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Abstract With the increasing number of objects in Earth or- 1 Introduction

bits, space situational awareness (SSA) becomes critical t

space safety. As an economical option, ground-based telgvith the increasing number of satellites, space crafts, and
scopes can be deployed around the world and continuousBebris around the earth, space situational awareness (SSA)
provide imaginary information of space objects. Howeverpecomes critical to national security and space safety. Ac-
they also raise unique challenges regarding big, noisy, angbrding to the recent data from CelesTrak (celestrak.com),
streaming data processing. In this paper, we present té¢ SPihere are over 13,000 satellites in orbit, and over 20,500
system to address these challenges. The core algorithms pigtellites have decayed since 1957. The near-earth orbits a
cess image sequences generated by ground-based telescapgse crowded than people can imagine (Figure 1). Among
and conduct: (1) image quality classification for data cleanthe satellites in orbit, there are just under 3,500 sagsllit
ing, (2) stream-based key-object identification and angmalthat are functioning in their correct orbit, compared torea
detection, and (3) efficient query processing on large imageo,000 that are classed as debris but have not yet decayed.
sequence repositories. Our goal is to design or adopt alg@with the increasing number of debris, the chance of cotiisio
rithms that handle the domain-specific image streams mogicreases, too. In 2009, the defunct Russian communication
efficiently and effectively. We use a 17-inch telescope fe co satellite crashed into an operational Iridium spaceccadt;

lect a large real dataset for evaluating the core algorithm%ﬂng a new debris cloud comprising about 700 objécts

which covers more than ten satellites in one month and CONFhere is an urgent need to monitor space objects to predict
tains about 16,400 images. The experimental results showhd avoid collisions.

that the developed algorithms are fast enough for stream-
based real-time processing and also yield high-quality re-
sults for all the primary tasks.
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The recent advances in remote sensing and optical de- ing missing monitored objects or emerging new objects
vices make it possible to collect large amounts of space data around the monitored ones.
using multiple methods. In this paper, we consider those
datq stream§ ger'1erated by ground-based telescopes (GBTVSQIop the SPIN (SPace Image cleaning, moNitoring, and
Equipped with high-resolution cameras, they generate im- . . .
age streams, which can be processed for monitoring spas uerying) system. This system will try to answer the follow-
' ing key questions. (1) How to identify bad images automat-

objects in earth orbits. Compared to other more expenswféq“y? (2) How to process a stream of images, identify the

instruments such as §pa_ce-based teIeS(_:opes and radass, ery objects, and detect possible anomalies? And (3) how to
are cheaper to obtain, install, and mainfaifihey can be . . i :
edquery the large space image repository to find relevant im-

installed in multiple locations around the world an . .
stalled ultipie focafions arou d the Wo d and us ages? Our goal is to develop or adopt the nedfstientalgo-
to observe the same space object from different locations . .
. ) . . .fithms that can giveaccurateresults for these major tasks.
continuously and simultaneously. It is then possible te uti

o . . he focus is not to invent new primary image processin
lize images of the same space object taken from dlfferen-{ . ! P y Image processing
. . . : - algorithms, but to find the best integration of the existing
times, or at the same time from different locations, to gai . :

echniques to answer the key questions well.

more reliable information to improve the quality of space A unique feature of the SPIN system is that both real-

situational awareness. Such a multi-source data fusion can L . ;
. ) . ime monitoring and offline analytics are based on sequen-

be achieved economically with the deployment of Iow—cost,[. . L .
ially captured images sequences, not on individual images

GBT stations. However, there are several challenges to the redundant information in a sequence of images can be

qddressed S0 thqt qn automatic economical GBT-based SOIéjf'fectively used to simplify the algorithm design. We will
tion become realistic.

Chall S . data f d-based tel extract raw image and object features from each image as
alenges.opace image data irom ground-based teley, o ¢ possible. However, they do not provide accurate as-
scopes have several unique features, which raise sevelal Cr%ertions; until they are linked to the image sequences. The

lenges in effectively utilizing them. image repository is organized by image sequences and in-
— Noisy DataBecause of the changing meteorological corfi€x€d by features extracted from the sequences, rather than
ditions, the long distance to the target objects, and equigfo™m individual images. Correspondingly, query procegsin
ment setup, the quality of images from ground-based® also sequence-based: both the query aljd the result are im-
telescopes can vary from time to time. As a result, not alR9€ Seéquences. In stream-based monitoring, the key objects
the raw images contain useful information, which need &€ identified and anomalies are detected from sequences

to be sorted and cleaned before entering meaningful prdl-€- sliding windows in the image stream). _
cessing. By carefully studying the characteristics of space object

_ Large Data.A GBT can generate enormous amounts ofmages, we design (or adopt) a set of simple image process-
image data. A common image in FITS format ing techniques that give fast processing speed and guaran-

(fits.gsfc.nasa.gov) captured by a 17-inch telescope hé@? accurate' regults. Specifically, our approach has devera
1.4 Megabytes(MB), which is generated at a rate of on&iNique contributions.

image every few seconds continuously for a period, e.9.,— We design a simple method for rapidly extracting (pos-
8 hours at night, easily producing gigabytes of data. The  sjbly noisy) objects from individual images. The high
number of space objects of interest can be hundreds to accuracy of key object detection and noise reduction is
thousands, and thus the aggregated historical data will  effectively achieved by processing the recurring objects
lead to a large image repository. Furthermore, whenmul- i sequential images.

tiple image sources from different GBT stations are inte- — \We develop an effective online image-quality classifier
grated, the data will be even larger. Analytical querieson  for space images, based on a few basic image features
such a huge image repository should be efficiently and (e g., histogram features) and object features of an indi-
accurately processed. vidual image.

— Streaming Data.In addition to offline analyses of large _ The geometry of multiple key objects is utilized in in-
image datasets, online monitoring of SpeCiﬁC ObjECtS is dexing and query procegsing, which leads to h|gh Speed
also important to detect anomalies and generate reaction and high accuracy query processing.
plans promptly. Thus, images have to be produced at a_ Wwe have conducted extensive experiments with a large
relatively high rate, e.g., a few images per minute, to  real dataset (about 16,400 images covering more than
create an “image stream”. This stream is processed and ten satellites) collected by ourselves. The results show
mined in real time to detect possible anomalies, includ-  that we have satisfactorily achieved our design goals.

Scope of Researchlo address these challenges, we de-

2 A high-end GBT costs about only about $50K (check Ve describe more details of the SPIN approach in the
planewave.com). following sections. Section 3 gives the system framework
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and the roles of the core algorithms. Section 4 describes tHaock features [15] and scale-invariant features [8]. How-
core algorithms for this framework. Section 5 presents exever, our focus is not to develop more advanced general ob-
perimental results to show the efficiency and accuracy of thgect detection or feature extraction techniques, but to find

algorithms. Section 2 includes some related work. the simplest (thus fastest) method that takes advantage of
the characteristics of space surveillance images and works
nicely.

2 Related Work Content-based image retrieval is a challenging problem.

It is closely related to visual recognition [11] - a classica

Several types of instruments can be used to observe spaggblem in computer vision. A promising way is to clas-
objects. Among them, space-based telescopes can genergif§ an image into multiple categories [3], where the deep
the highest quality images without atmospheric turbulenceearning techniques can be effectively applied [16]. Jing e
which is critical for observing deep space objects. The Hubg|. [7] show that the link structure on the web can also be
ble space telescope has been the most successful projectigipful in identifying the topics of an online image. These
the history of astronomy. However, this type of resource isechniques typically require a large labeled training seta
very scarce, often dedicated to scientific studies. It iy verand intensive computing resources, making it expensive to
expensive to deploy, operate, and maintain space-based teljevelop and apply models. The general problem of content-
scopes for space situational awareness. based image retrieval is difficult because the content can be

The ground-based techniques include telescopes and ragyhing in the world. However, space images have very re-
Ground-based telescopes are more economical and alsg higtticted types of content, making it possible to use much
available in the market. However, they may generate lowegimpler yet still highly effective retrieval techniquesn&e
quality images due to atmospheric turbulence, can only b e can accurately identify the key objects inimage sequence
used in good weather conditions [1] for monitoring medium-with our proposed techniques, we can use the geometric in-
orbit or geostationary satellites. Another well-knowngnd-  formation of the objects for query processing.
based instrument is Synthetic Aperture Radar (SAR) [4],
which is also more expensive than ground-based telescopes.
Comparedto a commodity 17-inch telescope such as CB,KJJ
which often costs less than $50,000, an SAR costs millions.

SARs have their unique advantages - they can detect Obje% fully utilize the images generated by ground-based tele-

as small as t.e.n s of centimeters a”d.‘i“e not subjegt o atmgéopes for the SSA purpose, we have several goals for this
spheric conditions. Thus, they are critical to monitoriog- system. (1) Build up a repository of space object images

orbi;gatellites. Note Lhat thel imige strze;m tsez&n?queeldev where the images should be of good quality and the primary
opedn our approach can aiso be used for IMages. objects are well identified. (2) Be able to monitor specific

Spage S|tuat|of1r;al awa}lrleness Sftemlj have wo tyl_aris gﬁace objects to find possible anomalies such as the missing
monitoring sensofs surveillance and tracking sensors. etargets or emerging new objects around the targets. And (3)

§urvelllaqce| sclanslc()_r sefes abyast arbea of t::e sky at OT? timedf,ery the image repository with a captured image sequence
is not actively looking for objects, but rather passivelyiwa e 4~ S O

ing for objects to pass over. In contrast, tracking senssus u The system is intended to collect, monitor and query

ally have a very small field of view. It is particularly useful e . :
. o . _specific space objects, whose trajectory models are already
when the orbit of an object is already known, and the objec . . .
nown. The trajectory model of a space object precisely de-

need§ to be precisely tracked. Our system is designed f%rnes the location of the object at any time. It thus makes
tracking sensors.

Obiect detection in i h hieved . .f.possible for ground-based telescopes to automatically and

i Jeclt Ze(.: |ort1h|n |matgdes gs T:C ieve mlan%/hS'g/ml'E:ontinuously track the target object. The ultimate goal is
cant resufts during tn€ past decade. -or example, the vio o0 develop a maintenance-free, remotely controllablessyst
Jones method [15] can quickly detect human faces in a

image at a rate of 15 frames per second for small ima ef'gr ground-based telescope stations.
9 P 9 Figure 2 shows the workflow and the major components

(384x288). The recent advances in deep learning have be?nnthes stem. Specifically. multiple around-based telpsso
applied to object detection [13], resulting in detectors fo Y -op Y, pleg P

. ) . . are set up in different locations to monitor specific objects
multiple types of objects. Due to the rich content of images, . . .
. T ; tvith known trajectory models. The captured images are com-
image feature extraction is often discussed under a certain

o Ing in streams, cleaned and processed at computationad node
application [14]. However, there are also some general fe g P P

. o "84 check whether the observed situations are normal or ab-
tures widely used by many applications such as the pixel- o .

normal. Selected good-quality images may enter the image
3 http://planewave.com/products-page/telescopes/ repository for future analysis, where more advanced featur

4 http://goo.gl/oNIRjS might be extracted and analytic algorithms be applied. This

System Framework
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Fig. 2 SPIN System Framework

image repository might be queried with image sequences tivaction, but we need it to include all key objects as possibl
find the most relevant sequences in the database. (i.e., very high recall).
We identify several core algorithms that enable this sys-
tem framework. (1) Efficient online feature extraction algo
rithms that can extract low-cost features for quickly and ac

curately conducting automated tasks such as image quality ) Targeted objects
determination and key-object identification. (2) A sequenc Other objects are dots
based key object identification algorithm for reliably extt- are streaks

ing key objects from the noisy objects in a series of se;
quentially captured images. (3) Algorithms for finding ob-
ject geometric patterns for indexing and querying image se
quences. These core algorithms are mapped to the key co
ponents of the framework. Note that there are unique prok
lems on correlating images from multiple locations, which,
however, is not covered by our current work. In the follow-
ing, we will discuss the core algorithms in detail.

4 Core Algorithms

In this section, we describe the design of three key algo
rithms: object-based online feature extraction, streased
key object identification, and geometry-based indexing an
query processing.

Noisy dots Background noise

4.1 Object-Based Online Feature Exiraction Fig. 3 A sample image captured by a ground-based telescope about

) . . satellites. The three dots are the targeted satellitestandtteaks are
The first key operation of the framework is to extract fea-other objects passing the scene.

tures from images, which will be used in the subsequent

tasks. There are two special requirements. (1) The feature

extraction process needs to be efficient enough for online

processing of image streams, such as image quality classi- Images from ground-based telescopes have several im-
fication and anomaly detection. (2) It should capture all thgportant characteristics that distinguish their procasfiom

major objects so that the features can be re-used by subsesrmal ones. First, objects on space images are presented as
quent tasks. The algorithm may generate noisy object exdots and streaks, as shown in Figure 3. No special shape in-
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formation available except for size and intenitgecond,
these images are often noisy with varying quality such as
low intensity, low contrast, and out-of-focus. As the tele-
scope is set to track the targets synchronously, the key ob§
jects are captured as dots in images. Sometimes they migtg 10
be too low intense to be visually detected - however, can b&;

108

still detected via algorithms. Streaks are objects witfedif £ 10*

ent speeds moving through the scene, which may includ@o: ]

unexpected objects. B 108

These unique features demand special processing algoji

rithms. Our strategy is to first identify the pixels with rela 2 102

tively high intense, and then use a cost-effective clusteri

algorithm to identify the primary objects (i.e., the dotglan 10t H ﬂ D D
1&0 260 ‘

streaks). Experiments show that this design works satisfac ‘

50 100 250

torily for the major tasks: image quality classification and
key object identifications with image sequence. The statis-
tics of the basic object features, together with the histogr Fig. 4 The histogram of a sample image captured by a ground-based
information, are used directly to identify good images ia th telescope.

image classification and cleaning task. The basic objeet fea

tures fed to the sequence-based analysis to identify the ke 0 . . . S
objects among the noisily identified objects accurately. txat 90% works just fine. Note this procedure is highly ef-

In the following, we describe the design of the algo-ﬁ(i:)l(;n;' with time complexitO(n), linear to the number of
rithm. The basic idea is to use the simplest techniques 8 n .
achieve the most effective results. Noise RemovalThe result of fast thresholding may leave
small noises in the binary image, which can be further re-

Histogram-based methods are the most popular for converf20ved by the classical method - the combinatioemision

ing the grayscale images into binary images ready for effidnddilution[12], with a cost ofO(n). We found this

cient object extraction. The solutions for general cases ha  Pixel Grouping. The remaining white pixels are grouped
been studied intensively [5]. However, the unique featofes by a simple eight-neighbor approach. Specifically, if a bixe
space image may allow us to develop a specialized and moi® one of the eight neighbors of another pixel, we consider
efficient customized algorithm, which works best for thethese two pixels are connected, which forms connected pixel
streaming case. We consider a simplified histogram basegfaphs. A bread-first search is applied to such graphs to
thresholding algorithm. The well-known histogram baseddentify the connected components, which only céts:),
algorithm is the Otsu algorithm [10], which checks eachwherem is the number of white pixelsn is usually very
gray level (e.g., 0 to 255) to find one that optimally sep-small (e.g.,< 100) after the threshold and noise removal
arates the foreground and background pixels. However, Bteps.

can be unnecessarily expensive for our application as we can Clustering of Pixel Groups. The pixel groups formed
quickly narrow down the target gray level for space imagesin the last step are further checked by the distances between
One intuition is that the light portion in a space image is of-the groups. A simple agglomerative clustering method is
ten tiny, compared to the dark area. The histogram of pixelapplied. It starts with each pixel group as a cluster. The
can quickly capture this unbalanced distribution. As Fégur distance is defined as the minimum distance between the
4 shows, most pixels have a grayscale (intensity) around 6@ounding boxes of the pixel groups. In each step, if a pair
only a very small portion of pixels have high intensity. In of clusters has their distance less than a threshdfiey are
practice, we find that the threshold of gray level can be set smerged. Let the number of pixel groupsherhe complex-
that the left side of histogram contains very high perceatagity of this step is abou®(p? log p). Sincep is often small
(e.g., about 90%) of all pixels and the right side representge.g., typically less than ten), the actual cost of this step
the pixels of interest. It is possible to fine tune this peteen Jow. According to the shape and size of the cluster, we label
age to minimize the inclusion of background noise. How-them with “dot”, “streak”, or “invalid”. Invalid objects &
ever, it is not necessary since the late “noise removal” prothose with very large size likely caused by hardware prob-
cess will effectively remove them. In experiments, we foundems such as an ill-tuned camera.

Grayscale

Customized Histogram Based Thresholding.

5 The shape information may be available for low-orbit olgesztp- Algorithm 1 gives the details Of_these steps. In experi-
tured by radars [4], which, however, are not the objectsetedyby ~ Ments, we show that this approach is much faster than other

ground-based telescopes, due to the objects’ high orlstatity. candidate methods.



Keke Chen et al.

Algorithm 1 Fast Online Object Extraction

Input: imagel, histogram-threshold, cluster-threshold;

h < get the histogram aof;

b « find the grayscale that cuts the left of the histograno have
~ 7 percent of the total pixels;

B « convert the imagé to binary with the thresholé,

erode(B) and then dilute(B);

apply Breadth-First-Search to find the connected whitelpjxenich
formsp pixel groups;

apply hierarchical clustering gmpixel groups to find the final clus-

ters and label them according to their shapes;
return bounding boxes of the labeled objects;

4.2 Key Object Identification and Anomaly Detection in
Image Streams

A single image may contain objects other than the target
ones, such as passing satellites, meteors, and background
stars, which are difficult to distinguish by processing only
one image. However, the key objects (identified as small
square-shaped boxes in the images) should continuously ap-
pear in a series of sequentially captured images, while oth-
ers may not. Also, as the telescope is precisely tracking the

objects according to their trajectory model, the key olgject

must show up in each image around the same position. In
contrast, the moving objects such as passing satellites and
meteors may only appear in a few images or form streaks,

The identified objects can effectively support other task@nd the background stars that have much lower intensity
such as image quality classification and key object trackingshould have been eliminated from the images after the pre-
In image quality classification, features are extractedhfro processing steps.
the captured objects together, and the basic histogram info Key-Object Identification with an Image Sequence.
mation, and then a classifier is trained to separate the baghg key-object identification algorithm extracts the key ob
quality images from good ones. We will describe the detailgects from a sequence of images. It is used in the setup stage
In experiments. of stream monitoring (i.e., in the first 10 minutes of obser-
vation), and the image query processing algorithm that will
be discussed later.

The algorithm needs to handle some special situations
observed from real datasets. With an appropriate setup, the
key objects should appear around the same position in the
sequentially captured images. However, in practice, we of-
ten observed small levels of deviation from sequences to se-
quences, which should be tolerated by the algorithm. Devi-
ations may be caused by some system errors, e.g., the me-
chanic and optical systems. Figure 5 and 6 show different
levels of deviations observed in real image streams.

Considering such normal small deviations, we design
the key-object detection algorithm as follows. First, we-pr

OO N[O WO

feature description
intensity at 50% of histograny
intensity at 90% of histograny
total number of objects
number of dots
number of streaks
average size of dots
maximum size of dots
minimum size of dots
average intensity of dots
10 maximum intensity of dots
11 minimum intensity of dots

12 average size of streaks cess images by a sliding window, which is a typical method
131 maximum size of streaks for streaming data processing [2]. Each image is called a
14 minimum size of streaks

“frame”. The window size is denoted asframes. Objects

may only be detected in a few of theframes in a win-

dow, which leads to thtame missing ratg.e., the number

of missed frames divided by We set the maximum frame

missing rate as. Second, we collect all objects detected

from the s frames in one dataset for clustering. It aims to

find the object clusters that satisfy the following condigo

(1) the cluster contains more théh— r)s objects, and (2)
Note that the objects identified by this algorithm are quitéhe diameter of cluster [6] is smaller thanintuitively, it is

noisy, which is a trade-off we make for fast online processlike to stack all frames together in one frame and find the

ing. Figure 3 shows an example, where the identified objectepetitively appearing objects around certain locatidie

are boxed. However, this information together with the basi diametern defines the allowed deviation range aid- r)s

image statistics is sufficient for image quality classifimat ~ means the object appears at leastlin- r)s frames in the

Table 1 shows the features used by the quality classificatiomvindow.

The noisy objects can also be effectively eliminated with a  The key reference objects and the reliable parameter set-

stack of sequentially captured images as shown in the nexings ofs andr are established in the first few (e.g., 100-200)

section. frames of the observation period, to adapt to different obse

15 average intensity of streaks|
16 | maximum intensity of streaks
17 | minimum intensity of streaks

Table 1 Feature design for image cleaning.
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Fig. 5 Typical image sequences, where the key objects appear in
almost every frame and they stack in the small areas. Yeltowed Fig. 6 In some sequences, the key objects may drift about in some
represent the identified dot objects in the first stage peicgs irregular tracks.

blue boxes are the streak objects.

vational conditions. The details of the algorithm are giwen Algorithm 3 Find the maximum missing rate over sliding
Algorithm 2. Specifically, we observed that the cluster dewindows

viation diameters can be fixed (e.g4 = 40) based on a Input: image{/;,i = 1_..n}, window sizes, cluster-threshold, and
large set of normal sequences. However, the settingisf g‘f_”‘;?‘ber;’f}'fey objects,

complicatedly related to the noisiness of the sequences (i. clusterir11’g. .t’hes “dot” objects in the sequenggAlgorithm 4);

the missing rate). To adaptively find the stable settings, we  find the maximum missing rate of the top k clusters,

consider the following approach to handle this uncertainty for i from 2 to n-sdo

First, the analyst gives the bounds of candidate window size ~ €MoVeli-1 from 5'and append ;.1 10 5;
remove the objects df,_; from the clusters;

S: Smin @Ndspqe. The aim is to find the appropriate win- assign the objects df ,_; to the clusters (Algorithm 4);
dow size that gives low missing ras¢éablyover the sliding find the maximum missing rate of the top k clusters

windows in the firstn frames. Then, a probing process is end for

. . . . returnmax{ri,..,7n—s}:
applied for each setting of window sizg, to compute the
maximunmissing ratey; of the top-k clusters sliding over
then sequential images. The clusters are ranked by the num-
ber of frames that the contained “dot” objects in the cluster References and Anomaly Detectionln processing an
are from. Finally, among all pairs;, r;), we find the pair image stream, we first establish the reference sequendes tha
that gives the lowest maximum missing ratg;, . represent the normal situations. The first few windows in the
whole observation period (e.g., one night of observations)
are used to find the best parameter settings and the stable key
Algorithm 2 Probing the best setting of window size and objects (Algorithm 2). It establishes the “normal cases” fo

missing rate anomaly detection, which can also be cross-validated with
Input: image{l;,i = 1..n}, window size rang€smin,smaz],  the historical information in the image repositories (orive
cluster-threshold, and the number of key objects fied by the analyst for objects tracked at the first time). Each
for s ffom spmin 10 smaz do o stable key object is represented as a cluster of key objects i
find the maximum missing rate over sliding windows (Algo- . . :
rithm 3); the stacked images. Once the key objects are establisieed, th
end for objects in the late windows are compared to the key objects
return (sopt, ropt), Where to detect anomalies.

Sopt = ATGMINse (s, i smax] 173l (85, 7i) 1 . . ) .
*Clomin smar VI7H T We define “anomaly cases” with two categoritre dis-

appearance of the target objecendthe emergence of new
objects Both can be captured with the identified object clus-
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Algorithm 4 Clustering “dot” objects in one image to pre- detected in the feature extraction stage, which is typicall

vious clusters small with our highly effective object extraction algorith
Input: imagel, cluster-threshold, a set of existing clusters; in the early stage.
for each “dot” objecb; in I do
for each clustet; in C do
if distance ¢;, ¢;) i then
addo; to ¢; and break;
end if
end for
if o; does not belong to any clusterdhthen High-quality image sequences are sampled, processed, and

create a new cluster that contains onlyand add the cluster saved to the image repository for future analysis. Support-

4.3 Geometry-Based Indexing and Query Processing

en(tjoifc; ing image queries is one of the major functions for the im-
end for age repository. In the following, we focus on processing the
return the updated; similarity query, i.e., finding the historical images seqces

that are similar to a given sequence of image.

In the preliminary study, we have observed that typically
more than one geostationary satelfitean be captured in
the same frame for each observation period, which provides
important geometry information for accurately indexinglan
querying sequences. Specifically, the distances between th
key objects can be used to create a pattern of object distribu
tion, which are then used for indexing and query processing.
This method is very reliable for geostationary objects. Non
geostationary objects can also be possibly described with
multiple patterns, combined with their trajectory modeld a
observation times.

Geometry-based indexing is necessary for fast query pro-
cessing. Specifically, we define the problem as follows. We
assume somaistorical sequences of imagase stored in
the image repository for query and analysis. These seqaence
are of good quality, well cleaned, and explicitly labeled by
the detected target objectsgieryconsists of a sequence of
sequentially captured images (in typical cases) or ondesing
image (in unusual cases). We want to find the most relevant

- ' sequences of images in the image repository. It will be an
Fig. 7 Significantly shifting key objects. important tool for many analytical tasks.

The key problem is to define the features for indexing
s Spoctcaly for n st categry,we g al ames 53 PSSO, S onecer o e 2 Home
that miss any of the identified key obJec'ts. Once a Sequenceetry information of the key objects. The index is a hierar-
of gontmgogslyflaggecj fra".‘ea frames)is .detected, akey- chical tree-like structure, designed as follows. The fagéel
object-missing alarm is raised. Meanwhile, we also kee

detecti ina k biecis vina the k biect Rs the geo-location of a station. For the query images not
detectingemerging key objeciBy applying the ) €y-0 Jec taken by the stations in the repository, it is best to seasch f
identification algorithm to the sliding window |- s, 1],

herei is the index of th of o the images related to the closest station. More sophisticat
where: 1S the Index ot the current frame. UNCe a NeW EMEIG, o, 45 can be used to transform the object geometry be-
ing key-object cluster is detected, we also raise the alarm.

tween stations for the same target object. However, they are

We have observed in real datasets that, in very rare Casg$y; of the scope of our current study. The second level is
the deviation is so Iarge. (e.g. Figure 7) that causes bo{h. di$he number of key objects in the image sequences. Finally,
appearance and emerging alarms. Thus, once a frame is desch node in the third level represents an image sequence
tected with both types of alarms, it is very likely that large ¢ \vas taken from the specific geo-location and has the

deviation happens, which will need to be visually verifiedspecific number of key objects, containing the geometric in-
by the analyst. After the verification, the key-objectidnt  ormation of the key objects in the image sequence. Figure
cation process needs to be restarted. 8 illustrates this indexing structure.

Note that the overall computation cost for tracking the
information is low, only related to the number of objects ¢ nhttp://solarsystem.nasa.gov/basics/bsf5-1.php
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@ 5 Experiments

As mentioned in the framework, the system has three ma-
jor tasks: (1) image cleaning, (2) anomaly detection, and (3
Station 1 sequence querying, while object detection is the key com-
ponent for all the three tasks. In the following, we will first
describe the setup for experimental evaluation and then re-
[ 2-object ] [ 3-object ] port the evaluation results for the tasks.
sequences sequences

Sighature 5.1 Implementation
indexing tree

To evaluate the components of the framework, we have built
Fig. 8 Index structure for geometry-based query processing. several auxiliary tools with C++, Java, and Python.
Image Browsing and Labeling Tool.This tool provides
a GUI for developers to efficiently browse and label the
For each sequence in the third level, we compute theample images for image cleaning. Each image is labeled
pairwise Euclidean distances between the key objects, ariy “good”, “bad”, and “uncertain”. With labels and the de-
sort them to form a distance vector for the specific imageigned features, we can learn classifiers.
sequence, denoted dsy ;, wherel represents the location Image Stacking and Visualization Tool. This tool is
id, k£ is the number of key objects, arids the sequential used to examine the extracted objects and visually evaluate
id of the image sequence in this specific category. For twehe quality of sequence-based key-object identificatiagy. F
objects in the sequence, there is only one pairwise distancare 5 and 6 are from this tool.
and thus the; , ; vector has only one element. Three objects  Image Query Processing Systenit provides a test plat-
will have three elements, andobjects will have the vector form for evaluating query performance. We build the se-
length(%). These distances are also normalized to the rangguence database with the sample sequences collected in one
[0, 1] according to the image sizeSimilarly, we also com- month. Users can submit an image sequence as a query and
pute pairwise cosine similarity values and sort them to fornyet the most related sequences in the database.
a vector, denoted as 1. ;, with the same definition df &, i. In addition to these tools, we have implemented the core
Elements of; ;. ; are in the rang@, 1]. Specifically, the Eu-  algorithms with C++ or Java to achieve better performance,

clidean distances define the relative position of the object which are used by these tools via some glue code in Python.
and the cosine similarity measures define the relative angle

between the objects. The two vectors together form the sig-
nature vectos; i ; = (di,,i, Ci,k,i) Used in similarity based ¢ 5 potasets
sequence search. A multidimensional spatial index [9] can

be built with the signature vectors for the specific branch. The real datasets were collected during October 2013 with a
Query processing is straightforward with such an index17-inch telescope, containing about 16,400 images in.total
If a query consists of a series of sequentially captured imEach observation period is about 6 hours during the night.
ages, each image in the sequence is preprocessed with theble 2 shows the date, targeted satellites, the number of
previously discussed basic object extraction algorithma, a collected images, and their quality labeled by the editors.
then the sequence-based key-object identification algorit The code names of the tracked satellites can be found on
is used to spot the key objects. Then, the signature vectgyww.lyngsat.com. The captured images have a resolution
of the query sequencey,.,,, can be computed. With the of 1676x1266 and are stored in the FITS forfhat
station location and the number of key objects, the branch These data are visually examined and labeled by two ed-
in the third level is identified. We then conduct a similarity itors with the labeling todl The last two columns also list
search between the signature vectors in the branch and ttlee number of good and bad quality images, respectively.
guery signature vector using Euclidean distance. Thektop For some sequences, there are also uncertain quality ilmages
most similar sequences are returned as a result. which are not included in this table.

8 fits.gsfc.nasa.gov/

9 The dataset is first labeled by one editor. Then, the othaoredi
" For an image of size x y, the maximum distance ig/z2 + y2. verifies the result and identifies the inconsistent onesallirthe in-
Each computed distance is divided by the maximum distangettthe  consistent ones are reviewed by both editors and assigrikd égreed

normalized value. category.
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Date Targeted Satellites #images | good | bad ‘
1071 AMC18, AMC15 1010 978 | 32 0B 90% Cutoff
1077 DTV8, SES1 1355 1346 | 9 10 0o 95% Cutoff ||
10/8 | DTV4S, SEST, DTVOS| 788 763 | 25 0098% Cutoff
1079 AMC1I8, AMC15 1401 1318 | 83 0
10/10 DTV12, DTVI0 1111 963 | 147 = 8- .
10/11 DTV4S, DTVIS 1257 1206 | 40 3
10/13 DTV8, SEST 989 862 | 99 2
10/14 | DTVI0, DTVI2, SWI 816 598 | 169 2 6| a
10/16 DTV8, SES1 1214 | 1143 | 57 ©
10/17 DTV4S, DTV9S 1434 | 1130 | 202 £
10/18 DTV12, DTVI0 141 52 72 F 4 a
10/19 DTV8, SEST 1072 1044 | 16
10/20 | SESI, DTVOS, DTV4S| 1242 991 | 220 ) f
10/24 DTV12, DTVI0 495 470 | 17
10/25 AMC18, AMC15 1091 916 | 149
10727 DTViZ, DTVI0 603 | 261 | 267 ) @ O
& S N
10/28 DTV12, DTV10 383 287 | 62 é\°\ & \6,9@
Table 2 Dataset Description N & &
<& Q\+
Fig. 9 The average costs of the key steps in online object extractio
based on 10 1000-image batches.
5.3 Results
Online Object Feature Extraction. We have done experi- 0.94| ~ i

ments on the datasets in 10 batches of 1000 images to find
the average and standard deviation of time costs for the sim-
plified thresholding method. We compared the results withg
the default Otsu algorithm for thresholding [10] and observ g M
that the Otsu algorithm generates too many noisy object§ 0.92- a
and thus much slower than our algorithm. Overall, for 10008
image batches, our method tak seconds, while the de- 0.91 [ |
fault Otsu take®290 seconds. The high cost is due to the -
noisy results from thresholding and noise removal stepgtwh
result in the high cost of pixel clustering. ) s° S s
We also compute the cost distribution of the three key ® N N
steps in object extraction: thresholding, noise removad, a F9- 10 Thresholding affects the quality of cleaning. Bad-Imageatie
. . . is important for the task.
pixel clustering. Figure 9 shows the the average costs of
the steps for different thresholds. Again, the numbers are . ‘

based on 10 batches of 1000 images. With the initial non- _ _ 01 Dots ||
optimized implementation, this algorithm can already acti Bustreaks
a speed about 80 frames per second for high resolution im2
ages.

Figure 9 also shows that higher cutoff rates for thresh-%
olding do not change the cost of the first two steps much3
but can significantly reduce that of the last step: pixelclus
tering. It is easy to understand that higher cutoff ratesltes
in less pixels for clustering and thus lower the cost of clus-
tering. However, overaggressive cutoff (e.g., 98%) mag als
affect the quality of extracted objects and thus the perfor- al go‘od bad
mance of later tasks. Figure 10 shows that the 98% cutoff Predicted Image Quality
rate will downgrade the quality of the image cleaning taske¢,, 11 The average number of “dot” and “streak’ objects in
Thus, the later tasks will be based on the features extract@u%good/bad images, respectively. Cutoff is 95%.
with the 95% cutoff rate.

Figure 11 shows the comparison of the two types of
objects, “dots” and “streaks”, in images of different qual- also quite small, which help reduces the costs of the sub-
ity (categorized as “good” and “bad”). It appears the bad-sequent tasks: key-object identification and anomaly detec
quality images contains significantly less “dot” objectjly  tion.
the “streaks” are about the same. Furthermore, it also shows Image Cleaning.Based on the detected objects and the
that the average number of extracted objects per image Hstogram information, we generate a feature vector for de-

cts

of O

Average
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termining the quality of each image. Table 1 gives the exThe correspondingly identified key objects. Table 5 present
tracted features for image cleaning. The intensity (or grayhe parameter settings for different sequences.

level) at different positions of the histogram shows therove
all brightness and object brightness of the image, respec-

. sequences| window size | max. missing rate
tively. 10/01 58 0.22
We then create a balanced training dataset by using all 1858; gg 8-8}1
the “bad” examples, plus randomly sampled the same num- 10/09 75 0.08
ber of “good” examples. Adaboost classifier in the Python igﬁg gg 8-8‘21
Sklearn package is used to learn the classification model 1013 ) 0.00
with five-fold cross validation. Table 3 lists the results of igﬁg 14%0 8-3;
the five folds. Both precision and recall are higher than 0.9 TOI7 100 001
or around 0.9, which indicates high model quality and the igﬁg fOZO 8-?3
designed features are very effective in modeling. 10720 =3 01a
10/24 62 0.02
1025 66 0.55
fold | prediction precision recall 10/27 90 0.30
1 good 0.933131 0.913690 10/28 100 0.13
bad 0.913947 0.933333 : : T f
> g00d 0.505553 5.052775 Table 5 Adaptive parameter settings for finding the key objects.
bad 0.955090 | 0.908832
3 good 0.931548 | 0.907246
bad 0.902736 | 0.928125
4 good 0.895210 | 0.897898 Indexing and Query ProcessingThe query processing
bad 0.897281 0.894578 . . .
5 good 0917404 | 0.928358 algorithm depends on the geometry-based indexing. It ana-
bad 0.919003 | 0.902141 lyzes the query sequence first to extract the geometry of the
avg. good 0.92+0.01 | 0.92+ 0.02 . . :
bad 0975002 T 091L0.02 key objects and then searches the index to find the answers.
Table 3 Result of five-fold cross validation in image quality cldissi We use the key objects d_eteCted by the Ia'St experiment to
cation. build the geometry-based image-sequence index. To test the

query performance, we randomly sample the whole set of
image sequences to generate the query sequences, each of
By using the utility in the Python sklearn package, wewhich consists of 100 sequential images. The same key-
can also obtain the importance of the top-10 features, whichbject identification algorithm is applied to detect the key
is given in Table 4. They match our intuition on judging the objects in the query, and then their geometry is used to query
quality of space-object images. the sequence index. We repeat the experiment for five times
- each time, we generate 50 random queries and compute the
query accuracy. Recall that the similarity between theyuer

rank | feature ID feature Name importance . . ’ .

1. | feature 10| maximum intensity of dots | 0.167867 and a sequence in the database is defined as the Euclidean

2. feature 2 | intensity at 90% of histogram| 0.093028 ; : _

3 Teature T | intensity at 50% of Pistogram{ 0091448 distance between their featyrg vgctors. We can rank the re

4. | feature 9 average intensity of dots | 0.091435 lated sequences by their similarity to the query sequence.

5. feature 7 maximum size of dots 0.063282 ; ; ;

s AVETagE 76 of GotS oo Finally, j[he top 2 qugry results arg used in the.evaluauon.

7. | feature 11| minimum intensity of dots | 0.061277 We list the experimental resultin Table 6. Since the query

8. feature 4 number of dots 0.057875 P P .

o Teature 13— Taximum size of sireaks | 0.046410 sequence has a I|m'|ted I(langth,' it is pos§|'ble thgt the key

10. | feature3 total number of objects | 0.042003 object cannot be reliably identified. Specifically, if no key
Table 4 Feature importance computed by sklearn. object or only one key object is identified in the query se-

guence, the query cannot be processed due to the incomplete
geometry information. Table 6 lists the percentage of such
Key-Object Identification. We apply the parameter prob-cases in the first two columns “0-obj” and “1-obj” queries.

ing algorithm for key-object identification to all the sam-  The top-k accuracy is defined as follows: if the desired
ple image sequences. The first 150 images of the testing seesult appears in the top-k results, we consider the query
quences are used for setting up the parameters and identifgrocessing is successful; the number of successful queries
ing key objects. The cluster-diameter is set@qixels, and divided by the total number of queries is the top-k accu-
the number of continuous sliding windows is set to 50. Thaacy. Apparently, the top-2 results will have equal or highe
window sizes are probed in the range [20, 100] - thus 15@ccuracy than top-1 results. Note that the top-1 and top-2
frames are sufficient for this setting. By searching the paaccuracies are computed by excluding the 0-obj and 1-obj
rameter space using the method described in Section 4.2, vgeieries that cannot be processed. The overall accuracy of
find the best parameter settings. We have manually verifietbp-2 results is 0.92, which is considered highly acceptabl
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by domain experts. Further studies will be needed to reducecknowledgements This project was supported by a DAGSI/AFRL

the number of 0-obj and 1-obj queries, and improve the topaward. Many thanks to the AFRL colleagues who helped set ep th
instruments and collect the images.

k accuracy.
test | 0-objqueries| 1-objqueries| top-1 accuracy| top-2 accuracy References
1 3 2 84% 96%
2 1 S 7% 93% 1. of Universities for Researches in Astronomy, A.. Space-
i ; g %Z" ggz;" based vs. ground-based telescopes with adaptive optids (ao
5 T 7 820/2 910/2 http://www.aura-astronomy.org/news/archivel/listaa 2. pdf
avg. 16508 N 819 £3% 99% £3% 2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, Jodv

Table 6 Testing results for image-sequence query processing.t5 tes
batches are used. Each batch has 50 randomly selected guasnses 3
from the repository, each of which consists of 100 sequipntiap-

tured images.

6.
6 Conclusion

7.

Space surveillance with ground-based telescopes is an eco-
nomical option complementary to other space monitoring 8.
techniques. Due to its low cost, many ground stations can
be possibly deployed around the world to automatically and®
continuously produce space object images with little ohwit g
out human intervention. The challenging problem is to pro-
cess and utilize these image streams effectively. The pro-
posed SPIN framework aims to develop effective and effidl-
cient methods to address several important problems: (1) au
tomatically cleaning image streams generated by the ground
based telescopes, (2) monitoring the known space objects
and detecting anomalies such as disappeared key objects
emerging new objects, and (3) querying existing image se-
gquence databases with sample image sequences. 13.

The proposed algorithms have been evaluated with a large
collection of space-object images that was collected durin
one month, containing about 16,400 images in total. The
experimental evaluation has several results. (1) The image
quality classification algorithm can achieve higher tha#90
in both precision and recall. (2) We can accurately identify
all the key objects in the testing sequences with adaptives.
parameter settings. (3) The geometry-based image-seguenc
indexing and query processing algorithm can give above 90%
accuracy on top-2 results. These results show that the-deveglg
oped SPIN framework has achieved the design goals satis-
factorily.

In the ongoing work, we will further improve the effi-
ciency and accuracy of the core components. More datasets
will be collected from multiple sites around the world. We
will also develop methods to build up the correlations among
the image sequences of the same object observed from mul-
tiple sites.
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