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ABSTRACT
Recent studies show that by combining network topology and
node attributes, we can better understand community structures
in complex networks. However, existing algorithms do not explore
“contextually” similar node attribute values, and therefore may miss
communities defined with abstract concepts. We propose a com-
munity detection and characterization algorithm that incorporates
the contextual information of node attributes described by multi-
ple domain-specific hierarchical concept graphs. The core problem
is to find the context that can best summarize the nodes in com-
munities, while also discovering communities aligned with the
context summarizing communities. We formulate the two inter-
twined problems, optimal community-context computation, and
community discovery, with a coordinate-ascent based algorithm
that iteratively updates the nodes’ community label assignment
with a community-context and computes the best context summa-
rizing nodes of each community. Our unique contributions include
(1) a composite metric on Informativeness and Purity criteria in
searching for the best context summarizing nodes of a community;
(2) a node similaritymeasure that incorporates the context-level sim-
ilarity on multiple node attributes; and (3) an integrated algorithm
that drives community structure discovery by appropriately weigh-
ing edges. Experimental results on public datasets show nearly 20
percent improvement on F-measure and Jaccard for discovering
underlying community structure over the current state-of-the-art
of community detection methods. Community structure charac-
terization was also accurate to find appropriate community types
for four datasets. Moreover, our algorithm yields insightful com-
munity structures that explain the contextual relationships among
communities, which helps us better understand two real-world
applications of social networks.
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1 INTRODUCTION
“Does interest in sports or music form conversational communi-
ties among participants?” Recent approaches model such prob-
lems as community detection and characterization. They report
both state-of-the-art community detection accuracy and effective
community characterization with node attributes driving commu-
nity detection[23][33]. These approaches increase edge weights
between nodes belonging to the same community if these nodes
share similar node attribute values. While such techniques detect
whether communities form around the particular sports teams or
music bands explicitly referenced, they fall short on identifying
whether communities are formed from participants’ general inter-
est in sports or music. Such problems require meaning-oriented
community characterization with an assessment of accuracy that
combines network nodes, edges, and node attributes. Instead of
relying on apparent attribute relations, i.e., exact matching for nom-
inal attributes and Euclidean distance for numeric attributes, we
seek contextual relations between attribute values. The resulting
meaningful community detection is also crucial for applications
such as network visualization [21] and online-marketing[29].

Consider the friendship network of participants shown in Figure
1 with the available node attributes expressed as the city in which
a participant lives. The existing approach to community detection
on such a network considers“Austin”, “Dallas”, and “Houston” as
different attribute values [23][33], missing the important subsuming
relationship (i.e., they are in the same state). Considering such
relationships can improve community characterization. Moreover,
detecting such relationships provides a basis for updating edge
weights.

We explore the use of domain-specific knowledge graphs to
find such contextually meaningful attribute relationships. Domain-
specific hierarchical knowledge graphs (HKGs) provide particularly
relevant real-world clustering information. The domain-specific
HKG in Figure 2 indicates that all states of United States are sub-
sumed by “States in United States”. The decomposition starting
from each concept of such an HKG provides a context. E.g., all
the concepts subsumed by “Cities in Ohio” along with “Cities in
Ohio” provides a context “Ohio”. Such knowledge graphs can be
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Figure 1: Friendship network with nodes representing user, edges
representing friendship, and node attribute as the home-city.
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Figure 2: Hierarchical knowledge graph for USA geo-location.

generated automatically with demonstrated benefit to applications
such as personalization [15]. HKGs provide complementary real-
world information regarding communities or clusters that may not
be explicit in the network but are nevertheless useful in finding
and characterizing communities. However, incorporating domain-
specific HKGs in community detection raises three key challenges.
1. There is no clear similarity measure for computing node similar-
ity using an HKG characterization. For example, at the city level,
“Austin”, “Dallas”, and “Houston” are different, while they are same
in the context of “Cities in Texas”. Additionally, we need to deter-
mine the optimal context characterizing the community structures.
E.g., in Figure 1, “Cities in Texas” characterizes Community 1(V1,
V2, and V3). 2. Context optimality reflects multiple factors. Moving
up the hierarchy towards the root, we obtain a more generalized
context subsuming more lower level attribute values. However, the
generalization disguises the differences between attribute values,
potentially losing details that distinguish node groups. 3. Optimiz-
ing context generalization should coordinate with the discovery of
the topological structure, and the topological structure discovery
should reflect computed community contexts.

We develop an algorithm which iteratively optimizes two tasks:
(i) Optimal community label assignment while keeping the com-
munity context unchanged, (ii) Optimal community context as-
signment while keeping the community labels constant. For the
first task, we propose a contextual similarity measure for defining
node pair similarities to capture community contexts. We employ a
widely used community label assignment algorithm, the Louvain
community detection algorithm [3], which finds community labels
for nodes using modularity maximization. For the second task, we
find a concept generalization scheme that balances between two
criteria: 1. Informativeness, which is essentially the specificity of a
concept in a hierarchical knowledge graph. The lower the concept
is in the hierarchy, the more specific information the generaliza-
tion preserves and 2. Purity which is the difference between the
number of nodes subsumed by a concept of a given community and
neighboring communities.

Our framework has three unique features: (i) It can accept any
predefined domain-specific hierarchies for any attributes (numeric
or nominal), together with a topological network structure (i.e.,
nodes and edges). (ii) The algorithm does not assume a priori that a
domain must correlate with the communities we want to discover.

Instead, it will quantify the relationship between a certain domain
and communities. If one exists, the algorithm will progressively
find it. (iii) It allows us to analyze competing contexts on the same
attributes. For example, the location attributes may have multiple
different context hierarchies: one based on the geographical con-
cepts, another on housing markets, and the third on household
income levels.

As the resulting algorithm can assign more appropriate edge
weights than using only attribute values, it can facilitate the discov-
ery of an accurate community structure. We evaluated community
detection accuracy on four real-world networks and five baseline
community detection algorithms. The proposed algorithm improves
community detection accuracy by nearly 20%. We also evaluated
the accuracy of community structure characterization and found
that the proposed approach was able to discover correct underlying
community “types” for all four datasets while two baseline meth-
ods [23][33] failed to characterize communities for at least two
datasets. We also demonstrate that contextual community detec-
tion and characterization effectively mediates the representation of
the original data for two practical problems: Harassment in online
social networks and diversity in crowd sampling.

We summarize the specific contributions of this paper as:
• This paper presents a possibility of complementing network
data with domain-specific knowledge graph to enhance com-
munity detection.

• A contextual similarity measure and optimal community
context computation approach to find more meaningful com-
munity descriptions and improve community detection ac-
curacy.

• Detailed evaluation demonstrating enhanced community
detection accuracy and meaningful community structure
characterization.

This paper is organized as follows. Section 2 provides a problem
formulation. Section 3 provides detail on our community detection
algorithm, Section 4 evaluates the algorithm by comparing it with
state-of-the-art community detection algorithms. Section 5 provides
two case studies and demonstrate use of the proposed approach.
Section 6 compares our work with other community detection
research. Finally Section 7 provides conclusions and future work.

2 DEFINITIONS AND NOTATIONS
Our algorithm takes a graph G = (V ,E,A) with nodes nodes(V ),
edges (E), node attributes (A), and one or more domain-specific
HKGsH = {H1, . . . ,Ht } as input. It finds community label for each
node and contexts from domain-specific HKGs summarizing each
community of nodes. In the following, we define definitions and
notations that we are going to use in the algorithm description.

Each Hi ∈ H is a set of concepts and relationships, Hi =

{c1, c2, . . . , cm }. We generated Hi from DBpedia[1] starting with
a “root node” concept and recursively extracting all the concepts
connected with “skos:broader” or “subject” relationships. One can
use a domain-graph generation tool such as [15] to generate such
a hierarchical graph. Note that each node vi ∈ V is a list of con-
cepts indicating attribute valuesvi = {c1, c2, . . . , cp } such that each
ci ∈ vi is part of at least oneHi ∈ H . As an example, nodesV 1−V 6
in Figure 1 are nodes and each vi has one attribute ci (city) that is
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Figure 3: Overview of the proposed approach. P1 computes contex-
tual similarity between nodes and edge weights, inputs an updated
graph to P2 which computes community labels (L). P3 computes
community context O and concept weight vector S .

a part of the example hierarchical knowledge graph as shown in
Figure 2. In this example, we are using only one domain-specific
HKG but multiple domain-specific HKGs can also be the inputs.

Given G and H , the algorithm finds a community label set L =
{l1, l2, . . . , lk } such that Li indicates community label for ith vertex
from a set of community labels K = {1, 2, . . . ,k}. It also computes
an optimal context representing each community i ∈ K , i.e., O =
{o1,o2, . . . ,ok }. Here, each oi ∈ O is a t dimensional vector of
concepts with each Oi j = c j s.t. c j ∈ Hj . O is initialized with “root
concept” of each Hj . Along with O , the algorithm also computes
context scores S = {s1, s2, . . . , sk } for each community indicating
appropriateness of each context in each community. Each si ∈ S is
a t dimensional vector of real numbers.

3 APPROACH
The proposed algorithm to generate community la-
bels(communities) iteratively optimizes 1) community label
assignment, keeping the community context constant and 2)
community context assignment, keeping the community labels
constant. We then recompute edge weights with the updated
community context (O). Figure 3 summarizes this approach. Next,
we describe the proposed contextual similarity measure (P1),
community-context computation (P3), and the proposed way of
integrating new node similarity values to find final community
labels L and descriptions(O).

3.1 Contextual Similarity Measure
Here, we describe the proposed similarity measure,ϕ(v1,v2,hi ,oi j ),
to compute a similarity score between nodes v1 and v2 in hj with
othi j context. Here, i is the community to which the edge v1 − v2

belongs. Similarity is computed in the jth domain-specific HKG.
Note that similarity is computed in the oi j context, i.e., a hierarchy
starting from oi j . We extend the semantic similarity measure to
compute similarity between two lists of concepts represented in a
HKG.

In such a taxonomy with a given root node, the similarity be-
tween two concepts can be computed using a semantic similarity
measure [26]. This measure finds the least common ancestor sub-
suming these concepts in the hierarchy. Similarity is the “informa-
tiveness” of that least common ancestor. More generic concepts
provide less information. For example, in Figure 1, “USA” has less
informativeness than “Ohio”. Hence, the semantic similarity be-
tween “Cincinnati” and “Columbus” subsumed by Ohio is higher
than “Columbus” and “Dallas” subsumed by USA. Informativeness,
in its simplest form, is identified as 1 − ηi

ηroot where ηi is number

of concepts subsumed by i . Sanchez et al. proposed that inner HKG
concepts should be evaluated separately from the leaves and revised
informativeness formula as follows [26],

Ic =

(
2.0 −

∑
l<c

1
Sl∑

l<root
1
Sl

)
(1)

Here, Sl refers to the number of concepts that subsumes l . The
informativeness I of a concept c is summation of the subsumers
over all leaves l such that l < s . We subtract the value from 2.0 as
we want the values in (1.0, 2.0). In figure 2, SCincinnati = 2 and
SColumbus = 2 as they are subsumed by two concepts, “Cities in

Ohio” and “Cities in USA”. Hence, ICitiesinOhio = 2 −
1
2+

1
2

1
2+

1
2+

1
2+

1
2
.

The denominator has four terms corresponding to each one of the
four leaves subsumed by “Cities in USA”(root).

As we have the nodes represented as a list of concepts, the exist-
ing similarity measure must find the least common ancestor of each
pair of concepts from v1 and v2 and consider their informativeness
score to compute semantic similarity. Instead, we compute the sim-
ilarity between two lists. We extend each vertex list, v1 and v2, by
recursively computing the subsuming “parents” of each concept
c ∈ vi until oi j . Along with each concept, we also compute its infor-
mativeness score. Consider an extended vertex list with concepts
and informativeness score as vext1 and vext2. The similarity is
computed as the weighted Jacquard similarity [13] between vext1
and vext2.

J (vext1,vext2) =
∑
l min(vlext1,v

l
ext2)∑

l max(vlext1,v
l
ext2)

(2)

Here, l represents vector dimensions. In our case, each one of
these dimensions is a concept c and the value is its informativeness
score. We chose weighted Jaccard similarity as it satisfies the fol-
lowing requirements. 1. v1 and v2 get a low similarity value if they
have fewer concepts in common. 2. v1 and v2 get low similarity
value if the concepts are repeated a different number of times. If the
concept c appears three times invext1 and four times invext2 then
the numerator’s value for that concept will be less than the denomi-
nator leading to reduced similarity. 3. v1 and v2 get a low similarity
value if the concepts in common have less informativeness.

This similarity computation depends on oi j , i.e., a
concept of hthj knowledge graph representing commu-
nity i . As an example, the similarity between v1 =

{Cincinnati} and v2 = {Columbus} results in vext1 =

{(Cincinnati, 1.8),Ohio(1.6),USA(1.0),Columbus(0.0)} and
vext2 = {Columbus(1.8),Ohio(1.6),USA(1.0),Cincinnati(0.0)}.
The bracketed value is the informativeness score for each concept
according to HKG in Figure 2. The weighted jaccard between vext1
and vext2 results in similarity 0.419.

We used the Louvain algorithm to find community labels L for
each node in the weighted graph. Next, we describe the process of
finding an appropriate concept describing each community.

3.2 Optimal community context computation
In this subsection, we describe how we compute oi j , an optimal
context of hj ∈ H describing community i ∈ C . As described,
context oi j is essentially a hierarchy starting at the concept oi j in



hj . Hence, oi j is represented by the concept c ∈ hj that is the most
relevant concept for the community c . Such a concept is found
based on two criteria, 1. appropriate generality (referred as purity)
of a concept and 2. informativeness. Next, we describe the detailed
procedure.

hj hierarchies provide real-world clustering knowledge. As an
example, in the context of “Cities in USA”, “Austin”, “Dallas”, and
“Houston” forms the cluster “Cities in Texas”. In other words, as
“Cities in Texas” subsumes three cities, it can represent and even val-
idate these three cities being in one cluster. Each concept of hj can
potentially represent a community i based on node attribute values
of nodes belonging to a community i . Our intuition for finding such
a concept is as follows. For any community, a concept can represent
that community if it happens to subsume more concepts in a commu-
nity than if the concepts of the community were distributed at random
in a HKG. As described in Section 3.1, use of 2 − in f ormativeness
can serve as a better approximation for “concepts distributed at
random” than ηi

ηroot . Hence, maximizing the following with respect
to concept of a knowledge graph can indicate the optimal context
representing a community,

maxc

(
ηc − ηc ×

∑
l<c

1
Sc∑

c<root
1
Sl

)
(3)

Here, ηi is the number of concepts (belonging to a community i)
subsumed by c . We also minimize the number of concepts subsumed
from neighboring communities. Considering this and rearranging
terms, the final maximization term is:

oi j =maxc
(
(ηn∈i − ηn∈ī ) × Ic

)
(4)

where ηn∈i indicates the number of concepts in i subsumed by
c and ηn∈ī indicates the number of concepts in the neighboring
communities of i subsumed by c . The first term corresponds to
“purity” while the second term corresponds to the informativeness
of c . In addition to the concept c maximizing the score, we also
retain the actual score as si j which indicates the relative context
importance of context j in community i .

For the attribute listT = {c1, c2, . . . , cf } and T̄ = {c̄1, c̄2, . . . , c̄f }
indicating the concepts of community i and neighboring communi-
ties in hj respectively, Algorithm 1 finds the concept maximizing
Equation 4. We pre-compute the hierarchical level, e.g., the root
is set to ‘0’ and all the leaves are at level “tree height ” and the
informativeness of each c ∈ hj . We create a list with concepts at the
lowest level and a score associated with each concept indicating the
difference between the number of concepts each subsumes from T
and number of concepts it subsumes from T̄ . Then, we compute a
score for each concept and update the concept with the maximum
score thus far and the maximum score. Next hop “parents”, i.e.,
concepts subsuming the current concept, are included in the list to
investigate. The scores associated with the parent concepts are also
attached as it indicates the number of concepts subsumed from T
and T̄ . As a vertex may be represented with concepts other than
leaves, there may be some concepts left in T and T̄ that belong to
higher level. They are added using add_list whenever the level that
they belong to is processed. Because the root has no parents, the
temp_list will eventually become empty. To avoid loops, we also
condition on level ≥ 0.

Input: T , T̄ , and hj
Output: copt , smax
copt = root , smax = root_score
Associate score with each concept. -1 for T̄ and 1 for T
level = lowest_level()
list = add_list(T , T̄ , level)
while list not empty and level ≥ 0 do

temp_list = empty
for c ∈ list do

scur = score(c) ×Ic
update_optimal(copt , smax , c , scur )
for p ∈ parents(c) do

add_parent(temp_list, p, score(c))
end

end
level = level - 1
add_list(T , T̄ , level)
list = temp_list

end
Algorithm 1: Optimal community-context computation
One of the most important steps in the algorithm is add_parent.

The concept maximizing the criteria must subsume at least one of
the concept of i . Thus, we explore for the solution among hierarchi-
cal “parents” of any c ∈ T . We avoid adding a parent (stop looking
for a solution in the path) if its informativeness score decreases
so much so that even if it were to subsume rest of the remaining
concepts, it could not get a higher score thanmax_score .

3.3 Unified framework
Algorithm 2 describes the final algorithm and Figure 4 demonstrates
the algorithm on the example network shown in Figure 1. We start
with computing node pair similarities between all nodes for which
Ei j , 0. We consider each edge ij as an edge from i’s community to
j’s community. Hence, edge weight Ei j is computed with contexts
for both communities Li and Lj . Next, it computes community
labels L by maximizing a modularity equation with respect to L.
Note that f (ij,L) is a function that determines whether i and j are in
the same community based on their community labels. Specifically,
ij ∈ l iff Li = Lj = l .

Modularity is an evaluative measure of community structure.
Accordingly, a part of graph (a group of nodes) is interesting if the
number of edges within that group is higher than if the nodes were

to assign into groups at random, formally:
∑k
i=1

(
ei − a2

i

)
. Here, ei

is the number of edges in a community i , and ai is the expected
number of edges in community i . Note that we used a similar idea in
designing our optimal community context computation. ki×kj4m2 pro-
vides better estimation of a2

i as the probability of an edge belonging
within a community depends on the degree of nodes connected that
edge [22]. Modularity maximization is one of the most widely used
community detection technique. We used Louvain algorithm based
modularity maximization as it has identified qualitatively robust
community structure[3]. It is a greedy algorithm that processes
each vertex at random and assigns a community label based on the
one that can result in the maximum modularity gain. The reader is
encouraged to follow [3] for details.
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Figure 4: Demonstration on an example network. (a) Normalized edge weights are first computed using ω = 1.0 and contextual similarity
kernel with root node as the context identifying each community. (b) Community labels are computed using Louvain. (c) Optimal contexts
“cities in texas’ and “cities in ohio” computed for c1, and c2 respectively, (d) Normalized edge weights recomputed using new contexts. Note
the modularity increase from (a) to (d).

Using the new community labels, we compute the optimal con-
text representing each community i ∈ K . The process is repeated
until maximum modularity is achieved or a max number of itera-
tions. di in modularity Q(E,L) is the degree of a node i , computed

Input: G=(V, E, A), H = {h1,h2, . . . ,ht },max_iters, threshold
Output: L, O , S
while mod < threshold or until max_iters do

wi j (ω, i, j,H ,O, l) = ω +
∑t
q=1 ϕ(i, j,hq ,oq , l)

Ei j = wi j (ω, i, j,H ,O,Li ) +wi j (ω, i, j,H ,O,Lj )
Q(E,L) = 1

2m
∑
lϵK

∑
f (i j,L) Ei j −

didj
4m2

L =maxLQ(E,L)
for i ∈ K do

for hj ∈ H do
oi j =maxc

(
(ηn∈i − ηn∈ī ) × Ic

)
end

end
end

Algorithm 2: Community detection and characterization algo-
rithm

as the summation of all edges incident on i andm is summation of
all the edge weights. ω is a hyper-parameter indicating the relative
importance of edge to the node pair similarity computed using
the contextual similarity. We iteratively update community label
assignment and community-context vector oi for each community
i . Such an algorithm is likely to be stuck in local maxima. Thus, we
repeated the process 10 times for each dataset, randomly selecting
the vertex order to be processed by the Louvain algorithm. We con-
sider the result for which we achieved the maximum modularity
value.

3.4 Algorithm Complexity and Convergence
Each iteration consists of the three steps (P1, P2, and P3) described
in Figure 3. P1 and P2 process each edge resulting in O(n) time
complexity where n indicates the number of edges. P3 maps nodes
of each community to a knowledge graph and computes an optimal
context for each community resulting in the time complexity of
O(ck) for c communities and knowledge graph of k concepts. Hence,
The time complexity of the algorithm isO(n+kc) since the number
of iterations i << n.

The Louvain algorithm (P2) optimizes Modularity to find a com-
munity structure. The algorithm could diverge if the optimal com-
munity context results in edge weights that could decrease Modu-
larity. A generic community context will result in a relatively less

similarity value and indicates that the communities should be com-
puted only using the ω and won’t affect the Modularity value. A
specific community context will change the edge weights to make
the current community structure stronger. Hence, it is likely to
increase the modularity value. Either way, the modularity value is
not expected to decrease due to P3. We also found the algorithm
converges to a satisfactory modularity value for all of the datasets
used in experiments. We will provide detailed theoretical proof
and scalable implementation of the proposed algorithm in our next
paper.

4 EVALUATION
The datasets, measures, comparison baselines and results follow.
We refer to the proposed approach as “KDComm”.

4.1 Datasets
We used four datasets to assess community detection accuracy and
community structure characterization.

4.1.1 G+ ego network. It is G+ user dataset with friends of a
given user represented as nodes and friendship relationship repre-
sented as an edge[16]. Circles (communities) result from densely-
connected sets of friends [22]. Each node has four features: job
title, current place, university, and workplace. A user-pair(edge) is
compared using knowledge graphs based on, Category:Occupations,
Category:Companies_by_country_and_industry, Category:Countries,
Category:Universities_and_colleges_by_country.

4.1.2 Twitter. The Twitter dataset consisted of tweets about the
configuration of a team for the Fantasy Premier League (FPL). We
created a re-tweet network between these users based on informa-
tion about their tweets. The re-tweet network between these users
represents agreement. We used DBpedia spotlight [20] to identify
soccer player mentions in these tweets. The final network consisted
of users as nodes, re-tweet as edges, and FPL players mentioned by
a user as node attributes.

These users have different types of teams where they select
players of one position more than the others. These types include
1. Forwards, 2. Defenders, 3. Mid-fielders. As they discuss their
players in their FPL related tweets, a dense re-tweet network
between these users with community type characterization
indicates a group of users interested in similar types of teams.
Hence, given a network of these users, the task divides users into
three circles âĂŤ users with more “Forward” players in their team,



more “Defender” players in their team, and more “Mid-fielder”
players in their team. For KDComm, we generated three HKGs with
following root nodes, Category:Association_football_defenders,
Category:Association_football_forwards, and Cate-
gory:Association_football_midfielders.

We created ground truth circles using these users’ actual team
configurations available on the FPL website[2]. Users with more
than the usual 1 number of players for any position is included in
that circle 2.

4.1.3 DBLP. The DBLP dataset [14] is a co-author network,
where each author is characterized by a set of keywords. Ground
truth labels for authors are available for four categories: 1. Ma-
chine learning, 2. Data mining, 3. Databases, and 4. Information re-
trieval. We use a knowledge graph generated with root nodes Cate-
gory:Data_Mining,Category:Machine_Learning,Category:Databases,
and Category:Category:Information_retrieval.

4.1.4 Reddit. Each node in this dataset is a user, and an edge
indicates users are commenting/replying to the same post, and a
node attribute is a set of comments made by that user. Each post has
a “sub-reddit” that indicates the type of a post. The communities in
this network can be evaluated using each user’s subreddits. Users
belonging to the same community are likely to discuss the same sub-
reddits [9] We considered the first four days of April 2015 to create
this network3. We considered subreddits related to Economics and
the NFL as they were the most discussed subreddits in the dataset.
The domain-specific HKGs were extracted for Category:Economics
and Category:National_Football_League as root nodes.

4.2 Evaluation Measures
To evaluate community detection accuracy in G+, DBLP, and Twit-
ter datasets, we used Yang et al. ’s community F-Measure and a
Jaccard measure [31]. The evaluation function is,

1
2 |C∗ |

∑
C∗
i ∈C∗

max
Cj ∈ Cδ

(
C∗
i ,Cj

)
+

1
2 |C |

∑
Cj ∈C

max
C∗
i ∈ C∗δ

(
C∗
i ,Cj

)
(5)

Here, δ (C∗
i ,Cj ) is a similarity measure, either Jaccard or F-score

similarity (F-Measure). C is the community label set found by
the algorithm and C∗ is the ground truth community label set.
For community detection evaluation in Reddit dataset, we used
Hartman et al.’s rank entropy measure for a given community

Re =
−∑L

j=1
nc j
nc

loд2
nc j
nc

loд2nc
. Here, j is a subreddit in a community c .

nc j is the number of times users of community i commenting on
subreddit j. nc is total comments. A community c is likely to have
a lower entropy value if the users of community c are commenting
on a few subreddits most of the time.

4.3 Results and Analysis
To evaluate KDComm, we use Liu et al.’s CPCD approach, which
is superior to eight other community detection[18]. We also con-
sider JCDC [33] which outperforms five other community detec-
tion approaches. Like CPCD, JCDC concerns edge weights based
1http://www.soccer-training-guide.com/soccer-formations.html#.Wmk6GZM-eAI
2Please contact the corresponding author for the dataset.
3https://archive.org/details/2015_reddit_comments_corpus
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Figure 5: Similaritymeasures comparison. KGsimwas able to assign
appropriate edge weights to node pairs, resulting in lower inconsis-
tencies corresponding to the community labels.

on We used UNCut [32], which outperforms three other graph
clustering approaches. We used Newman’s community detection
approach (referred to as SI) [23] that also uses attribute values in
community structure detection and characterization. Finally, we
also compared results with the Louvain algorithm, using only edge
information. Evaluation results appear below for: 1. the similarity
kernel. 2. community detection accuracy, 3. community structure
characterization.

4.3.1 Contextual similarity measure evaluation. First we com-
pare the proposed contextual similarity measure (referred as
KGsim) with attribute value based similarity. Two sets of user
pairs (n = 1000) are created from four datasets with ground truth
community labels. IntraCommunitySet = {s1, s2, . . . , sn } where
each si = {(u1,u2)|u1andu2 ∈ samecommunity}. InterCommu-
nitySet = {d1,d2, . . . ,dn } where each di = {(u1,u2)|u1andu2 ∈
di f f erentcommunities}. We compared each si ∈ IntraCommuni-
tySet to all the di ∈ InterCommunitySet resulting with n2 com-
parisons. Ideally, each si ∈ IntraCommunitySet should be higher
than all the di ∈ InterCommunitySet. The number of times si ∈
IntraCommunitySet is lower than di ∈ InterCommunitySet is com-
puted as number of “inconsistencies”. We computed similarity using
the proposed similarity measure and Jaccard similarity as Jaccard
computes similarity using attribute values. Figure 5 plots the “in-
consistencies” to the total comparison (n2) ratio.

For the G+1 and G+2 datasets, we used the four features associ-
ated with each node as attribute values. For Twitter and DBLP, we
used player names and author keywords respectively as attribute
values. The proposed similarity measure (KGsim) had lower “incon-
sistencies” than Jaccard for all the four datasets. Hence, KGsim can
best assist edge re-weighting. We did not compute an appropriate
context relevant to each community and used “root” node as the
context for each dataset.

4.3.2 Community detection accuracy. We compared community
detection accuracy to other approaches. CPCD, SI and, UNcut used
nominal node attribute values in the form of a 1/0 vector.We focused
on the 100 most frequently used words of Reddit forums as attribute
value vectors. For JCDC, we used the Jaccard similarity measure
to compute similarities. Table 1 shows the results for four datasets.
The F-Measure and Jaccard scores reported for G+ are averaged over
all the 20 ego networks. The proposed approach achieved better



Algorithm DBLP G+ Twitter Reddit
F Jcc F Jcc F Jcc Re

Louvain 0.45 0.40 0.53 0.45 0.30 0.25 0.78
UNCut 0.57 0.51 0.5 0.42 0.35 0.30 0.75
CPCD 0.58 0.49 0.56 0.46 0.34 0.29 0.68
JCDC 0.54 0.5 0.58 0.48 0.33 0.28 0.62
SI 0.56 0.48 0.6 0.53 0.38 0.31 0.63

KDComm 0.66 0.59 0.71 0.60 0.47 0.39 0.48
Table 1: Community detection accuracy results. KDComm achieved
the best F-score and Jaccard score for all three datasets.

Dataset JCDC SI KDComm
M11 M22 M11 M22 M11 M22

Twitter 0.168 0.154 0.41 0.285 0.6 0.7
G+1 0.56 0.381 0.36 0.263 0.7 0.8
G+2 0.482 0.58 0.7 0.536 0.6 0.75
DBLP 0.32 0.232 0.56 0.377 0.56 0.64

Table 2: Users within community characterization.M is a relevancy
score matrix. KDComm found appropriate topics characterizing
users within a community for all four datasets while JCDC found
appropriate topics for two datasets.

average scores for both measures (F-score and Jaccard) than all
other approaches. For comparison on the G+ ego network dataset,
we also performed a t-test between the set of F-scores received
by KDComm and set of F-scores received by other approaches. A
p −value < 0.05 also indicated superior performance of KDComm
over all other baseline methods. Similarly, A p −value < 0.05 for
Jaccard measure comparison confirms superior performance.

KDComm achieved the best F-score and Jaccard for the Twit-
ter dataset, dividing users into three communities. As the Louvain
algorithm found more than three communities, we merged commu-
nities based on community-context scores, merging users divided
into two different "Defender" communities. KDComm also outper-
formed the other methods for the DBLP dataset as well, requiring
similar community merging.

For the Reddit dataset, UNCut, CPCD, JCDC, and SI require a
pre-determined number communities. We set the number of com-
munities using KDComm. We report rank entropy averaged over
all the communities. Lower entropy indicates a better community
structure according to this measure [9]. KDComm achieved the
lowest entropy among all methods.

4.3.3 Characterization of community structure. Next, we evalu-
ated whether KDComm characterized users belonging to different
communities with an appropriate community type. For each dataset,
we considered users from two communities and evaluated whether
KDComm, SI, and JCDC can find underlying two communities
and compute an appropriate type of community-based on node
attributes. We considered attributes such that attribute type can
identify community type. All the three methods(KDComm, SI, and
JCDC) compute a “relevancy score” of each attribute type to each
community, E.g., S for KDcomm. These “relevancy scores” for two
attribute types and two communities can be represented as a 2x2
matrix,M . Each cell of this matrix indicates the relevancy score of
attribute type to a community.

The relatively larger score for an attribute type indicates greater
importance for that attribute type. All four datasets had community
type and labels for nodes. We selected Twitter users from “For-
wards” & “Defenders” communities, G+ users from “University” &
“Workplace” communities and DBLP authors from “Data Mining” &

“Machine Learning” communities. We considered two G+ ego net-
works (referred to as G+1 and G+2) for which we distinguished two
ground truth communities based on “University” and “Workplace”
attributes/contexts.

As the inputs were provided with two contexts/attribute types,
a correct attribute type assignment is reflected by a higher score
assigned to that attribute type relative to the other attribute type.
As we used a normalized attribute/context score for each method, a
score > 0.5 indicates a particular attribute type as the community
type. We had attribute type 1, “forwards”, “University”, “Data Min-
ing” a more relevant to Twitter, G+, and DBLP datasets’ community
one according to ground truth. Hence, we expect a context1 (T1)
score higher than 0.5 for community 1 and a context2 (T2) score
higher than 0.5 for community 2. Hence, we expect relevancy score
matrixM11 andM22 to be higher than 0.5. KDComm found the ex-
pected community-context scores for all the four datasets (see Table
2). Both JCDC and SI failed to find the expected community-context
scores for at least two datasets.

5 NETWORK EXPLORATION
An application illustrates the quality of community identification.
In this section, we discuss two real-world datasets that we explored
using the proposed method.

5.1 Twitter and Wisdom of Crowd
A “wisdom of the crowd” application demonstrates superior com-
munity identification. Accordingly, a group of independent and
diverse individuals can makes a superior collective decision [27].

Fantasy soccer captain prediction is such a task where we can
witness the “wisdom of crowd”[8][2]. As a diverse set of individuals
in captain prediction task bring diverse perspectives, their aggre-
gated judgment is likely to bemore accurate than randomly sampled
participants. However, the characterization of diversity in such a
task is still an open research area. As KDComm can effectively find
densely connected users (indicating potential mutual influence)
along with their contextual characterization, it can support the
formation of a diverse crowd. One member from each community
forms a new crowd of potentially diverse and independent users.
Here, we used soccer positions as a context for community detec-
tion, i.e., HKG of Defenders, Forward, and Mid-fielders as described
in Section 4.1.2. Additionally, we also used three English Premier
League teams (Manchester United, Liverpool, and Arsenal) as con-
texts in KDComm, based on their explicit mentions in user tweets,
and ran our community detection. From the resulting communi-
ties, we formed 100 diverse crowds of size six by randomly picking
two users from each type of community. Here, type of community
refers to the type (specific soccer position or a team) for which the
community had a maximum si j score. We explored both sets of
community semantics: DiversePositions and DiverseTeams.

We used the evaluation dataset as described in [2] for the FPL
captain prediction task. We consider a crowd’s captain choice as the
captain selected by the greatest number of individuals in a crowd.
The actual Fantasy points received by that captain demonstrates
how well the two sets of community semantics perform compare
to individual users.



Crowd selection Avg higher than % users

Random 76%
DiversePositions 81%
DiverseTeams 86%

Table 3: Diversity based crowd selection and wisdom of crowd. Di-
verseTeams set of crowds outperform individual users 81% and 86%
of the time depending upon community semantics.

C(size) Sports(Relevancy) Music(Relevancy)
C1(47) U.S. Women’s soccer(0.36) Bob Marley(0.64)
C2(40) Cleveland Browns(0.45) Keke Palmer(0.55)
C3(38) American Football in Boston(0.39) Machine Gun Kelly(0.61)

Table 4: Top 3 communities identified using Sports and Music con-
texts. Community description in Sports and Music contexts pro-
vided along with the normalized relevancy scores. Music context
was found to bemore relevant in creating the community structure.

Table 3 shows results for the number of individual users that a
crowd outperformed on an average. Specifically, an average captain
score of DiversePositions and DiverseTeams was compared with
the captain score achieved by individual crowd members. We also
created one more set of Random crowds, by selecting 100 crowds of
six individuals at random. We found that a random crowd, on an av-
erage, performed better than 75% of the individual users. However,
the DiversePositions crowd set outperformed 81% of the individual
crowd members, and the DiverseTeams outperformed 86% of the
individual crowd members.

As the proposed approach can identify network division along
contexts, it can help analyze raw network data and inform relatively
more sophisticated tasks such as “Crowd Wisdom”.

5.2 School student communication network
The network that results from high school students’ Twitter con-
versation network contains topics or contexts that create dense
conversation groups. We demonstrate the use of the proposed ap-
proach to explore whether certain topics/contexts form a dense
conversation community structure and contribute to the identifi-
cation and characterization of insider-outsider [19], phenomena
that contribute to harassment potential. We crawled for 388 high
school students’ tweets and had each student as a node, a mention
or reply as an edge, and relevant domain-words from tweets as
node attributes.

We explored two contexts, American Sports and American Mu-
sic, to find whether they formmodular conversational communities.
First, we analyzed the conversation network without considering
node attributes. The final modularity value of 0.32 does indicate a
community structure based on edges alone. However, using domain-
specific knowledge graph created with “Category:Sports_in_the
United_States”, we also generated node (student) attributes as do-
main relevant concepts characterizing each node and performed the
proposed community detection. We discovered community struc-
ture with improved modularity of 0.35. Similar processing with
“Category:American_music” resulted in community structure with
a higher modularity score of 0.38. Next, we used both the contexts in
community detection. We found a slightly better modularity score
of 0.4. All of the modularity scores improve with node attributes,
supporting the claim that the proposed algorithm favored Ameri-
can music (more informative context) and downplayed Sports (less
informative context). As described in Table 4, community-context

relevancy scores also indicated that Music was more informative in
finding the community structure than sports. It also provides the
most relevant contexts associated with four of the largest commu-
nities. To analyze the divergence from the edge-based community
structure, we computed F-measure defined in the evaluation. F-score
of 0.38 between edge-based community structure and community
structure with both contexts suggested a divergence in assigning
community labels to nodes in the presence of the contexts. Hence,
contextual analysis has the potential to improve insider-outsider
identification and characterization (with contexts identified for
communities). Isolated nodes (student) suggest harassment poten-
tial [10]. Moreover, by characterizing the context, the approach can
also provide the foundation for predicting the harassment potential
for a new node not considered in the original community detection.

6 RELATEDWORK
Bothorel et al. provides a good summary of community detection
methods that incorporate graph attributes [4]. Among the recent
approaches, Wang et al. works for non-text real-valued node at-
tributed graphs unlike several others [4]. In an approach proposed
by Qin et al., link and node attributes are combined at different
rates during community detection for improved community de-
tection accuracy. Contrary to the proposed approach, these works
do not focus on characterizing community structures. CPCD [18]
and UNCut[32] used in the comparison also focus on identifying
communities than characterizing these communities.

Several generative models also detect communities and provide
information as to the labels that nodes in a community have in
common[5][17][12]. Among recent approaches, He et al. finds com-
munities by jointly optimizing over node attributes and links us-
ing a generative model [11], similar to Wang et al.[30]. These ap-
proaches characterize a community structure by revealing latent
topics within the textual node attributes of a community. They do
not work for non-textual node attributes nor do they find communi-
ties along given set of topics. The latent community description is
less informative compared to the community descriptions identified
by proposed approach.

The community detection in node attributed graphs from Zhang
et al. [33] and Newman et al. [23] inspires our own method. Such
methods find communities based on edges and then refine these
communities, i.e., by changing edge weights, based on node at-
tribute values. However, Zhang et al. and Newman et al. do not
make use of attribute semantics as we suggest here. Hence, these
approaches can not identify communities for different domains as
required by the application discussed in section 5.

Our belief in external knowledge enhancing community detec-
tion in a network is rooted in past work that demonstrated the
prominent role of semantics in social network analysis. For exam-
ple, El et al. combines social data with data semantics to create a
semantic social network [6]. Pool et al. argues that a knowledge
graph-based description should inform community structures based
on user interests and beliefs [25]. A survey on a semantic social
network by Ereto et al. summarizes the use of semantics in so-
cial network analysis[7]. Palma et al. focuses on predicting drug
targeted Interaction using semantic similarity and edge partition-
ing [24]. These approaches integrate the social network links with



existing ontologies for generic social network analysis. However,
community detection on such combined graphs can be biased with
one graph (social graph or ontology) being larger than the other.
Wang et al. reported that real-world knowledge represented in
knowledge graphs could improve document clustering [28]. Nev-
ertheless, they did not focus on community detection with links
connecting nodes and attributes identifying nodes.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we presented an algorithm to incorporate hierarchi-
cal concepts about node attributes into community detection. Our
core contributions include (1) a combined metric that describes
concept informativeness in the hierarchy and concept purity in
summarizing communities, which are used to guide the search for
optimal concept generalization; (2) a node similarity measure that
synthesizes multiple generalized concepts for community detec-
tion; and (3) a community detection algorithm that alternatively
optimizes concept generalization and community structures. Our
evaluation results showed that concept generalization can not only
improve the quality of community detection, but also provides a
meaning-oriented characterization of community structure. The
results vary depending on the choice of domains and knowledge
sources. We demonstrated that readily available and automatically
extracted knowledge source can also have vital improvements. An
exciting direction to explore is to extend this approach to identify
“path-based” and “diffusion-based” communities. Also, exploring the
role of knowledge in other network analysis tasks such as influence
detection.
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