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Abstract With the increasing number of objects in Earth or-
bits, space situational awareness (SSA) becomes critical to
space safety. As an economical option, ground-based tele-
scopes can be deployed around the world and continuously
provide imaginary information of space objects. However,
they also raise unique challenges regarding big, noisy, and
streaming data processing. In this paper, we present the SPIN
system to address these challenges. The core algorithms pro-
cess image sequences generated by ground-based telescopes
and conduct: (1) image quality classification for data clean-
ing, (2) stream-based key-object identification and anomaly
detection, and (3) efficient query processing on large image
sequence repositories. Our goal is to design or adopt algo-
rithms that handle the domain-specific image streams most
efficiently and effectively. We use a 17-inch telescope to col-
lect a large real dataset for evaluating the core algorithms,
which covers more than ten satellites in one month and con-
tains about 16,400 images. The experimental results show
that the developed algorithms are fast enough for stream-
based real-time processing and also yield high-quality re-
sults for all the primary tasks.
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1 Introduction

With the increasing number of satellites, space crafts, and
debris around the earth, space situational awareness (SSA)
becomes critical to national security and space safety. Ac-
cording to the recent data from CelesTrak (celestrak.com),
there are over 13,000 satellites in orbit, and over 20,500
satellites have decayed since 1957. The near-earth orbits are
more crowded than people can imagine (Figure 1). Among
the satellites in orbit, there are just under 3,500 satellites
that are functioning in their correct orbit, compared to nearly
10,000 that are classed as debris but have not yet decayed.
With the increasing number of debris, the chance of collision
increases, too. In 2009, the defunct Russian communications
satellite crashed into an operational Iridium spacecraft,cre-
ating a new debris cloud comprising about 700 objects1.
There is an urgent need to monitor space objects to predict
and avoid collisions.

Fig. 1 The crowded near-earth orbits. Credit: NASA

1 Satellites Crash in Space, Debris Scatters,
http://www.tomsguide.com/us/Space-Satellite-Collision-Sibera,news-
3477.html
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The recent advances in remote sensing and optical de-
vices make it possible to collect large amounts of space data
using multiple methods. In this paper, we consider those
data streams generated by ground-based telescopes (GBTs).
Equipped with high-resolution cameras, they generate im-
age streams, which can be processed for monitoring space
objects in earth orbits. Compared to other more expensive
instruments such as space-based telescopes and radars, GBTs
are cheaper to obtain, install, and maintain2. They can be
installed in multiple locations around the world and used
to observe the same space object from different locations
continuously and simultaneously. It is then possible to uti-
lize images of the same space object taken from different
times, or at the same time from different locations, to gain
more reliable information to improve the quality of space
situational awareness. Such a multi-source data fusion can
be achieved economically with the deployment of low-cost
GBT stations. However, there are several challenges to be
addressed so that an automatic economical GBT-based solu-
tion become realistic.

Challenges.Space image data from ground-based tele-
scopes have several unique features, which raise several chal-
lenges in effectively utilizing them.

– Noisy Data.Because of the changing meteorological con-
ditions, the long distance to the target objects, and equip-
ment setup, the quality of images from ground-based
telescopes can vary from time to time. As a result, not all
the raw images contain useful information, which needs
to be sorted and cleaned before entering meaningful pro-
cessing.

– Large Data.A GBT can generate enormous amounts of
image data. A common image in FITS format
(fits.gsfc.nasa.gov) captured by a 17-inch telescope has
1.4 Megabytes(MB), which is generated at a rate of one
image every few seconds continuously for a period, e.g.,
8 hours at night, easily producing gigabytes of data. The
number of space objects of interest can be hundreds to
thousands, and thus the aggregated historical data will
lead to a large image repository. Furthermore, when mul-
tiple image sources from different GBT stations are inte-
grated, the data will be even larger. Analytical queries on
such a huge image repository should be efficiently and
accurately processed.

– Streaming Data.In addition to offline analyses of large
image datasets, online monitoring of specific objects is
also important to detect anomalies and generate reaction
plans promptly. Thus, images have to be produced at a
relatively high rate, e.g., a few images per minute, to
create an “image stream”. This stream is processed and
mined in real time to detect possible anomalies, includ-

2 A high-end GBT costs about only about $50K (check
planewave.com).

ing missing monitored objects or emerging new objects
around the monitored ones.

Scope of Research.To address these challenges, we de-
velop the SPIN (SPace Image cleaning, moNitoring, and
querying) system. This system will try to answer the follow-
ing key questions. (1) How to identify bad images automat-
ically? (2) How to process a stream of images, identify the
key objects, and detect possible anomalies? And (3) how to
query the large space image repository to find relevant im-
ages? Our goal is to develop or adopt the mostefficientalgo-
rithms that can giveaccurateresults for these major tasks.
The focus is not to invent new primary image processing
algorithms, but to find the best integration of the existing
techniques to answer the key questions well.

A unique feature of the SPIN system is that both real-
time monitoring and offline analytics are based on sequen-
tially captured images sequences, not on individual images.
The redundant information in a sequence of images can be
effectively used to simplify the algorithm design. We will
extract raw image and object features from each image as
fast as possible. However, they do not provide accurate as-
sertions until they are linked to the image sequences. The
image repository is organized by image sequences and in-
dexed by features extracted from the sequences, rather than
from individual images. Correspondingly, query processing
is also sequence-based: both the query and the result are im-
age sequences. In stream-based monitoring, the key objects
are identified and anomalies are detected from sequences
(i.e., sliding windows in the image stream).

By carefully studying the characteristics of space object
images, we design (or adopt) a set of simple image process-
ing techniques that give fast processing speed and guaran-
tee accurate results. Specifically, our approach has several
unique contributions.

– We design a simple method for rapidly extracting (pos-
sibly noisy) objects from individual images. The high
accuracy of key object detection and noise reduction is
effectively achieved by processing the recurring objects
in sequential images.

– We develop an effective online image-quality classifier
for space images, based on a few basic image features
(e.g., histogram features) and object features of an indi-
vidual image.

– The geometry of multiple key objects is utilized in in-
dexing and query processing, which leads to high speed
and high accuracy query processing.

– We have conducted extensive experiments with a large
real dataset (about 16,400 images covering more than
ten satellites) collected by ourselves. The results show
that we have satisfactorily achieved our design goals.

We describe more details of the SPIN approach in the
following sections. Section 3 gives the system framework
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and the roles of the core algorithms. Section 4 describes the
core algorithms for this framework. Section 5 presents ex-
perimental results to show the efficiency and accuracy of the
algorithms. Section 2 includes some related work.

2 Related Work

Several types of instruments can be used to observe space
objects. Among them, space-based telescopes can generate
the highest quality images without atmospheric turbulence,
which is critical for observing deep space objects. The Hub-
ble space telescope has been the most successful project in
the history of astronomy. However, this type of resource is
very scarce, often dedicated to scientific studies. It is very
expensive to deploy, operate, and maintain space-based tele-
scopes for space situational awareness.

The ground-based techniques include telescopes and radars.
Ground-based telescopes are more economical and also highly
available in the market. However, they may generate lower
quality images due to atmospheric turbulence, can only be
used in good weather conditions [1] for monitoring medium-
orbit or geostationary satellites. Another well-known ground-
based instrument is Synthetic Aperture Radar (SAR) [4],
which is also more expensive than ground-based telescopes.
Compared to a commodity 17-inch telescope such as CDK173,
which often costs less than $50,000, an SAR costs millions.
SARs have their unique advantages - they can detect objects
as small as tens of centimeters and are not subject to atmo-
spheric conditions. Thus, they are critical to monitoring low-
orbit satellites. Note that the image stream techniques devel-
oped in our approach can also be used for SAR images.

Space situational awareness systems have two types of
monitoring sensors4: surveillance and tracking sensors. The
surveillance sensor sees a vast area of the sky at one time. It
is not actively looking for objects, but rather passively wait-
ing for objects to pass over. In contrast, tracking sensors usu-
ally have a very small field of view. It is particularly useful
when the orbit of an object is already known, and the object
needs to be precisely tracked. Our system is designed for
tracking sensors.

Object detection in images has achieved many signifi-
cant results during the past decade. For example, the Viola-
Jones method [15] can quickly detect human faces in an
image at a rate of 15 frames per second for small images
(384x288). The recent advances in deep learning have been
applied to object detection [13], resulting in detectors for
multiple types of objects. Due to the rich content of images,
image feature extraction is often discussed under a certain
application [14]. However, there are also some general fea-
tures widely used by many applications such as the pixel-

3 http://planewave.com/products-page/telescopes/
4 http://goo.gl/oNlRjS

block features [15] and scale-invariant features [8]. How-
ever, our focus is not to develop more advanced general ob-
ject detection or feature extraction techniques, but to find
the simplest (thus fastest) method that takes advantage of
the characteristics of space surveillance images and works
nicely.

Content-based image retrieval is a challenging problem.
It is closely related to visual recognition [11] - a classical
problem in computer vision. A promising way is to clas-
sify an image into multiple categories [3], where the deep
learning techniques can be effectively applied [16]. Jing et
al. [7] show that the link structure on the web can also be
helpful in identifying the topics of an online image. These
techniques typically require a large labeled training dataset
and intensive computing resources, making it expensive to
develop and apply models. The general problem of content-
based image retrieval is difficult because the content can be
anything in the world. However, space images have very re-
stricted types of content, making it possible to use much
simpler yet still highly effective retrieval techniques. Since
we can accurately identify the key objects in image sequences
with our proposed techniques, we can use the geometric in-
formation of the objects for query processing.

3 System Framework

To fully utilize the images generated by ground-based tele-
scopes for the SSA purpose, we have several goals for this
system. (1) Build up a repository of space object images,
where the images should be of good quality and the primary
objects are well identified. (2) Be able to monitor specific
space objects to find possible anomalies such as the missing
targets or emerging new objects around the targets. And (3)
Query the image repository with a captured image sequence
to find the similar ones.

The system is intended to collect, monitor and query
specific space objects, whose trajectory models are already
known. The trajectory model of a space object precisely de-
fines the location of the object at any time. It thus makes
possible for ground-based telescopes to automatically and
continuously track the target object. The ultimate goal is
to develop a maintenance-free, remotely controllable system
for ground-based telescope stations.

Figure 2 shows the workflow and the major components
in the system. Specifically, multiple ground-based telescopes
are set up in different locations to monitor specific objects
with known trajectory models. The captured images are com-
ing in streams, cleaned and processed at computational nodes
to check whether the observed situations are normal or ab-
normal. Selected good-quality images may enter the image
repository for future analysis, where more advanced features
might be extracted and analytic algorithms be applied. This
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Fig. 2 SPIN System Framework

image repository might be queried with image sequences to
find the most relevant sequences in the database.

We identify several core algorithms that enable this sys-
tem framework. (1) Efficient online feature extraction algo-
rithms that can extract low-cost features for quickly and ac-
curately conducting automated tasks such as image quality
determination and key-object identification. (2) A sequence-
based key object identification algorithm for reliably extract-
ing key objects from the noisy objects in a series of se-
quentially captured images. (3) Algorithms for finding ob-
ject geometric patterns for indexing and querying image se-
quences. These core algorithms are mapped to the key com-
ponents of the framework. Note that there are unique prob-
lems on correlating images from multiple locations, which,
however, is not covered by our current work. In the follow-
ing, we will discuss the core algorithms in detail.

4 Core Algorithms

In this section, we describe the design of three key algo-
rithms: object-based online feature extraction, stream-based
key object identification, and geometry-based indexing and
query processing.

4.1 Object-Based Online Feature Extraction

The first key operation of the framework is to extract fea-
tures from images, which will be used in the subsequent
tasks. There are two special requirements. (1) The feature
extraction process needs to be efficient enough for online
processing of image streams, such as image quality classi-
fication and anomaly detection. (2) It should capture all the
major objects so that the features can be re-used by subse-
quent tasks. The algorithm may generate noisy object ex-

traction, but we need it to include all key objects as possible
(i.e., very high recall).
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Fig. 3 A sample image captured by a ground-based telescope about
satellites. The three dots are the targeted satellites and the streaks are
other objects passing the scene.

Images from ground-based telescopes have several im-
portant characteristics that distinguish their processing from
normal ones. First, objects on space images are presented as
dots and streaks, as shown in Figure 3. No special shape in-
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formation available except for size and intensity5. Second,
these images are often noisy with varying quality such as
low intensity, low contrast, and out-of-focus. As the tele-
scope is set to track the targets synchronously, the key ob-
jects are captured as dots in images. Sometimes they might
be too low intense to be visually detected - however, can be
still detected via algorithms. Streaks are objects with differ-
ent speeds moving through the scene, which may include
unexpected objects.

These unique features demand special processing algo-
rithms. Our strategy is to first identify the pixels with rela-
tively high intense, and then use a cost-effective clustering
algorithm to identify the primary objects (i.e., the dots and
streaks). Experiments show that this design works satisfac-
torily for the major tasks: image quality classification and
key object identifications with image sequence. The statis-
tics of the basic object features, together with the histogram
information, are used directly to identify good images in the
image classification and cleaning task. The basic object fea-
tures fed to the sequence-based analysis to identify the key
objects among the noisily identified objects accurately.

In the following, we describe the design of the algo-
rithm. The basic idea is to use the simplest techniques to
achieve the most effective results.

Customized Histogram Based Thresholding.
Histogram-based methods are the most popular for convert-
ing the grayscale images into binary images ready for effi-
cient object extraction. The solutions for general cases has
been studied intensively [5]. However, the unique featuresof
space image may allow us to develop a specialized and more
efficient customized algorithm, which works best for the
streaming case. We consider a simplified histogram based
thresholding algorithm. The well-known histogram based
algorithm is the Otsu algorithm [10], which checks each
gray level (e.g., 0 to 255) to find one that optimally sep-
arates the foreground and background pixels. However, it
can be unnecessarily expensive for our application as we can
quickly narrow down the target gray level for space images.
One intuition is that the light portion in a space image is of-
ten tiny, compared to the dark area. The histogram of pixels
can quickly capture this unbalanced distribution. As Figure
4 shows, most pixels have a grayscale (intensity) around 60;
only a very small portion of pixels have high intensity. In
practice, we find that the threshold of gray level can be set so
that the left side of histogram contains very high percentage
(e.g., about 90%) of all pixels and the right side represents
the pixels of interest. It is possible to fine tune this percent-
age to minimize the inclusion of background noise. How-
ever, it is not necessary since the late “noise removal” pro-
cess will effectively remove them. In experiments, we found

5 The shape information may be available for low-orbit objects cap-
tured by radars [4], which, however, are not the objects targeted by
ground-based telescopes, due to the objects’ high orbital velocity.
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Fig. 4 The histogram of a sample image captured by a ground-based
telescope.

that 90% works just fine. Note this procedure is highly ef-
ficient, with time complexityO(n), linear to the number of
pixelsn.

Noise Removal.The result of fast thresholding may leave
small noises in the binary image, which can be further re-
moved by the classical method - the combination oferosion
anddilution [12], with a cost ofO(n). We found this

Pixel Grouping. The remaining white pixels are grouped
by a simple eight-neighbor approach. Specifically, if a pixel
is one of the eight neighbors of another pixel, we consider
these two pixels are connected, which forms connected pixel
graphs. A bread-first search is applied to such graphs to
identify the connected components, which only costsO(m),
wherem is the number of white pixels.m is usually very
small (e.g.,< 100) after the threshold and noise removal
steps.

Clustering of Pixel Groups. The pixel groups formed
in the last step are further checked by the distances between
the groups. A simple agglomerative clustering method is
applied. It starts with each pixel group as a cluster. The
distance is defined as the minimum distance between the
bounding boxes of the pixel groups. In each step, if a pair
of clusters has their distance less than a thresholdδ, they are
merged. Let the number of pixel groups bep. The complex-
ity of this step is aboutO(p2 log p). Sincep is often small
(e.g., typically less than ten), the actual cost of this stepis
low. According to the shape and size of the cluster, we label
them with “dot”, “streak”, or “invalid”. Invalid objects are
those with very large size likely caused by hardware prob-
lems such as an ill-tuned camera.

Algorithm 1 gives the details of these steps. In experi-
ments, we show that this approach is much faster than other
candidate methods.
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Algorithm 1 Fast Online Object Extraction
Input: imageI, histogram-thresholdτ , cluster-thresholdδ;
h← get the histogram ofI;
b ← find the grayscale that cuts the left of the histogramh to have
≈ τ percent of the total pixels;
B ← convert the imageI to binary with the thresholdb;
erode(B) and then dilute(B);
apply Breadth-First-Search to find the connected white pixels, which
formsp pixel groups;
apply hierarchical clustering onp pixel groups to find the final clus-
ters and label them according to their shapes;
return bounding boxes of the labeled objects;

The identified objects can effectively support other tasks
such as image quality classification and key object tracking.
In image quality classification, features are extracted from
the captured objects together, and the basic histogram infor-
mation, and then a classifier is trained to separate the bad
quality images from good ones. We will describe the details
in experiments.

ID feature description
1 intensity at 50% of histogram
2 intensity at 90% of histogram
3 total number of objects
4 number of dots
5 number of streaks
6 average size of dots
7 maximum size of dots
8 minimum size of dots
9 average intensity of dots
10 maximum intensity of dots
11 minimum intensity of dots
12 average size of streaks
13 maximum size of streaks
14 minimum size of streaks
15 average intensity of streaks
16 maximum intensity of streaks
17 minimum intensity of streaks

Table 1 Feature design for image cleaning.

Note that the objects identified by this algorithm are quite
noisy, which is a trade-off we make for fast online process-
ing. Figure 3 shows an example, where the identified objects
are boxed. However, this information together with the basic
image statistics is sufficient for image quality classification.
Table 1 shows the features used by the quality classification.
The noisy objects can also be effectively eliminated with a
stack of sequentially captured images as shown in the next
section.

4.2 Key Object Identification and Anomaly Detection in
Image Streams

A single image may contain objects other than the target
ones, such as passing satellites, meteors, and background
stars, which are difficult to distinguish by processing only
one image. However, the key objects (identified as small
square-shaped boxes in the images) should continuously ap-
pear in a series of sequentially captured images, while oth-
ers may not. Also, as the telescope is precisely tracking the
objects according to their trajectory model, the key objects
must show up in each image around the same position. In
contrast, the moving objects such as passing satellites and
meteors may only appear in a few images or form streaks,
and the background stars that have much lower intensity
should have been eliminated from the images after the pre-
processing steps.

Key-Object Identification with an Image Sequence.
The key-object identification algorithm extracts the key ob-
jects from a sequence of images. It is used in the setup stage
of stream monitoring (i.e., in the first 10 minutes of obser-
vation), and the image query processing algorithm that will
be discussed later.

The algorithm needs to handle some special situations
observed from real datasets. With an appropriate setup, the
key objects should appear around the same position in the
sequentially captured images. However, in practice, we of-
ten observed small levels of deviation from sequences to se-
quences, which should be tolerated by the algorithm. Devi-
ations may be caused by some system errors, e.g., the me-
chanic and optical systems. Figure 5 and 6 show different
levels of deviations observed in real image streams.

Considering such normal small deviations, we design
the key-object detection algorithm as follows. First, we pro-
cess images by a sliding window, which is a typical method
for streaming data processing [2]. Each image is called a
“frame”. The window size is denoted ass frames. Objects
may only be detected in a few of thes frames in a win-
dow, which leads to theframe missing rate, i.e., the number
of missed frames divided bys. We set the maximum frame
missing rate asr. Second, we collect all objects detected
from thes frames in one dataset for clustering. It aims to
find the object clusters that satisfy the following conditions:
(1) the cluster contains more than(1 − r)s objects, and (2)
the diameter of cluster [6] is smaller thanδ. Intuitively, it is
like to stack all frames together in one frame and find the
repetitively appearing objects around certain locations.The
diameterδ defines the allowed deviation range and(1− r)s

means the object appears at least in(1 − r)s frames in the
window.

The key reference objects and the reliable parameter set-
tings ofs andr are established in the first few (e.g., 100-200)
frames of the observation period, to adapt to different obser-
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Fig. 5 Typical image sequences, where the key objects appear in
almost every frame and they stack in the small areas. Yellow boxes
represent the identified dot objects in the first stage processing;
blue boxes are the streak objects.

Fig. 6 In some sequences, the key objects may drift about in some
irregular tracks.

vational conditions. The details of the algorithm are givenin
Algorithm 2. Specifically, we observed that the cluster de-
viation diameterδ can be fixed (e.g.,δ = 40) based on a
large set of normal sequences. However, the setting ofs is
complicatedly related to the noisiness of the sequences (i.e.,
the missing rater). To adaptively find the stable settings, we
consider the following approach to handle this uncertainty.
First, the analyst gives the bounds of candidate window size
s: smin andsmax. The aim is to find the appropriate win-
dow size that gives low missing ratestablyover the sliding
windows in the firstn frames. Then, a probing process is
applied for each setting of window sizesi, to compute the
maximummissing rate,ri of the top-k clusters sliding over
then sequential images. The clusters are ranked by the num-
ber of frames that the contained “dot” objects in the cluster
are from. Finally, among all pairs(si, ri), we find the pair
that gives the lowest maximum missing ratermin.

Algorithm 2 Probing the best setting of window size and
missing rate

Input: image{Ii, i = 1..n}, window size range[smin, smax],
cluster-thresholdδ, and the number of key objectsk;
for si from smin to smax do

find the maximum missing rateri over sliding windows (Algo-
rithm 3);

end for
return(sopt, ropt), where
sopt = argmins∈[smin,smax]{ri|(si, ri)};

Algorithm 3 Find the maximum missing rate over sliding
windows

Input: image{Ii, i = 1..n}, window sizes, cluster-thresholdδ, and
the number of key objectsk;
S ← {I1, .., Is};
clustering the “dot” objects in the sequenceS (Algorithm 4);
find the maximum missing rate of the top k clusters,r1;
for i from 2 to n-sdo

removeIi−1 from S and appendIi+s−1 toS;
remove the objects ofIi−1 from the clusters;
assign the objects ofIi+s−1 to the clusters (Algorithm 4);
find the maximum missing rate of the top k clustersri;

end for
returnmax{r1, .., rn−s};

References and Anomaly Detection.In processing an
image stream, we first establish the reference sequences that
represent the normal situations. The first few windows in the
whole observation period (e.g., one night of observations)
are used to find the best parameter settings and the stable key
objects (Algorithm 2). It establishes the “normal cases” for
anomaly detection, which can also be cross-validated with
the historical information in the image repositories (or veri-
fied by the analyst for objects tracked at the first time). Each
stable key object is represented as a cluster of key objects in
the stacked images. Once the key objects are established, the
objects in the late windows are compared to the key objects
to detect anomalies.

We define “anomaly cases” with two categories:the dis-
appearance of the target objects, andthe emergence of new
objects. Both can be captured with the identified object clus-
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Algorithm 4 Clustering “dot” objects in one image to pre-
vious clusters

Input: imageI, cluster-thresholdδ, a set of existing clustersC;
for each “dot” objectoi in I do

for each clustercj in C do
if distance (oi, cj ) ¡δ then

addoi to cj and break;
end if

end for
if oi does not belong to any cluster inC then

create a new cluster that contains onlyoi and add the cluster
toC;

end if
end for
return the updatedC;

Fig. 7 Significantly shifting key objects.

ters. Specifically, for the first category, we flag all frames
that miss any of the identified key objects. Once a sequence
of continuously flagged frames (α frames) is detected, a key-
object-missing alarm is raised. Meanwhile, we also keep
detectingemerging key objectsby applying the key-object
identification algorithm to the sliding window [i − s, i],
wherei is the index of the current frame. Once a new emerg-
ing key-object cluster is detected, we also raise the alarm.

We have observed in real datasets that, in very rare cases,
the deviation is so large (e.g. Figure 7) that causes both dis-
appearance and emerging alarms. Thus, once a frame is de-
tected with both types of alarms, it is very likely that large
deviation happens, which will need to be visually verified
by the analyst. After the verification, the key-object identifi-
cation process needs to be restarted.

Note that the overall computation cost for tracking the
information is low, only related to the number of objects

detected in the feature extraction stage, which is typically
small with our highly effective object extraction algorithm
in the early stage.

4.3 Geometry-Based Indexing and Query Processing

High-quality image sequences are sampled, processed, and
saved to the image repository for future analysis. Support-
ing image queries is one of the major functions for the im-
age repository. In the following, we focus on processing the
similarity query, i.e., finding the historical images sequences
that are similar to a given sequence of image.

In the preliminary study, we have observed that typically
more than one geostationary satellite6 can be captured in
the same frame for each observation period, which provides
important geometry information for accurately indexing and
querying sequences. Specifically, the distances between the
key objects can be used to create a pattern of object distribu-
tion, which are then used for indexing and query processing.
This method is very reliable for geostationary objects. Non-
geostationary objects can also be possibly described with
multiple patterns, combined with their trajectory models and
observation times.

Geometry-based indexing is necessary for fast query pro-
cessing. Specifically, we define the problem as follows. We
assume somehistorical sequences of imagesare stored in
the image repository for query and analysis. These sequences
are of good quality, well cleaned, and explicitly labeled by
the detected target objects. Aqueryconsists of a sequence of
sequentially captured images (in typical cases) or one single
image (in unusual cases). We want to find the most relevant
sequences of images in the image repository. It will be an
important tool for many analytical tasks.

The key problem is to define the features for indexing
and query processing. We consider two types of informa-
tion: the geo-location of a telescope station and the geom-
etry information of the key objects. The index is a hierar-
chical tree-like structure, designed as follows. The first level
is the geo-location of a station. For the query images not
taken by the stations in the repository, it is best to search for
the images related to the closest station. More sophisticated
methods can be used to transform the object geometry be-
tween stations for the same target object. However, they are
out of the scope of our current study. The second level is
the number of key objects in the image sequences. Finally,
each node in the third level represents an image sequence
that was taken from the specific geo-location and has the
specific number of key objects, containing the geometric in-
formation of the key objects in the image sequence. Figure
8 illustrates this indexing structure.

6 http://solarsystem.nasa.gov/basics/bsf5-1.php
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Fig. 8 Index structure for geometry-based query processing.

For each sequence in the third level, we compute the
pairwise Euclidean distances between the key objects, and
sort them to form a distance vector for the specific image
sequence, denoted asdl,k,i, wherel represents the location
id, k is the number of key objects, andi is the sequential
id of the image sequence in this specific category. For two
objects in the sequence, there is only one pairwise distance,
and thus thedl,k,i vector has only one element. Three objects
will have three elements, andn objects will have the vector
length

(

n

2

)

. These distances are also normalized to the range
[0, 1] according to the image size7. Similarly, we also com-
pute pairwise cosine similarity values and sort them to form
a vector, denoted ascl,k,i, with the same definition ofl, k, i.
Elements ofcl,k,i are in the range[0, 1]. Specifically, the Eu-
clidean distances define the relative position of the objects,
and the cosine similarity measures define the relative angles
between the objects. The two vectors together form the sig-
nature vectorsl,k,i = (dl,k,i, cl,k,i) used in similarity based
sequence search. A multidimensional spatial index [9] can
be built with the signature vectors for the specific branch.

Query processing is straightforward with such an index.
If a query consists of a series of sequentially captured im-
ages, each image in the sequence is preprocessed with the
previously discussed basic object extraction algorithm, and
then the sequence-based key-object identification algorithm
is used to spot the key objects. Then, the signature vector
of the query sequence,squery , can be computed. With the
station location and the number of key objects, the branch
in the third level is identified. We then conduct a similarity
search between the signature vectors in the branch and the
query signature vector using Euclidean distance. The topk

most similar sequences are returned as a result.

7 For an image of sizex × y, the maximum distance is
√

x2 + y2.
Each computed distance is divided by the maximum distance toget the
normalized value.

5 Experiments

As mentioned in the framework, the system has three ma-
jor tasks: (1) image cleaning, (2) anomaly detection, and (3)
sequence querying, while object detection is the key com-
ponent for all the three tasks. In the following, we will first
describe the setup for experimental evaluation and then re-
port the evaluation results for the tasks.

5.1 Implementation

To evaluate the components of the framework, we have built
several auxiliary tools with C++, Java, and Python.

Image Browsing and Labeling Tool.This tool provides
a GUI for developers to efficiently browse and label the
sample images for image cleaning. Each image is labeled
by “good”, “bad”, and “uncertain”. With labels and the de-
signed features, we can learn classifiers.

Image Stacking and Visualization Tool.This tool is
used to examine the extracted objects and visually evaluate
the quality of sequence-based key-object identification. Fig-
ure 5 and 6 are from this tool.

Image Query Processing System.It provides a test plat-
form for evaluating query performance. We build the se-
quence database with the sample sequences collected in one
month. Users can submit an image sequence as a query and
get the most related sequences in the database.

In addition to these tools, we have implemented the core
algorithms with C++ or Java to achieve better performance,
which are used by these tools via some glue code in Python.

5.2 Datasets

The real datasets were collected during October 2013 with a
17-inch telescope, containing about 16,400 images in total.
Each observation period is about 6 hours during the night.
Table 2 shows the date, targeted satellites, the number of
collected images, and their quality labeled by the editors.
The code names of the tracked satellites can be found on
www.lyngsat.com. The captured images have a resolution
of 1676×1266 and are stored in the FITS format8.

These data are visually examined and labeled by two ed-
itors with the labeling tool9. The last two columns also list
the number of good and bad quality images, respectively.
For some sequences, there are also uncertain quality images,
which are not included in this table.

8 fits.gsfc.nasa.gov/
9 The dataset is first labeled by one editor. Then, the other editor

verifies the result and identifies the inconsistent ones. Finally, the in-
consistent ones are reviewed by both editors and assigned tothe agreed
category.



10 Keke Chen et al.

Date Targeted Satellites # images good bad
10/1 AMC18, AMC15 1010 978 32
10/7 DTV8, SES1 1355 1346 9
10/8 DTV4S, SES1, DTV9S 788 763 25
10/9 AMC18, AMC15 1401 1318 83
10/10 DTV12, DTV10 1111 963 147
10/11 DTV4S, DTV9S 1257 1206 40
10/13 DTV8, SES1 989 862 99
10/14 DTV10, DTV12, SW1 816 598 169
10/16 DTV8, SES1 1214 1143 57
10/17 DTV4S, DTV9S 1434 1130 202
10/18 DTV12, DTV10 141 52 72
10/19 DTV8, SES1 1072 1044 16
10/20 SES1, DTV9S, DTV4S 1242 991 220
10/24 DTV12, DTV10 495 470 17
10/25 AMC18, AMC15 1091 916 149
10/27 DTV12, DTV10 603 261 267
10/28 DTV12, DTV10 383 287 62

Table 2 Dataset Description

5.3 Results

Online Object Feature Extraction. We have done experi-
ments on the datasets in 10 batches of 1000 images to find
the average and standard deviation of time costs for the sim-
plified thresholding method. We compared the results with
the default Otsu algorithm for thresholding [10] and observed
that the Otsu algorithm generates too many noisy objects
and thus much slower than our algorithm. Overall, for 1000
image batches, our method take12 seconds, while the de-
fault Otsu takes290 seconds. The high cost is due to the
noisy results from thresholding and noise removal steps, which
result in the high cost of pixel clustering.

We also compute the cost distribution of the three key
steps in object extraction: thresholding, noise removal, and
pixel clustering. Figure 9 shows the the average costs of
the steps for different thresholds. Again, the numbers are
based on 10 batches of 1000 images. With the initial non-
optimized implementation, this algorithm can already achieve
a speed about 80 frames per second for high resolution im-
ages.

Figure 9 also shows that higher cutoff rates for thresh-
olding do not change the cost of the first two steps much,
but can significantly reduce that of the last step: pixel clus-
tering. It is easy to understand that higher cutoff rates result
in less pixels for clustering and thus lower the cost of clus-
tering. However, overaggressive cutoff (e.g., 98%) may also
affect the quality of extracted objects and thus the perfor-
mance of later tasks. Figure 10 shows that the 98% cutoff
rate will downgrade the quality of the image cleaning task.
Thus, the later tasks will be based on the features extracted
with the 95% cutoff rate.

Figure 11 shows the comparison of the two types of
objects, “dots” and “streaks”, in images of different qual-
ity (categorized as “good” and “bad”). It appears the bad-
quality images contains significantly less “dot” objects; while
the “streaks” are about the same. Furthermore, it also shows
that the average number of extracted objects per image is
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Fig. 9 The average costs of the key steps in online object extraction,
based on 10 1000-image batches.
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all/good/bad images, respectively. Cutoff is 95%.

also quite small, which help reduces the costs of the sub-
sequent tasks: key-object identification and anomaly detec-
tion.

Image Cleaning.Based on the detected objects and the
histogram information, we generate a feature vector for de-
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termining the quality of each image. Table 1 gives the ex-
tracted features for image cleaning. The intensity (or gray
level) at different positions of the histogram shows the over-
all brightness and object brightness of the image, respec-
tively.

We then create a balanced training dataset by using all
the “bad” examples, plus randomly sampled the same num-
ber of “good” examples. Adaboost classifier in the Python
Sklearn package is used to learn the classification model
with five-fold cross validation. Table 3 lists the results of
the five folds. Both precision and recall are higher than 0.9
or around 0.9, which indicates high model quality and the
designed features are very effective in modeling.

fold prediction precision recall
1 good 0.933131 0.913690

bad 0.913947 0.933333
2 good 0.903323 0.952229

bad 0.955090 0.908832
3 good 0.931548 0.907246

bad 0.902736 0.928125
4 good 0.895210 0.897898

bad 0.897281 0.894578
5 good 0.917404 0.928358

bad 0.919003 0.902141
avg. good 0.92±0.01 0.92± 0.02

bad 0.92± 0.02 0.91± 0.02

Table 3 Result of five-fold cross validation in image quality classifi-
cation.

By using the utility in the Python sklearn package, we
can also obtain the importance of the top-10 features, which
is given in Table 4. They match our intuition on judging the
quality of space-object images.

rank feature ID feature Name importance
1. feature 10 maximum intensity of dots 0.167867
2. feature 2 intensity at 90% of histogram 0.093028
3. feature 1 intensity at 50% of histogram 0.091448
4. feature 9 average intensity of dots 0.091435
5. feature 7 maximum size of dots 0.063282
6. feature 6 average size of dots 0.061405
7. feature 11 minimum intensity of dots 0.061277
8. feature 4 number of dots 0.057875
9. feature 13 maximum size of streaks 0.046410
10. feature 3 total number of objects 0.042003

Table 4 Feature importance computed by sklearn.

Key-Object Identification. We apply the parameter prob-
ing algorithm for key-object identification to all the sam-
ple image sequences. The first 150 images of the testing se-
quences are used for setting up the parameters and identify-
ing key objects. The cluster-diameter is set to40 pixels, and
the number of continuous sliding windows is set to 50. The
window sizes are probed in the range [20, 100] - thus 150
frames are sufficient for this setting. By searching the pa-
rameter space using the method described in Section 4.2, we
find the best parameter settings. We have manually verified

The correspondingly identified key objects. Table 5 presents
the parameter settings for different sequences.

sequences window size max. missing rate
10/01 68 0.22
10/07 90 0.01
10/08 26 0.04
10/09 45 0.08
10/10 50 0.02
10/11 28 0.04
10/13 70 0.09
10/14 100 0.11
10/16 40 0.08
10/17 100 0.01
10/18 52 0.38
10/19 100 0.19
10/20 58 0.14
10/24 62 0.02
10/25 66 0.55
10/27 90 0.30
10/28 100 0.13

Table 5 Adaptive parameter settings for finding the key objects.

Indexing and Query Processing.The query processing
algorithm depends on the geometry-based indexing. It ana-
lyzes the query sequence first to extract the geometry of the
key objects and then searches the index to find the answers.
We use the key objects detected by the last experiment to
build the geometry-based image-sequence index. To test the
query performance, we randomly sample the whole set of
image sequences to generate the query sequences, each of
which consists of 100 sequential images. The same key-
object identification algorithm is applied to detect the key
objects in the query, and then their geometry is used to query
the sequence index. We repeat the experiment for five times
- each time, we generate 50 random queries and compute the
query accuracy. Recall that the similarity between the query
and a sequence in the database is defined as the Euclidean
distance between their feature vectors. We can rank the re-
lated sequences by their similarity to the query sequence.
Finally, the top 2 query results are used in the evaluation.

We list the experimental result in Table 6. Since the query
sequence has a limited length, it is possible that the key
object cannot be reliably identified. Specifically, if no key
object or only one key object is identified in the query se-
quence, the query cannot be processed due to the incomplete
geometry information. Table 6 lists the percentage of such
cases in the first two columns “0-obj” and “1-obj” queries.

The top-k accuracy is defined as follows: if the desired
result appears in the top-k results, we consider the query
processing is successful; the number of successful queries
divided by the total number of queries is the top-k accu-
racy. Apparently, the top-2 results will have equal or higher
accuracy than top-1 results. Note that the top-1 and top-2
accuracies are computed by excluding the 0-obj and 1-obj
queries that cannot be processed. The overall accuracy of
top-2 results is 0.92, which is considered highly acceptable
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by domain experts. Further studies will be needed to reduce
the number of 0-obj and 1-obj queries, and improve the top-
k accuracy.

test 0-obj queries 1-obj queries top-1 accuracy top-2 accuracy
1 3 2 84% 96%
2 1 5 77% 93%
3 1 7 81% 90%
4 2 6 79% 88%
5 1 4 82% 91%

avg. 1.6±0.8 4.8± 1.7 81%±3% 92%±3%

Table 6 Testing results for image-sequence query processing. 5 test
batches are used. Each batch has 50 randomly selected query sequences
from the repository, each of which consists of 100 sequentially cap-
tured images.

6 Conclusion

Space surveillance with ground-based telescopes is an eco-
nomical option complementary to other space monitoring
techniques. Due to its low cost, many ground stations can
be possibly deployed around the world to automatically and
continuously produce space object images with little or with-
out human intervention. The challenging problem is to pro-
cess and utilize these image streams effectively. The pro-
posed SPIN framework aims to develop effective and effi-
cient methods to address several important problems: (1) au-
tomatically cleaning image streams generated by the ground-
based telescopes, (2) monitoring the known space objects
and detecting anomalies such as disappeared key objects and
emerging new objects, and (3) querying existing image se-
quence databases with sample image sequences.

The proposed algorithms have been evaluated with a large
collection of space-object images that was collected during
one month, containing about 16,400 images in total. The
experimental evaluation has several results. (1) The image
quality classification algorithm can achieve higher than 90%
in both precision and recall. (2) We can accurately identify
all the key objects in the testing sequences with adaptive
parameter settings. (3) The geometry-based image-sequence
indexing and query processing algorithm can give above 90%
accuracy on top-2 results. These results show that the devel-
oped SPIN framework has achieved the design goals satis-
factorily.

In the ongoing work, we will further improve the effi-
ciency and accuracy of the core components. More datasets
will be collected from multiple sites around the world. We
will also develop methods to build up the correlations among
the image sequences of the same object observed from mul-
tiple sites.
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