applied to both application scenarios.

4.1 Major Procedures

Preparing Training Data. The data owner uses the RASP
perturbation to prepare the training data for outsourcing.
To protect the confidentiality of training data, we assume
it is sufficient to protect the confidentiality of the feature
vectors x; of each training record {z;,t;} while leaving ¢;
unchanged. This procedure exposes very limited information
to the attackers. Thus, the problem becomes learning from the
perturbed data {(Perturb(z;),t;)}.

Privately Learning Models. To make sure the models
learned from the perturbed data useful, we introduce the
definition of e-effective learning. Let H be the classifier
learned from the original data D = {(z;,t;)} and Hp be the
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Fig. 1. The RASP-Boost framework works
with the cloud infrastructure or data mining
service providers.

one learned from D’ = {(P(x;),t;)}, where P() is a specific
perturbation method.

Definition 1. Let Error(H,D) represent the classification
evaluation function that applies the classifier H to the data
D and returns the error rate. For any set of testing data D,
if |Error(H,D) — Error(Hp,D")| < €, where € is a user-
defined small positive number, we say that learning from the
perturbed data is e-effective.

In practice, because of the downgraded data quality (e.g.,
noise addition) or the specific way transforming the data, the
available learning methods are quite limited and learning from
perturbed data often results in sub-optimal models (i.e., €
has to be large). To find e-effective classifiers for small e,
we propose to use the boosting idea in our framework. This
framework extends the existing boosting algorithm such as
AdaBoost [22], and generates models in the following form.

Hp =Y a:hf), (3)
i=1

where hg),i = 1..n, are the models learned from the
perturbed data with special base learners. Note that the
parameters «; are exposed in our approach, which, however,
does not affect the confidentiality of the model Hp - without
knowing hg), Hp cannot be used.

Applying Learned Models. There are two methods to apply
the learned models that are in a protected form Hp. Let
D,,¢r, be the new dataset. (1) Transforming the new data with
the same parameters: Ppeyy = P(Dpew) and then applying
Hp(Ppew)- This method is useful when the testing procedure
has to be done in the cloud. (2) Recovering the model in the
original space: Transform(Hp) — H', H' works in the
original data space, and then applying H' (D)., ). The model
recovering approach seems more cost-effective for the data
owner. It is done once for applying all new data later. However,
sometimes the model cannot be easily recovered. For example,
a linear model in the RASP-perturbed space corresponds to a
non-linear model in the original space, which is difficult to
recover due to the nonlinear OPE transformation.

4.2 Security Modeling

Clearly, this outsourced learning scenario involves with two
parties: the data owner and the service provider who is either
the cloud infrastructure provider or the data mining service
provider. Because we consider only the confidentiality of
data and model, it is appropriate to assume that the service
provider is a honest-but-curious party [23], who aims to breach
the data owner’s privacy but honestly provides services. This
assumption is practical for real-world service providers.

There are two levels of adversarial prior knowledge. (1)
If the user only uses the cloud infrastructure for mining, we
can safely assume the adversaries know only the perturbed
data, corresponding to the ciphertext-only attack in crypto-
analysis [23]. (2) In the case of data-mining services, we also
assume the adversaries know the feature distributions, as such
information might be provided for model analysis or exposed
via other channels to the service provider. We exclude the case
of insider attacks, e.g., an insider on the client side colludes
with the adversary and provides perturbation parameters or
original unperturbed data records. In general, we consider
the level-2 knowledge to allow the results applicable to both
scenarios of outsourced mining.

The curious service provider can see the outsourced data,
each execution step of the mining algorithm, and the generated
model in the protected form. However, the adversary should
not have any statistically meaningful estimation of the original
data and actual models.

Data Confidentiality Data confidentiality refers the confi-
dentiality of each value in the dataset. We model an attack
as a data estimation procedure using the prior knowledge
and the perturbed data to reconstruct the original data. We
define data confidentiality as the accuracy of estimation for
any specific original value. It can be defined quantitatively
by the existing statistic measures such as mean-squared-error
(MSE) method between the original values and the estimated
values. Let {0;,4 = 1..N} is a series of estimated values
for the normalized original values {v;,i = 1..N}. MSE
= 1/N Zfil(ﬁz — v;)%. Let e; be an estimation method
in the set of all possible methods £. Then, the level of
preserved confidentiality can be evaluated by the measure
¢ = ming,eg M SFE,,. Normalization allows the metric to be
used crossing dimensions and datasets.

The {v;} and {9;} series can be considered as samples from
the random variables X and X , respectively. Thus, MSE is the
mean E(X — X)2, with which we have

Proposition 1. A random guess attack with the level-two
prior knowledge gives 2var(X) to the MSE-based confidential
measure.

Proof: Note that the variance of X — X is var(X — X) =
E(X — X)? — E%(X — X) by definition of variance. Thus,
we have E(X — X)? = var(X — X) 4+ E?(X — X). Since
X and X have the same distribution and random guess makes
them independent, we have var(X — X) = 2var(X) and
E(X-X)=0. O

This gives the meaningful upper bound of the measure, or
the inherent confidentiality for a given distribution. It is quite



intuitive - for a known distribution with small variance, the
attacker can always get good estimation by random guess.

Let ¢y be some user-defined small positive threshold so that
the user can tolerate the confidentiality loss in the sense that
the best possible attack can only result in 2var(x)—e < (. We
consider data confidentiality is satisfactorily protected: if any
estimation attack in polynomial time complexity will result in
¢ > 2var(z)—e for each dimension or any possible attack will
take exponential time complexity, which is computationally
impractical.

Model Confidentiality. The goal of protecting model con-
fidentiality is to protect from unauthorized use of models.
Thus, it is directly related to model utility. We define model
confidentiality as a function of two factors: the unknown
model parameters and the impact of the estimated unknown
parameters on model utility. We assume the type of model is
always known since the learning procedure is exposed to the
adversary.

Let p represent the m unknown parameters, and U(f) be
the utility of the model f, which is accuracy in classifica-
tion modeling. Let U(f|p,D) be the average model utility
if p is randomly drawn from a distribution D. The impact
of parameter is defined as the reduction of model utility
c(f,p, D) = U(f) —U(f|p,D))/U(f) under the estimated
distribution D (i.e., the attack).

We use ¢(f,p) = min{c(f,p, D;)} for all possible attacks
D; to define model confidentiality with the following intuitive
understanding. (1) The unknown well-protected key parame-
ters should be enough to make the whole model useless. (2)
The insignificant parameters, known or not, may not affect
overall model utility. The upper bound of this measure is given
by a random-guess based model, which gives U(f|p, D) ~ 0.5
for a two-class problem. The specific upper bound should
be determined by the optimal model utility ¢/(f), which is
specific to each dataset. Let 1 be this upper bound, and ¢
be some user-defined tolerance threshold for confidentiality
breach. If ¢ > 1 — €, we consider the model confidentiality is
well protected.

Process Privacy. In addition to the data and model confiden-
tiality, the learning process (the cloud-client protocols) should
not affect data and model confidentiality. We define process
privacy as the learning process not providing any additional
information to what the adversary have already known.

5 CORE RASP-B0OOST ALGORITHMS

In the RASP-Boost framework, the key is the algorithms that
can learn base learners from the perturbed data. We categorize
the algorithms into two categories: the pool based and the
seed based. For each category, we will investigate two types
of base classifiers: random decision stumps and random linear
classifiers.

To understand the basic working mechanism of the devel-
oped algorithms, we start with the basic boosting framework
and map it to the setting of cloud-client collaborative learning.
Algorithm 1 shows the boosting procedure in our approach.
We map each step to the cloud or the client as shown in
the comment. [(p; == t;) is the indicator function, which

returns 1 if the condition p; == t; is true, otherwise returns
0. This framework enables two key features: (1) the perturbed
data allows model evaluation and comparisons to be done
independently by the cloud; (2) the testing procedure is also
independently done by the cloud. These features maximize the
use of cloud and eliminate the cloud-client interactions in the
iterations.

Algorithm 1 Cloud-Client Boosting on Perturbed Data
1: N: the number of records, w; : the weight for the record
1 in k-th iteration, n: the number of iterations, y;: the
perturbed records in the cloud
2 wi < 1/N,i=1..N; //by cloud
3: prepare and send a set of base classifiers H, encoded and
protected with perturbation parameters; // by client
4: extend Hy to a large set H; with some algorithms (op-
tional) // by cloud
5: for k£ from 1 to n do
search H to find a base classifier i (y) that minimizes
the weighted error with weights {w; ,7 = 1..N}; // by
cloud
7. apply p; = hr(y;) to each record y; and generate the
prediction {p;,i = 1..N'}; // by cloud
8: compute the weighted error
Y i1 wik—11I(pi == t;); // by cloud
9 ay 1/2ln1::’“; // by cloud
100 Wik  Wik—1 exptiorhk (i) and Z = Zf\il wi ks I
by cloud
11:  normalize w; i, by w; . < w; /Z; // by cloud
12: end for
13: repeat the above procedure for different parameter set-
tings, such as n; // by cloud
14: download {«;, h;(),i = 1..n}; //by client

rate € =

The key steps include (1) Step 3: the client prepares and
sends a set of encoded base classifiers, (2) the optional Step
4: the cloud extends the set with an algorithm, and (3) Step 6:
the cloud works with the pool of encoded base classifiers to
find the base classifier hj, that works reasonably well on the
weighted examples.

The original AdaBoost algorithm [22] in each iteration will
search for one classifier hj, that minimizes the weighted error
rate ¢ for N examples in a family of weak classifiers H.
Specifically, it is defined as

N
hy = arg hnjlgg_([ €;, where €; = l/N;wi,kI(hj(yi)! =t;).
The search space H is often limited, for example, the entire

set of decision stumps for all dimensions.

However, in the RASP-Boost framework the client needs
to encode and transfer the set H to the cloud, which is
prohibitively expensive for a large set such as the entire set of
decision stumps. Instead, we let the client prepare a small pool
of base classifiers, and the cloud tries to find an acceptable one
from the pool in each iteration. Theoretically, this method still
works because the boosting framework requires only weak
base classifiers. The major problem is how the candidates



should be selected and how large the pool should be to avoid
the situation that all candidates in the pool give ~ 0.5 weighted
error rate (for two-class problem) in certain iteration, which
will significantly reduce the model quality.

In the following, we will present the key idea of encoding
the base classifiers for RASP-perturbed data. Then, we develop
several algorithms for the client to generate the pool of base
classifiers and for the cloud to (optionally extend and) search
the pool.

5.1 Query-based Linear Classifiers.

As we have shown in Section 3, half-space queries can be
transformed to the RASP perturbed space and processed on
the perturbed data. Specifically, a half-space condition like
X; < a is transformed to the condition y”Qy < 0. This
query transformation has to be done by the client, as the
perturbation parameters will be used to generate ). With the
transformed query, it is possible to count the number of ‘+1’
and ‘-1’ examples on a half plane as the following query

shows.
select count(t=="+1"), count (t=="-1")

from P={y,=RASP(z;),t;}

where 47 Qy < 0.
Similarly, with the other half-space condition y”Qy > 0 we
can get the counts for the other half of the dataset. Based on
these numbers, a classifier can be designed, for example, as

< 0, return prediction — 1

fw)=y"Qy { 4)

> 0, return prediction + 1.
It is straightforward to derive the prediction error, based on
the number of disagreements between the predictions and the
labels. If the prediction error > 50%, the prediction rule is
reversed. The classification rule based on a single dimension
such as X; < a is traditionally called Decision Stump (DS).

The method for defining our DS classifiers can be extended
to general linear classifiers (LC) defined in the space z; =
(Eore(Kopg,r;)T,1,v;)T as we have described in Section
3. A general linear query in OPE transformed d-dimensional
space s; = Eopg(Kopg, i), g(s) = w's+b, where w € RY
and b € R, can be equivalently represented as f(z) = u’z <
0, with u in the form of (w”,—b,0)7, with which we can
then derive the query matrix Q@ = (A=) Tuv? A=t with the v
vector defined previously in Section 3.

In the following, we will design algorithms to generate DS
and LC classifiers in the perturbed space, aiming to minimize
the client-side costs and maximize model quality.

5.2 Pool-Based Algorithms

In this set of algorithms, the client generates a pool of
randomly selected linear classifiers, based on only the dimen-
sional distribution of the training data. The cloud will select
one from the pool. We will discuss two methods for the client
to generate the pool, and the method for the cloud to utilize
the pool.

Random Decision Stump Pool (DSPool). In this method,
the client randomly selects a set of decision stumps to encode
and transfer. The key problem is to select effective decision

stumps that shatter the major population of the records. Since
a decision stump in the original space is mapped directly to
another decision stump in the OPE transformed space, we can
work with the OPE space directly to simplify the encoding
procedure. The OPE space has each dimension in a normal
distribution. For E(X;) < E(a), if we draw E(a) from the
normal distribution N (y;,0?), we have great chance to shatter
the major population well. Specifically, the dimension will
be randomly selected, and then the splitting value is drawn
from the corresponding normal distribution. We will study in
experiments how the size of the pool affects the cloud-side
learning result.

Random Linear Classifier Pool (LCPool). Similar to
decision stumps, we can also generate random linear clas-
sifiers f(z) = u”z in the space z; = (E(x;)",1,v;)7,
with randomly generated u = (w’, —b,0)7. As there are an
unlimited number of linear classifiers, the problem is again to
appropriately sample them to get the relevant ones into the
pool.

The basic idea is to find the hyperplanes that shatter around
the center of the dataset. Because the OPE transformed dimen-
sions have normal distributions, we can imagine the records
projected to these d dimensions are distributed in an ellipsoid.
Figure 2 shows the two-dimension, with each dimension in
standard normal distribution. The majority of the records is
inside the hyper-sphere of radius v = 2 with the center at (0,
0).

Non-effective ones

=

Effective seed

\\ Distribution center
covers >95% population

Fig. 2. Effective hyperplanes shatter around the distribu-
tion center.

Thus, to shatter in the major population, we need to have
the distance between the center o and the hyperplane less than
some radius 7y, which gives

75 (&)

where ||w|| is the length of the vector w, and |b| is the absolute
value of b. v can be set to the minimum dimensional standard
deviation. To satisfy this condition, we can simply generate a
unit-length random vector w, and then choose a random value
b so that |w”'o +b| < ~. Intuitively, the smaller the |w” o + b
value, the closer the hyperplane will be to the center. The client
randomly generates a set of such hyperplanes as the pool and



send to the cloud. Again, we will investigate how the pool size
affects the learning result.

Cloud-side Processing. The cloud side will search the pool
to find the best one that gives the lowest weighted error rate.
Depending on the data distribution and the randomly generated
candidates, there is a small probability that all the base learners
in the pool give weighted error rates ~ 50%. This probability
will exponentially decrease with the increasing pool size. We
will study the lower bounds of pool size for different datasets
in experiments.

5.3 Seed-based Algorithms

In the pool based algorithms, the client needs to generate a
set of randomly selected base classifiers, encode them, and
send to the cloud. It might be costly, e.g., with hundreds of
encoded classifiers. In the following, we consider reducing the
client’s work further by using the seed-based algorithms. The
client will send a few randomly selected “seed classifiers”,
and the cloud will generate a pool based on these seeds. The
following algorithms depend on the linearity property of the
query matrix Q.

Derived Decision Stumps (DerivedDS). The query matri-
ces on the same dimension has the following linearity property.

Proposition 2. For half-space conditions on the same dimen-
sion, say X; < a and X; < b, a linear combination of the
corresponding query matrix Q, and Qp: Qq + 7(Qp — Qa),
T € R, is the query matrix of some condition X; < c on the
same dimension.

Proof: For the condition X; < a, we have the corre-
sponding query y7Q.y < 0 in the perturbed space, where
Q. = (A HTyvTA™L ul' = (w,—E(a),0) and vT =
(0,...,v0,1) (Section 3).

Similarly, Q, = (A H)TuwTA™, where u] =
(w,—E(b),0). Therefore, it follows

Qo +7(Qp — Qo) = (A (ug + 7(up — ug))p" A~ (6)

where ug + 7(up — ug) = (w, —E(a) — 7(E(a) — E(D)),0).
According to the definition of OPE, the value E(a)+7(E(b)—
E(a)) in the encrypted domain must correspond to a value in
the original domain of X;. Thus, Q, + 7(Qp — Q) is the
query matrix of some condition X; < c. O

Note that since 7 can be any real value, E(a) + 7(E(b) —
E(a)) can be any value in the OPE domain if E(b) # E(a).
Therefore, with two randomly picked seed decision stumps
on the same dimension, we can derive all decision stumps
on the same dimension. However, not all of these decision
stumps are effective for our use. Again, we hope the result
will shatter around the center of the population (e.g., in the
range (u—20, u+20) for the normalized data). We can achieve
this goal by setting the seeds around the bounds [—v,~] on
the OPE domain, where « can be some value in (0,0) and
T in the range (0,1). With such a setting, we have |E(a) +
T(E(b) — E(a))| < |(1 = 7)E(a)| + |[TE(b)] < 20 to shatter
around the center of the population.

Derived Random Linear Classifier (DrivedL.C). The lin-
earity property of query matrices can be extended to general
linear classifiers on the OPE space.

Proposition 3. Assume a set of query matrices {Q;,i = 1..m}
encode the general linear functions f;(s) = wl's + b; in the
OPE space, respectively. Then, Z:il 7,Qi, where 1; € R,
represents a valid general linear function in the OPE space.

have Y7, 7Q; =
(A HT0N iwi)vT A7, where w; = (w], —b;,0)7T.
Apparently, > " mu; = (Ot Twi, — Y ey b, 0) s a
valid parameter vector for a general linear function in the
OPE space. O

Two key problems are to be addressed. First, we want the
generated hyperplane to shatter around the major population.
For simplicity of presentation, we assume all the dimensions
have the center on 0. As we have discussed, the condition
| > mbl /| 2 mw;]| < v should be satisfied. However,
| >, 7w;|| can be a very small value close to 0, which
dissatisfies the condition. Second, the random combination
Z;n:l T;w; represents the direction of the generated hyper-
plane, which should be able to cover as many possible
directions as possible. We have the following result to address
these problems.

Proof: Similarly, we

Proposition 4. Let {w;,i = 1..d} be d random orthonor-
mal vectors and (11,...,7q4) be a random unit vector, i.e.,
Z?Zl 72 =1, and |b;| < v/d. This condition

m m
| ZTibi|/|| ZTﬂUiH <7
1=1 =1

is satisfied.

Proof: The proof follows the logic that if || Y1, yw; | =
1 and | >, 7;b;] < 7 then the condition is satisfied. Let
R be an orthonormal matrix, i.e., RTR = I. {w;} can be
considered as the rotational transformation of the standard
basis {e;,7 = 1..d}: w; = Re;, where all elements of e; are 0
except for the i-th set to 1. Also, the transformation Rw for
any vector w preserves the length of w, i.e., |Rw| = ||w]|.
Therefore, || S0, il = || 20, Rrel| = | 3252, moeal| =

\/Zle 2 =1

Meanwhile, since |r;|] < 1, if |b;] < ~7/d we have
| iy mibil < i Imillbi] <. O

It is also straightforward to prove that any unit vector w can
be represented with the above combination method Ele T W;,
where Z?zl 72 = 1. It implies that this combination method
can generate hyperplanes in any direction.

Note that the d random orthogonal vectors {w;} can be
easily obtained by applying QR decomposition of a random
invertible d x d matrix. A random unit vector 7 can be obtained
from a random vector r by T < r/||r|. Thus, it is easy for
both the client to generate the seed vectors and the cloud to
generate the random combinations.

Cloud-side Processing. The cloud side will randomly gen-
erate a batch derived decision stumps or linear classifiers to
find the best one. Similar to the pool based algorithms, the
problem is the appropriate number of random trials. We will
investigate this problem in experiments.



5.4 Cost Analysis

The cost in the whole learning procedure consists of three
parts: the cost of cloud-side processing, the amount of data
transferred to the cloud, and the cost of client-side processing.
Excluding the initial cost of preparing and uploading the
perturbed data, we are more interested in the client-side costs
of preparing the base classifiers and transferring them to the
cloud.

According to the Equation of computing (), the cost of
preparing one base classifier is about O((d+2)?) and the size
of Q is also O((d+2)?). So the key factor is really how many
base classifiers the specific algorithm needs to encode and
transfer. Let p be the pool size for the pool-based algorithms.
Table 1 shows the costs of the four algorithms. Note that these
costs are only determined by the dimensionality d and the pool
sizes p, not by the size of the dataset N or the number of
boosting iterations n. Thus, it is favorable to big data with
large N. For most datasets, d is less than 1000 and the client-
side costs are low. However, these algorithms will be too
expensive for very high dimensional datasets to be practical
- e.g., a text mining dataset using words as the dimensions
often results in d > 10000.

The cloud-side processing cost is determined by the number
of RASP queries (i.e., the base classifier processing) issued in
the learning process. Each RASP query is processed by using
the condition 9y < 0 to scan the whole dataset, resulting in
O((d+2)?N) complexity. For each of k iterations in boosting
learning, the cloud will search the pool of p client-generated
queries to find the best one or p cloud-derived random queries
to find a valid one. A query is simply a linear combination
of queries in the pool, which has O((d + 2)?) complexity for
decision stumps, and O(d(d +2)?) for linear classifiers. Thus,
if the pool has a size of p, the first option has the total cloud-
side cost O(k(d+ 2)?N), while the second O(kp(d + 2)%N).

5.5 Confidentiality Analysis

Confidentiality guarantee consists of several parts: the confi-
dentiality of perturbed data in the cloud, the confidentiality
of queries and the learning process, and the confidentiality
of generated models. We discuss them separately in the
following.

5.5.1

Data confidentiality has been discussed in our paper on the
RASP approach for outsourced databases [5]. We include the
key points here to make the paper self-contained. According
to the threat model, the attacker may know only the perturbed
data, i.e., the first level of prior knowledge, or the distribution
of each dimension, i.e., the second level, which corresponds
to the brute-force attack, and the ICA attack, respectively.

To conveniently represent the complexity of attacks, we
assume each value in the vector or matrix is encoded with
or converted to n-bit integers. Let the perturbed vector y be
drawn from a random variable ), and the original vector = be
drawn from a random variable X'. The corresponding matrices
are X and Y.

Data Confidentiality

Brute-Force Attack. This attack will examine each possible
original matrix X according to the known Y. We show that this
process is computationally intractable. The goal is to show the
number of the valid X dataset in terms of a known perturbed
dataset Y. Below we discuss a simplified version that contains
no OPE component - the OPE version has at least the same
level of security.

Proposition 5. For a known perturbed dataset Y, there exists
O 2+ D2y candidate X datasets in the original space
to be examined.

Proof: For a given perturbation Y = AZ, where Z is X
with the two extended dimensions, we have A~1Y = Z. Let
B = A7! and By, represent the (d + 1)-th row of AL,
We have By1Y = [1,...,1], i.e., the appended (d + 1)-th
row of Z. Keeping B4+ unchanged, we randomly generate
other rows of B for a candidate B. The result Z = BP is a
validate estimate of Z if B is invertible. Thus, the number of
candidate X is the number of invertible B.

The total number of B including non-invertible ones is
2(d+1)(d+2)n Based on the theory of invertible random matrix
[24], the probability of generating a non-invertible random
matrix is less than expfc(d”) for some constant c¢. Thus,
there are about (1 — exp~¢(@+2))2(d+1)(@+2)n jpyertible B.
Correspondingly, there are a same number of candidate X. [

Thus, examining all possible X is computationally in-
tractable, and the brute-force attack is impractical.

ICA Attack. With the known distributional information,
the attacker can do more on estimating the original data than
simple. The known most relevant method is called Independent
Component Analysis (ICA) [25]. For a multiplicative pertur-
bation Y = AX, the fundamental method [25], [26] is to find
an optimal projection, wY, where w is a d+ 2 dimension row
vector, to result in a row vector with its value distribution close
to that of one original attribute. This goal is approximately
achieved by examining the non-gaussianity® characteristics of
the original distribution - finding the projections by maximiz-
ing the non-gaussianity of the result wY . The non-gaussianity
of the original attributions is crucial because any projection
of a multidimensional normal distribution is still a normal
distribution, which leaves no clue for recovery.

To simplify the proof, we assume the original dimensions
are independent®>. We have the following result.

Proposition 6. There are O(2%) candidate projection vec-
tors, w, that lead to the same level of non-gaussianity.

Proof: First, we show that Y has a multidimensional
normal distribution. As the d original dimensions are indepen-
dent, the generated OPE dimensions are independent of each
other with high probability. The additional noise dimension is
also independently generated. Thus, we consider grouping all
the independent d + 1 dimensions together as the submatrix
Z1. Zj contains the sample vectors from a d + 1-dimensional
normal distribution N (1, X)), where p is the mean and X is

2. Non-gaussianity means the distribution is not a normal distribution.

3. If not, we can use rotation transformation to de-correlate the dimensions.
Previous studies [27] show that this does not affect classification modeling
results for geometry-based methods including the base classifiers we use.



Method Client Computation | Client-;Cloud Transfer
DSPool O(p(d + 2)?) O(p(d +2)?)
LCPool O(p(d + 2)?) O(p(d + 2)?)
DerivedDS 0(2d(d + 2)?) 0(2d(d + 2)?)
DerivedLC O(d(d + 2)?) O(d(d +2)?)
TABLE 1

Client-side costs of the four methods.

the covariance matrix. Thus, the RASP transformation can be
represented as Y = (Ay, A2)(Z],1)T, where A; is the first
d + 1 columns of the A matrix, Ao is the last column, and ¥
is the added constant row of 1. It follows Y = A Z + A, - 1.
According to the basic property of multidimensional normal
distribution, A; Z contains samples from the multidimensional
normal distribution N(A;u, A;SAT). Ay - 1 simply adds a
constant to each row vector (i.e., a dimension) of A;Z, which
does not change the dimensional distribution. Therefore, Y
has a multidimensional normal distribution.

It immediately follows that any projection wY will not
change the Gaussianity of the result, and there are O(2")
such candidates of w. O

Thus, enumerating all possible projections and analyzing
each is computationally impractical. It shows that any ICA-
style estimation that depends on Gaussianity is equally inef-
fective to the RASP perturbation.

In addition to ICA, Principal Component Analysis (PCA)
based attack is another possible distributional attack, which,
however, depends on the preservation of covariance matrix
[13]. Because the covariance matrix is not preserved in RASP
perturbation, the PCA attack cannot be used on RASP per-
turbed data. It is unknown whether there are other distribu-
tional methods for approximately separating X or A from the
perturbed data Y, which will be studied in the ongoing work.

5.5.2 Query and Process Privacy

Queries in the proposed algorithms consist of two parts: the
original queries generated by the client, and the derived queries
by the cloud using the seed-based query derivation algorithms,
for which we need to check whether the derivation algorithm
gives additional information.

According to the threat model, the attacker does not have
any additional prior knowledge about queries except for the
known matrix ). Now, the task is to find the decomposition
of a query matrix Q = (A™')TuvTA~1 to figure out any
information about A~! and u (since v is constant, we consider
it is known by the public). We show that a stronger attack with
additional knowledge of w is still computationally intractable.

Proposition 7. With known wu, there are about
O2W=Dd+2n) yalid guesses of A that result in the
same query matrix Q.

Proof: Without loss of generality, we can assume that
Q@ encodes a condition X; < a. Let r; be the i-th row of
A=Y Q is represented as (r; — E(a)rqr1)T (ras2 — voras1).
Note that ) is only determined by the three rows of the
matrix A~!. The remaining d — 1 rows are free to choose,
leading to 2(¢=1(4+2)n yalid candidates of A~!, among which
O(204=1(d+2)n) are invertible [24]. O

This shows a lower bound of the difficulty in attacking the
(2 matrix without any additional information.

The next problem is whether the cloud-side algorithms
will breach additional information. Obviously, since all the
algorithms either simply search the pool or use purely random
combinations of existing query matrices, there is no additional
information is leaked.

5.5.3 Model Confidentiality

As we have discussed in Section 4, model confidentiality
is defined as ¢(f,p) = min{c(f,p,D;)}, where [ is the
learned model, p are the unknown parameters, D; is the p
distribution estimated by an attacker, ¢(f, p, D;) is the model
utility reduction under the attack. The smaller the reduction,
the more effective the attack.

For classification modeling, we use the accuracy on the
testing data 7' as the model utility. In a boosting model
f(z) = >, a;hi(z), the model parameters consist of n,
{a;}, and the parameters in h;(x). If h;(x) are decision
stumps, the parameters include the selected dimension, the
splitting value, and the direction: X; < a or X; > a. For
linear classifiers on the OPE space, w, b, and the direction:
wtx +b < 0 or wtx +b > 0 are the parameters of the base
model.

The proposed learning algorithms will expose the param-
eters n and {c;}, but keep all parameters in h;(x) secret.
Because the query privacy is fully preserved, the privacy of
the base models h;(x) is preserved. Thus, the corresponding
parameters of decision stump or linear classifier are the
unknown parameters. As we have discussed, under our security
assumption the only known attack on the query matrix is
the brute-force attack, which, however, is computationally in-
tractable. Since h;(x) (especially for smaller 7) are significant
to the model, we expect the model confidentiality is preserved
well. In experiments, we will further explore the concept of
model confidentiality.

6 EXPERIMENTS

The previous sections have addressed several major aspects:
the cloud-client algorithms, the client-side cost analysis, and
the confidentiality analysis. The experiments will study how
the cloud-client algorithms perform in terms of different
settings that may also involve the tradeoff between model
quality and client-side costs. Specifically, (1) We will show the
scalability of our approach with client-side computation and
communication costs on real datasets. (2) We will conduct a set
of experiments to understand which of the four private learning
methods is the best in terms of costs and model quality. (3) We
will evaluate model confidentiality with the proposed method.



Dataset Records | Dimensions Link DSPool | LCPool | DerivedDS | DerivedLC
German Credit 1000 20 https://goo.gl/1IVy340 German Credit 1.16 1.16 0.15 0.08
Ozone Days 2536 73 https://goo.gl/Si6aDh Ozone Days 13.50 13.50 6.57 3.29
Spambase 4601 57 https://goo.gl/WPyXTi Spambase 8.35 8.35 3.17 1.59
Bank Marketing 45211 17 https://goo.gl/vvgj3M Bank Marketing 0.87 0.87 0.10 0.05
Twitter Buzz 140000 77 https://goo.gl/Yfy80u Twitter Buzz 15.00 15.00 7.69 3.84
TABLE 2 TABLE 3

Datasets for experiments.

6.1 Experiment Setup

Datasets. For easier validation and reproducibility of our
results, we use a set of public datasets from UCI machine
learning repository for evaluation, each of which has only
two classes. These datasets have been widely applied in
various classification modeling and evaluation. Table 2 lists
the statistics of the datasets. They cover different scales and
dimensions to make the results more representative. In pre-
processing, each dimension of the datasets is normalized with
the transformation (v — p;)/0;, where f1; is the mean and O'JQ»
is the variance of the dimension j.

Implementation. We implement the perturbation methods
based on the algorithms in the corresponding papers [5].
The RASP-Boost framework is implemented based on the
AdaBoost algorithm [22]. The four learning algorithms are
implemented as plugins to the framework. All these imple-
mentations use C++ and are thoroughly tested on a Ubuntu
Linux server. We also used the Scikit-Learn toolkit to generate
the AdaBoost baseline accuracy based on the original datasets
for comparison.

6.2 Experimental Result

Client-side Costs of Preparing Base Learners. Data owners
in our framework are more concerned with the costs in
the client side. Section 5.4 has given a formal analysis on
the client-side costs, which are mainly determined by the
dimensionality of the dataset. We conduct a simple evaluation
to show the real costs for different algorithms in the RASP-
Boost framework.

The client-side costs include those generating the trans-
formed queries and transferring them to the service provider.
The time complexity of the pool-based algorithms is about
O(de), where p is the pool size, and d is the dimensionality.
The two seed-derived algorithms has O(d?). Since both d
(< 100) and p (a few hundred) are not large for all the datasets,
we skip the client-side computation cost.

Table 3 shows the amount of data transferred for different
algorithms and different datasets in uncompressed format.
Each element in the query matrix is encoded with an 8-
byte double type. We assume the pool-based algorithms need
300 base classifiers in the pool (a detailed discussion on this
number setting will be given later). The pool-based algorithms
typically cost more than the seed-based algorithms. Overall,
these costs are pretty low.

Progressive Error Rates in Boosting. We try to under-
stand how these algorithms perform in terms of the model
quality. First, we look at the progressive boosting result, which
provides valuable information on their convergence rate and
final model quality. Spambase is used as it is not very small

Average Communication Costs (Megabyte).

and with many dimensions. We use each of the four proposed
methods to train a boosting model with 500 base classifiers in
five-fold cross-validation. Again, the pool size is set to 300 for
the two pool-based methods, and the seed-based algorithms
will try 300 randomly generated candidates to find the best
one. The baseline uses the existing AdaBoost implementation
with decision stumps provided by Scikit-Learn. In each iter-
ation, the pool-based algorithms will try to find the classifier
in the pool that works best on the weighted examples (i.e.,
giving the lowest weighted error rate). For every 20 iterations,
we test the boosted classifier to get the progressively reduced
error rates, which are shown in Figure 3. The error bars are
skipped for a clear presentation.

0.3
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0.25 | —— DSPool
] LCPool
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% <] DerivedLC
o ]
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Fig. 3. Progressive testing error rates on Spambase.

The result shows that the decision-stump based algorithms:
DSPool and DerivedDS work better than linear-classifier based
methods. A possible reason is that linear classifiers have higher
degrees of freedom that reduces the chance of shattering
the population nicely, especially in high-dimensional spaces,
where the examples are sparsely distributed. The two DS
algorithms also have results very close to the baseline of
original AdaBoost with decision stumps and the differences
are not statistically significant.

Pool Size and Number of Random Trials. Another key
question is the appropriate pool size for the pool-based algo-
rithms, or the number of randomly generated candidates for the
seed based algorithms. In the pool-based algorithms, in each
iteration the cloud-side will find the best one with the lowest
weighted error rate in the pool. In the seed-based algorithms,
the cloud-side will try a number of random combinations of
the seeds to find the best one. Since the two work similarly



DSPool | LCPool | DerivedDS | DerivedLC
German Credit 200 150 50 50
Ozone Days 150 150 150 150
Spambase 150 150 150 150
Bank Marketing 100 150 50 50
Twitter Buzz 200 200 200 200
TABLE 4

The lower bounds of the pool size for the pool-based
algorithms, or the number of random trials rated
candidates for the seed-based algorithms.

and have similar meaning for the corresponding algorithms, we
discuss them together. This problem is studied in two aspects:
(1) the lower bound of the size, and (2) the impact of the
increasing size.

We consider the lower bound is the size that the boosting
framework can find a meaningful base classifier from the pool
(or the number of trials) in each iteration. To study this prob-
lem, we start with the size 50 and then progressively increase
the size by 50 to probe the valid lower bounds for each dataset
and each cloud-side learning algorithm. Specifically, in each
algorithm, we use weighted error rate 0.49 as the threshold for
meaningful weak learners. A learner with an error rate > 0.49
is considered equivalent to a random guess. If all candidates
in the pool are equivalent to random guess, we increase the
lower bound by 50 to start the next probe.

Table 4 gives the summary of the lower bounds for all
datasets. All of them are bounded by a few hundreds. As we
have discussed, by carefully designing the pool and the seeds,
the probability that all the candidates fail is extremely low.

Next, we try to understand whether increasing the pool
size for the pool-based algorithms or the number of random
trials for the seed-based algorithms will help the overall
performance. This setting of size represents a potential trade-
off between the client-side costs and model quality for the
pool-based algorithms, and also affect the cloud-side costs in
searching the best base classifier.

Again, we use Spambase for example. Table 4 shows that
150 is the lower bound for Spambase to find valid weak classi-
fiers in each iteration. Starting from 150, we gradually increase
the size to 350 and observe the performance differences. In
Figure 4, we see a significant jump for DSPool from 150 to
200, meaning that 150 is not optimal. However, there is no
significant improvement by increasing the size further. The
increase also helps LCPool steadily. However, the changes are
not significant for the remaining two methods.

Overall Model Quality. Finally, we conduct a comprehen-
sive evaluation on all datasets with 500 boosting iterations
and the pool size/random trials set to 300. Five-fold cross-
validation is applied. Figure 5 shows the result. Overall,
the DS-based algorithms generate results very close to the
baseline. They also consistently perform better than the LC-
based algorithms, which agrees with our initial observation
that LC increases the difficulty to shatter the major population
in high-dimensional space.

Model Confidentiality. In Section 5.5.3, we have defined
model confidentiality, which is connected to model utility
- how much accuracy a specific parameter-estimation based
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Fig. 4. The effect of pool size for the pool-based algo-
rithms or the number of random trials for the seed-based
algorithms.
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Fig. 5. Model quality for different methods, with the pool
size or random trials=300 and the number iterations=500

attack can achieve. Since there is no effective method to
estimate the base model parameters (i.e., attacking the query
matrices), the only valid attack method is randomly guessing
the parameters of base models. Below we show how model
confidentiality looks like under the random guess of base
models.

We first train models with the setting used in the last ex-
periment, and then replace the base models with the randomly
selected DS or LC, corresponding to the type of models. The o
weights are kept unchanged. This randomized model is tested
on the test data. Five-fold cross-validation is used to estimate
the variance of results. Figure 6 shows the model confidential-
ity, i.e., the percentage of model accuracy reduction. Almost
all values are greater than 0.2, which represent more than 20%
reduction of the accuracy, basically meaning the estimated
models useless.

This result can be better understood compared to the pure
random-guess model with the accuracy 50%. Let r be the



German Credit | Spambase | Ozone Days | Bank Marketing | Twitter Buzz

Optimal Accuracy 0.75 0.93 0.94 0.91 0.96

Upper Bound of Model Confidentiality 0.33 0.46 0.47 0.45 0.48
DSPool Models 0.32 0.40 0.44 0.40 0.26
DerivedDS Models 0.19 0.43 0.31 0.42 0.38

LCPool Models 0.28 0.39 0.44 0.24 0.46
DerivedLC Models 0.25 0.38 0.38 0.35 0.39

TABLE 5

The theoretical upper bounds of model confidentiality, and the average of model confidentiality for each type of model
and dataset.
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Fig. 6. Model confidentiality under the random guess of
the base models.

optimal accuracy of the boosting model. Under the random
guess, the accuracy reduction rate is (7 —0.5) /r, which serves
as the theoretical upper bound of the model confidentiality
for a specific model. Table 5 gives these upper bounds and
compares them to the actual model confidentiality obtained
for each model. We found that the most of the actual model
confidentiality values are quite close to the upper bounds. It
means the random guess of the base classifiers for an RASP-
Boosted model is almost as ineffective as a pure random-guess
model.

6.3 Discussion

Based on the experimental results, we summarize the features
of these methods as follows.

o The DS-based methods are in general better than the LC-
based methods. The LC-based methods may work as good
as the DS-based methods for some datasets (e.g., the Buzz
dataset).

o The two DS-based methods have about the same per-
formance, but the DerivedDS method have advantages of
smaller client-side costs, especially for lower dimensional
datasets - only two seed queries per dimension.

o Based on the observations on the datasets with dimen-
sionality < 100, 100 ~ 300 are enough for the pool size
for the pool-based algorithms or the number of random
trails for the seed-based algorithms. Increasing this size
further brings minor benefits.

o Although a part of the model parameters is exposed (i.e.,
n and {o;}), as long as the base models are private, the
overall model confidentiality is preserved well.

7

This paper presents the RASP-Boost framework that aims
to provide practical confidential classifier learning with the
cloud or a third-party mining service provider. Confidential
cloud mining should address four aspects: data confiden-
tiality, model confidentiality, model quality, and low client-
side costs. We use the RASP perturbation to guarantee the
data confidentiality. However, it is difficult to learn a high-
quality classifier from the RASP perturbed data, as it only
allows linear queries, which can be translated to non-optimal
linear classifiers. We develop the boosting based RASP-Boost
framework to obtain high-quality classifiers with these non-
optimal linear classifiers. The intuition is that boosting requires
only weak base classifiers that are slightly better than random
guesses.

Four algorithms are developed with the same working
pattern: the client provides a set of encoded base classifiers,
and the cloud computes a boosting model from the set. This
pattern does not require the client to stay online during
boosting iterations, which is convenient for the client. We have
developed four such algorithms: DSPool, LCPool, DerivedDS,
and DerivedLC as the candidates. The confidentiality of data,
query, learning process and models is formally analyzed, and
we show the confidentiality of data and query is satisfactorily
guaranteed.

We have conducted an extensive evaluation of the proposed
algorithms and studied the effect of the major factors in the
RASP-Boost framework. The result shows that DSPool and
DerivedDS can generate high-quality models with accuracy
very close to the optimal boosting models. We also evaluate
the concept of model confidentiality for real data and models,
and show that the model confidentiality is well preserved under
the security assumption.

CONCLUSION
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