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Abstract—Mining large data requires intensive computing
resources and data mining expertise, which might not be available
for many users. With the development of cloud computing and
services computing, data mining tasks can now be moved to the
cloud or outsourced to third parties to save costs. In this new
paradigm, data and model confidentiality becomes the major
concern to the data owner. Meanwhile, users are also concerned
about the potential tradeoff among costs, model quality, and
confidentiality. In this paper, we propose the PerturBoost frame-
work to address the problems in confidential cloud or outsourced
learning. PerturBoost combined with the random space per-
turbation (RASP) method that was also developed by us can
effectively protect data confidentiality, model confidentiality, and
model quality with low client-side costs. Based on the boosting
framework, we develop a number of base learner algorithms
that can learn linear classifiers from the RASP-perturbed data.
This approach has been evaluated with public datasets. The
result shows that the RASP-based PerturBoost can provide model
accuracy very close to the classifiers trained with the original data
and the AdaBoost method, with high confidentiality guarantee
and acceptable costs.

I. I NTRODUCTION

Most data mining tasks require a good understanding of the
mining techniques, time-consuming parameter tuning, algo-
rithm tweaking, and sometimes algorithm innovation. They are
often resource-intensive and may need the expertise of apply-
ing data-mining techniques in a large-scale parallel processing
cluster. As a result, many data owners, who have no sufficient
computing resources or data-mining expertise, cannot mine
their data by themselves.

The development of cloud computing and services comput-
ing enables at least two solutions. First, if the data owner has
the data-mining expertise but not the computing resources,
he/she can rent public cloud resources to process the data
with low cost (e.g., a 100-node cluster built with small virtual
machine instances in Amazon Cloud costs only $8 per hour).
Second, if the data owner does not have the expertise, he/she
can outsource their data-mining tasks to data-mining service
providers. Many companies such as Kaggle (kaggle.com) have
started providing such data mining services1.

In spite of the tremendous benefits in cost saving, the
unprotected outsourcing approach has three major drawbacks.
(1) The exported data may contain private information, which
is the reason that Netflix suspended the Netflix prize II
competition [11]. (2) The data ownership is not protected.

1As both infrastructure services and mining services are treated as cloud
services in a broader definition, we will use cloud-based mining in this paper.

Once published, the dataset can be accessed and used by any
one. (3)The ownership of the resultant models is not protected.
At least the model developer knows the model and understands
how to use it. The developer can possibly use the model by
himself/herself or share it with others without the data owner’s
permission.

In addition to confidentiality, in cloud computing, the client-
side cost is an important factor in data owner’s decision
making. If the client-side cost is much higher than in-house
mining, the data owner may not consider using cloud re-
sources. Specifically, such client-side costs include in-house
pre- and post- processing, and the communication between
the client and the cloud. A practical solution has to consider
minimizing the client-side costs.

Note that these features are distinct from the previous
studies onshared-data/model privacy preserving data mining,
which focus on sharing data and models without leaking
the private information in the data. Thus, methods like data
anonymization [6] are applicable. It is also different from
multi-party privacy preserving data mining [9], where each
party shares some data but does not want other parties to find
out the private information in the shared data. However, it
requires local data processing, which contradicts the purpose
of cloud computing.

Our Approach. Preserving data/model confidentiality often
impairs data utility, which contradicts the goal of learning
high quality models. We propose the PerturBoost framework to
address these contradicting goals. The current work is focused
on learning classifiers. This approach has a number of unique
features and contributions.

1) It utilizes the random space perturbation (RASP) method
proposed by our previous work [3] to protect data
confidentiality, which has been proven secure in out-
sourced database services [13]. It provides much higher
level of confidentiality compared to existing perturbation
methods such as geometric perturbation [4] and random
projection perturbation [10].

2) We design several methods to securely learn classifiers
from RASP perturbed data. The RASP approach was
originally designed only for confidential database query
processing. By extending the secure query processing
method, we are able to securely learn linear classifiers
from the perturbed data, and meanwhile preserve the
confidentiality of model.

3) Simple linear classifiers do not provide high prediction



accuracy. We extend the learning methods with the
boosting framework to promote model accuracy. We
show that the boosting framework works nicely and the
result is very close to the classifiers learned with the
original data.

4) To minimize the client-side costs, we develop two base-
classifer algorithms Greedy Decision Stump and Greedy
Linear Classifier that allow the cloud side to derive
good base classifiers asynchronously with only the initial
batch of “seed classifiers” provided by the client. The
model quality is also well maintained with these cost-
effective methods.

The proposed framework can be easily extended to other
perturbation methods, such as random projection perturbation
(RPP) [10] and geometric perturbation (GDP) [4]. Due to the
space limit, we do not include the details on the extended
study.

The remaining sections are organized as follows. We will
briefly review the related work in Section II. Section III
gives the notations and the background knowledge. Section
IV presents the PerturBoost framework and the RASP-related
learning methods in detail. Section V shows the experimental
study.

II. RELATED WORK

Shared data or model privacy-preserving data mining
(PPDM) is probably the closest work to confidential mining
in the cloud, which includes three groups of techniques. (1)
Additive perturbation techniques that hide the real values
by adding noises [2]. Because the resultant models are not
protected, they are not appropriate for outsourced mining.
(2) Cryptographic protocols enabling multiparty collaborative
mining without leaking either party’s private information[9].
These protocols expect the participants process the data in
house - a principle contradicting outsourced computation.(3)
Data anonymization [6] that disguise personal identities or
virtual identifiers in the shared data. However, it does not
protect sensitive attributes and the resultant models.

Secure database outsourcing has a similar setting to cloud
mining. In secure outsourced database, the major database
components, basically indexing and query processing, are
moved to the cloud. Typical techniques include order preserv-
ing encryption (OPE) [1], crypto-index [8], and RASP [3].

Fully homomorphic encryption [7] envisions an ideal sce-
nario for confidential cloud computing. Theoretically, once
the basic homomorphic addition and multiplication are imple-
mented, any functions can be derived with the basic operations.
However, the current solutions are still too expensive to be
used in practice [12].

III. PRELIMINARY

First, we will give the notations and basic concepts used
by this paper. Then, we will also briefly introduce the RASP
perturbation method to make the paper self-contained.

A. Notations

Our work will be focused on classifier learning on numeric
datasets. Classifier learning is to learn a modely = f(x) from
a set of training examplesR = {(xi, yi), i = 1 . . . N}, where
N is the number of examples,xi ∈ R

k is a k-dimensional
feature vectors describing an example, andyi is the label for
the example - if we use ‘+1’ and ‘-1’ to indicate two classes,
yi ∈ {−1,+1}. The learning result is a functiony = f(x),
i.e., given any known feature vectorx, we can predict the label
y for the examplex. The quality of the model is defined as
the accuracy of prediction on the testing setT .

We will use the boosting framework [5] in our approach. A
boosted model is a weighted sum ofn base classifiers,H(x) =
∑n

i=1 αihi(x), where (1) the base modelshi(x) can be any
weak learner, e.g., a learner with its accuracy significantly
higher than 50% for two-class prediction as the accuracy of a
random guess to the two-class problem would be around 50%;
and (2)αi, αi ∈ R, are the weights of the base models, which
are learned using algorithms such as AdaBoost [5].

B. RASP perturbation

RASP works on vector data. For eachk-dimensional origi-
nal vectorxi, the RASP perturbation can be described in the
following formula.

zi = RASP (xi;A,KOPE)

= A(EOPE(KOPE , xi)
T , 1, vi)

T , (1)

where (1)zi is the perturbation result, ak + 2 dimensional
vector; (2)EOPE is an order preserving encryption2 (OPE)
[1] with encryption keyKOPE . The OPE scheme is used to
transform the distribution ofj-th dimensionXj to the standard
normal distribution with dimensional order preserved. (3)vi
is drawn from the standard normal distribution, withvi >
v0, wherev0 is a constant so that the probability of having
vi < v0 is negligible. (4)A is a (k + 2) × (k + 2) randomly
generated invertible matrix.A is the secret key matrix shared
by all vectors, butvi is randomly generated for each individual
vector. As a result, the samexi can be mapped to differentzi
in the perturbed space due to the randomly chosenvi, which
provides extra protection. We have proved that RASP is neither
distance preserving nor order preserving [13].

Secure Half-space Query.The RASP perturbation ap-
proach enables a secure query transformation and processing
method for half-space queries [3]. A simple half-space query
like Xi < a, whereXi represents the dimensioni and a is
a scalar, can be transformed to an encrypted half-space query
in the perturbed space:zTi Qzi < 0, wherezi is the perturbed
vector, andQ is a (k+2)× (k+2) query matrix. Specifically,

Q = (A−1)T vuTA−1, (2)

whereu = (wT , 1,−EOPE(a))
T , w is the dimension indi-

cation vector: all entries are zero except for the dimensioni
set to 1, andv = (0, . . . ,−1, EOPE(v0)) is a vector with all

2E.g., if x < y, thenEOPE(x) < EOPE(y).



entries zero except for the last two. This quadratic query form
zTi Qzi < 0 is derived from the equivalent query condition
(Xi − a)(zk+2 − v0) < 0, wherezk+2 is the appended noise
dimension with guaranteedzk+2 − v0 > 0. The basic idea
is to transform each of the original conditions, sayXi < a
to a general vector formuTA−1z < 0, and zk+1 − v0 > 0
to (zTA−1)T v > 0. With Eq. 1, it is easy to verify the
above transformation is correct. As long as the matrixA
keeps confidential, there is no effective method to recover the
conditionXi < a from the exposed matrixQ.

C. Security Assumptions

In the practical cloud environment, it is appropriate to as-
sume that the service providers are honest-but-curious parties,
who will honestly provide the services but may want to peek
at or resell the data owner’s private data. The data owner
exports the data and receives the mined models. Curious
service providers can see the outsourced data, each execution
step of the mining algorithm, and the generated model.

There are two levels of adversarial prior knowledge. (1)
If the user only uses the cloud infrastructure for mining, we
can safely assume the adversaries know only the perturbed
data, corresponding to the ciphertext-only attack in crypto-
analysis. (2) In the case that mining services are used, in
addition to the perturbed data, we also assume the adversaries
know the feature distributions, as such information might be
provided for model analysis or exposed via other channels to
the service provider. We exclude the case of insider attacks,
e.g., an insider on the user side colludes with the adversary
and provides perturbation details or original unperturbeddata
records, which will be extremely difficult to handle.

We define data confidentiality as the resilience of the pro-
tected data to any data reconstruction or estimation methods,
which can be effectively evaluated with the mean-squared-
error (MSE) approach [4]. Assume{v̂i, i = 1..N} is a series
of estimated values for the original data{vi, i = 1..N}. Let gt
be an estimation method in the set of all possible methodsG.
Then, the level of preserved confidentiality can be evaluated
by the measureγ = mingt∈G 1/N

∑N

i=1(v̂i − vi)
2.

Model confidentiality can be evaluated in a similar way.
We assume the adversary knows what type of model is being
developed, because such information cannot be effectivelyhid-
den. Therefore, model confidentiality means the confidentiality
of the model parameters. For example, for linear classifiers,
f(x) = wTx + b, the confidentiality of the parametersw
and b are important to preserve. Similarly, we can define
model confidentiality as the estimation accuracy of the model
parameters.

IV. T HE PERTURBOOSTFRAMEWORK

Firstly, we will briefly describe the procedure of learning
with the cloud or the mining service provider. Then, we will
discuss the key algorithms for the RASP-based PerturBoost
approach.

Preparing Training Data. The user uses the RASP pertur-
bation to prepare the training data for outsourcing. To protect

the confidentiality of training data, we assume it is sufficient
to protect the confidentiality of the feature vectorsxi of each
training record{xi, yi}, while leaving yi unchanged. This
exposure will leave very limited information to the attackers.
Furthermore, if the user can proportionally sample the data
to be outsourced to generate uniform label distribution, no
label information will be leaked. For example, in two-class
problems, the user can prepare about the same number of
examples for each class. Now the problem becomes learning
from the data{(RASP (xi), yi)}.

Securely Learning Models. To make sure the models
learned from the perturbed data useful, we introduce the
definition of ǫ-effective learning. LetH be the classifier
learned from the original data{(xi, yi)} and HP be the
one learned from{(P (xi), yi)}, where P () is a specific
perturbation method.

Definition 1: Let Error() represent the classification eval-
uation function. For any set of testing data, if|Error(H) −
Error(HP )| < ǫ, where ǫ is a user-defined small positive
number, we say that learning from the perturbed data isǫ-
effective.
In practice, because of the downgraded data quality (e.g.,
noise addition) or the specific way transforming the data, the
available learning methods are quite limited and learning from
perturbed data often results in sub-optimal models. To find
ǫ-effective classifiers for smallǫ, we try to incorporate the
boosting idea in the PerturBoost framework. The PerturBoost
framework extends the existing boosting algorithm such as
AdaBoost [5], and generates models in the following form.

HP =

n
∑

i=1

αih
(i)
P , (3)

where h
(i)
P , i = 1..n, are the modelslearned from the per-

turbed data with special base learners. Thus, the key challenge
is developing the base-learner algorithms that can learn from
RASP-perturbed data. We will depend on experimental study
to evaluate the effectiveness of the PerturBoost framework
with the special base learners.

Applying Learned Models. There are different ways to ap-
ply the mined models. The mined model, sayM = HP (P (x)),
should be returned in some protected form so that adversaries
cannot take advantage of it. LetDnew be the new dataset.
When the user applies the model, two methods are available:
(1)either perturbing the data:D′

new = P (Dnew) and then ap-
plying HP (D

′
new), or (2) recovering the model in the original

space:Transform(M) → M ′ = H ′(D) and then applying
H ′(Dnew). Obviously, the model recovering approach is more
cost-effective. However, in the situation that the model cannot
be easily recovered, the first approach will have to be applied.

A. Securely Learning Classifiers from RASP-Perturbed Data

With the PerturBoost framework, the key is the base-
learner algorithms that can learn from the perturbed data. In
this section, we focus on the learning algorithms for RASP-
perturbed data. Specifically, we will develop linear classifier



learning algorithms, based on the RASP secure query process-
ing method.

Query-based Linear Classifiers.As we have shown in
Section III, half-space queries can be transformed to the
RASP perturbed space and be processed securely. Specifically,
a half-space condition likeXi < a is transformed to the
condition zTQz < 0, where transformation is done by the
user, who provides the query matrixQ to the server. Because
the labels are unchanged, it is possible to count the number
of ‘+1’ and ‘-1’ examples on the half-space, respectively,
with the following query:

select count(y=”+1”), count (y=”-1”)
from P={zi=RASP(xi), yi}
wherezTQz < 0.

We can similarly derive the number of ‘+1’ and ‘-1’ examples
on the other half space with the conditionzTQz ≥ 0. Then,
the half-space can be used to define a classifier, such as

f(z) = zTQz

{

< 0, return− 1

≥ 0, return+ 1
(4)

which has prediction error lower than 50%3. This is actually
a decision stump (DS) [5] in the perturbed space.

Random Decision Stump(RandomDS). According to the
Adaboost algorithm [5], in each round, the algorithm needs
to find the classifierht in the family of weak classifiersH
that maximizes the absolute value of the difference of the
corresponding weighted error rateεt and 0.5:

ht = arg max
ht∈H

|εt − 0.5|,whereεt =
N
∑

i=1

wiht(zi).

Specifically, if decision stump is used as the weak learner,
the algorithm will scan through all possible splitting values for
all dimensions to find the best decision stump. This becomes
prohibitively expensive for the RASP-query based decision
stumps - the user cannot afford encoding all possible decision
stumps and sending them to the service provider.

Instead, we propose to use a random sampling method: the
RandomDSmethod, to reduce the cost of finding agood de-
cision stump. Specifically, in each round, the service provider
asks the client to provide a random set of decision stumps
that approximates the setH, denoted asH̃. The sub-optimal
decision stump is found as the weak learner.

How to appropriately sample the decision stumps? Because
each dimension has been transformed to the standard normal
distribution in the OPE step, we can sample−EOPE(a) from
the central range of the distribution, say [-2, 2], the contains
the majority of the population.

Random Linear Classifier (RandomLC). The decision
stump method can be extended to the more general case
- the linear classifiers. Remember that a one-dimensional
half-space, e.g.,Xi < a, is first transformed to the
general half-space representationuT z < 0, where u =
(wT , 1,−EOPE(a))

T andw is the dimension indicating vec-
tor. In this transformation, we can also arbitrarily chosew so

3reverse the prediction, if the error rate> 50%.

that a general half-spacewTEOPE(x)−EOPE(a) < 0 in the
OPE transformed space is generated. Using the same method
for deriving the decision stump classifier, we can then get a
general linear classifier as the base learner.

As there are an unlimited number of linear classifiers, we
have to use the sampling approach again to provide a small
subset of linear classifiers in each round. One of the critical
problem is to effectively sample the parameter space ofw
andEOPE(a), so that the limited sample chances will not be
wasted on low-accuracy models.

The basic idea is to find the hyperplanes that “shatter” the
center of the dataset. Because the OPE transformed dimensions
have the standard normal distribution, we design the following
sampling method.
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Fig. 1. Effective seed hyperplanes shatter around the distri-
bution center.

As Figure 1 shows the two dimensional case, the majority
of the records in two dimensional standard normal distribution
will be enclosed in a circle of radiusr = 2 and centered on
(0, 0). To shatter around the center (0, 0), we need to have the
distance between the center and the hyperplane less than the
radius, e.g.,

|EOPE(a)|

|w|
< r. (5)

We can generate a random unit vectorw so that|w| = 1, and
then we only need to find a random sampleα from the standard
normal distribution asEOPE(a) that satisfies|α| < r.

B. Asynchronous Learning Algorithms

Note that with the RandomDS and RandomLC algorithms
the client side needs to stay alive to participate in each round
of boosting iterations, which is expensive and inconvenient to
users. In the following we discuss two asynchronous learning
algorithms that only request the user to submit a set of initial
settings together with the perturbed data in the beginning -no
need to participate in the iterations.

Greedy Decision Stump(GreedyDS). The basic idea is to
utilize the property of the RASP query transformation method
to derive an arbitrary number of decision stumps based on a
small set of seed decision stumps.

Let a andb be two arbitrary different values on the dimen-
sionXi, then any point on the dimension can be represented
asx = a+ λ(b− a), whereλ ∈ R. We show that

Proposition 1: Assume the query matricesQa and Qb

encode the conditionsXi < a and Xi < b, respectively.



Then,Qx = Qa+λ(Qb−Qa), whereλ is some real number,
represents a valid threshold condition onXi.

Proof: According to Eq. 2, LetQa = (A−1)Tuav
TA−1

and Qb = (A−1)Tubv
TA−1. We have Qa + λ(Qb −

Qa) = (A−1)T (ua + λ(ub − ua))v
TA−1. According to

the definition of u vector, we haveua + λ(ub − ua) =
(wT , 1,−(EOPE(a)+λ(EOPE(b)−EOPE(a))))

T . It is easy
to verify thatEOPE(a)+λ(EOPE(b)−EOPE(a))) is a valid
value on the OPE transformed dimension.
Therefore, the client only needs to prepare two seed decision
stumps per dimension. The server can derive an arbitrary
number of decision stumps based on the seeds. A greedy
method can be applied to find the best one among the
candidates. However, not all of these decision stumps are
effective, which waste the server computing time. Again, we
hope they will shatter around the center of the population. We
can achieve this by setting the seeds around the bounds [-2,
2]. Specifically, we can properly set the lower bound as the
conditionEOPE(a) < zi and the upper boundzi < EOPE(b).

Greedy Linear Classifier (GreedyLC). The greedy search
algorithm can also be applied to general linear classifiers.
Similarly, we have the following Proposition.

Proposition 2: Assume the query matricesQa andQb en-
code the general half-space conditionsuaz < 0 andubz < 0,
respectively. Then,Qx = Qa +λ(Qb −Qa), whereλ is some
real number, represents a valid general half-space condition.
The proof is similar to Proposition 1. Thus, we skip the details.

With the greedy linear classifier algorithms, the client will
only generate the initial batch ofm seed classifiers and send
them to the server. In each iteration, the server will use an
algorithm, according to Proposition 2, to derive new linear
classifiers in a greedy manner.

C. Model Confidentiality

The resultant model consists of two components: the unpro-
tected weightsαt, t = 1..n, and the protected base classifiers
ht(F (x)). Let’s check whether the confidentiality ofht(F (x))
is sufficiently protected.

Note that eachht(F (x)) in the proposed methods corre-
sponds to a protected half-space query. As proved by Xu
et al. [13], under the security model described in Section
III and without any additional information leaking, the query
confidentiality is preserved.

To ensure whether the proposed algorithms result in con-
fidential models, we should carefully checkweather there is
no additional information leaking when the base classifiers
are generated. Note that the three algorithms: RandomDS,
RandomLC, and GreedyLC use randomly generated base
classifier setH̃. The whole setH for either decision stumps
or general linear classifiers has a prohibitively large number
of members. A brute-force attack will need to enumerate all
the possible members, which is computationally intractable.
Therefore, the confidentially of these three methods are well
preserved.

However, GreedyDS has some weaknesses on security,
especially, when the adversary knows the original data dis-

tribution and the seed selection method. If the corresponding
thresholdsEOPE(a) andEOPE(b) are known, e.g., around -2
and 2, at each step of greedy algorithm, the adversary can infer
the corresponding threshold of the generated decision stump
in the OPE transformed space, with the server selected value
λ. If the original data distribution is known, it is not difficult
to map the OPE space back to the original data space, and
thus the resultant models can be well estimated. An effective
remedy is to relax the selection of the seeds decision stumps
to purely random selection, which, however, may reduce the
effectiveness of the consequently generated decision stumps.

V. EXPERIMENTS

The previous sections have addressed the three major
aspects: data confidentiality, model confidentiality, and the
client-side costs. Specifically, we use the RASP perturbation to
protect data confidentiality; model confidentiality is protected
by the secure RASP query transformation method and the
random selection of seed classifiers; we also develop two algo-
rithms Greedy Decision Stump and Greedy Linear Classifier
to reduce the client-side costs. The experiments will focuson
the two aspects: the client-side costs and model accuracy. Due
to the page limit, we skip the experiments on seed classifiers
and combining PerturBoost and other perturbation methods.

A. Experiment Setup

Datasets.For easier validation and reproducibility of our
results, we use a set of public datasets for evaluation, which
have only two labeled classes, from UCI machine learning
repository. These datasets have been widely applied in various
classification modeling and evaluation.

In pre-processing, the missing values in some datasets
(e.g., the Breast-Cancer and Ionosphere datasets) are replaced
with random samples from the domain of the corresponding
dimension. They are then normalized with the transformation
(v − µj)/σj , whereµj is the mean andσ2

j is the variance of
the dimensionj, to minimize the differences on dimensional
distributions. Each of the datasets is also perturbed with RASP.
Then, the datasets are randomly shuffled and split for single-
split evaluation and for five-fold cross validation.

Implementation. We implement the perturbation methods
based on the algorithms in the paper [3]. The PerturBoost
framework is implemented based on the Adaboost algorithm
[5]. The four RASP-based base learners are implemented as
plugins to the framework. All these implementations use C++
and are thoroughly tested on a Ubuntu linux server. We also
used the Weka (www.cs.waikato.ac.nz/ml/weka/) implementa-
tion of Adaboost to generate the baseline accuracy using the
original datasets.

B. Experimental Result

Cost of Preparing Base Learners.Users of cloud com-
puting and services computing are also concerned with the
client-side costs. We conduct a simple evaluation to show the
expected costs for the RASP based methods.



0.04

0.06

0.08

0.1

0.12

0.14

1 101 201 301 401

Te
st

in
g 

E
rr

or

Rounds

Baseline

RandomDecisionStump

RandomLinearClassifier

GreedyDecisionStump

GreedyLinearClassifier

Fig. 2. Progressive testing error on Spambase,
500 rounds, 100 random DS/LS per batch.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

B-Cancer Credit-A Credit-G Diabetes Heart Heptitis Ionosphere Spambase

E
rr

or
 R

at
e

Baseline

RandomDS

RandomLC

GreedyDS

GreedyLC

Fig. 3. 5-fold cross-validation results on all datasets, 500 rounds, 100 random queries per batch.

Setting Preparing Time Transfer Bytes
Single Query 57dimensions 3.736 ms 26KB

RandomDS /LC per round ∼22 sec 148MB
GreedyDS one time ∼0.45 sec 3MB
GreedyLC one time ∼22 sec 148MB

TABLE I
AVERAGE COST FOR DIFFERENT METHODS ONSPAMBASE.

The client-side costs for RASP based methods basically
include the costs generating the transformed queries and
transferring them to the service provider. We use the amount
of data to be transferred to represent the communication cost.
This experiment is done on the Spambase dataset, which has
57 dimensions. The first line of Table I lists the per-query
average cost based on preparing 1000 randomly generated
queries, and the number of bytes to be transferred per query
to the server. Overall, ifd is the number of dimensions, the
preparing time is approximately proportional tod3 and the
transfer bytes is proportional tod2.

Based on the per-query costs we can derive the client-side
costs for different RASP-based methods. Here we use 100
seed queries per dimension per round for RandomDS and Ran-
domLC, and 100 seed queries per dimension for GreedyLC.
The GreedyDS needs only two seed queries per dimension.
RandomDS/LC have huge transfer costs, probably not good for
high-dimensional data like this. GreedyLC has only moderate
one-time cost. In contrast, GreedyDS has impressively very
low one-time cost.

Effectiveness of Boosting.First, we look at the detailed
boosting result on single-split training. The records in Spam-
base are shuffled and split into the training dataset (70%) and
the testing dataet (30%). Figure 2 shows the progressive testing
error in 500 rounds. The RandomDS/LS algorithms use 100
random queries per round. The GreedyLC algorithm uses 100
random queries for the one-time setup.

The result shows that RandomDS has the best performance.
It converges fast and the accuracy is very close to the baseline.
RandomLC and GreedyLC have similar performance; thus,
we have no reason to use the more expensive RandomLC.
GreedyDS converges fast, but it stays at the highest error
rate, which probably traps in the local minima due to the
less choices of the available base classifiers. However, itslow

Baseline RandomDS GreedyDS RandomLC GreedyLC
Error rate( %) 5.5±1.2 6.0±1.1 7.7±1.4 7.1±1.0 7.4 ±1.0

TABLE II
CROSS-VALIDATION RESULTS ON SPAMBASE.

client-side cost still makes it a competitive choice. Overall,
the results on Spambase are very close, located in the range
of error rate (0.05, 0.08). The five-fold cross-validation (Table
II) also supports this observation. Although the average error
rates are different, the standard deviations overlap each other,
which implies that no method is statistically significantlybetter
or worse than another in accuracy.

The results on other datasets show slightly different patterns.
Figure 3 shows the five-fold cross-validation results for all the
experimental datasets. The four methods except for GreedyDS
perform similarly and consistently. GreedyDS has much higher
error rates on Gredit-A and Credit-G. It is consistent with the
conclusion we have drawn from the Spambase data.

VI. CONCLUSION

This paper presents the PerturBoost approach that aims to
provide practical confidential classifier learning in the cloud.
Such a practical confidential learning method should address
the problems in four aspects: data confidentiality, model con-
fidentiality, model quality, and low client-side costs. Specifi-
cally, we focus on the RASP-perturbation based methods that
provide good data confidentiality and model confidentiality.
We develop methods to show that weak linear classifiers
can be learned from the RASP perturbed data. These weak
linear classifiers are plugged into the PerturBoost framework
to gain high-quality classifiers without breaching the model
confidentiality. We also design learning methods to minimize
the client-side costs and enable asynchronous learning without
intensive client-cloud interactions. The experimental results
show that PerturBoost can robustly restore the model quality
for RASP-perturbed data.
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