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ABSTRACT
The Raspberry Pi is a credit-card sized computer, designed
to support hands-on computer science education activities
with minimal hardware cost. The Pi’s low price, powerful
ARM-based processor, and rich set of built-in peripherals
has made it an attractive platform for the gamut of hob-
byists, researchers, and educators. However, for those in-
terested in embedded systems education, the Raspberry Pi
presents a unique opportunity to build curricula introducing
time-oriented, reactive, and embedded system software us-
ing a mass-produced embedded platform with broad appeal.

Despite the growing popularity of the Pi platform for com-
puter science education, the device commonly runs a Linux-
based software stack that is, in practice, opaque except to
experienced developers. In addition, important hardware on
the device remains poorly documented. This paper presents
a port of the time-tested Embedded Xinu operating sys-
tem to the Raspberry Pi, combining a commodity embed-
ded processor with a lightweight kernel designed to support
hands-on pedagogy at the lowest levels of the software sys-
tem stack.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education; C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded
systems

Keywords
Raspberry Pi, Embedded Xinu, Embedded systems educa-
tion

1. INTRODUCTION
The Raspberry Pi is a credit-card sized computer designed

to be plugged into a keyboard and TV or HDMI monitor.
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It is intended to be used for educational purposes, such as
teaching programming with Python, and it normally runs
a Linux-based operating system, such as the Debian-based
“Raspbian” or Arch Linux ARM [14]. There are currently
two major versions of the Raspberry Pi: the Model A and
Model B, which cost $25 and $35 respectively.

In aspects such as cost, convenience, and community, the
Raspberry Pi hardware is well-suited for exploring low-level
computer science concepts, such as operating systems, net-
working, and embedded systems. However, lack of docu-
mentation has limited software support for this platform
to either the very simple (standalone assembly language)
or the very complex (full-fledged Linux kernel), with very
little available in the productive middle of the spectrum.
Over 1 million Raspberry Pi boards were sold as by Jan-
uary 2013[13], but key aspects of the hardware, such as the
USB controller (essential for network and keyboard support)
and the mailbox subsystem (essential for programming the
graphics co-processor), remain effectively undocumented ex-
cept by sparsely commented code within vendor-contributed
Linux device drivers. In cases where documentation is avail-
able, such as Broadcom’s BCM2835 ARM Peripherals [5],
some of the descriptions contains critical errors and omis-
sions that, in our experience, have limited their usefulness.

XinuPi, our port of Embedded Xinu[9] to the Raspberry
Pi, provides a cost-effective, usable, understandable plat-
form for undergraduate computer science students to exper-
iment with hardware/software interactions. XinuPi uses an
elegant, well-documented kernel design with support for key
hardware peripherals such as graphics, USB, and network-
ing, yet is several orders of magnitude smaller than the most
compact Linux-based software stacks that run on this device.
XinuPi offers a unique point in the curriculum design space,
allowing low-cost, multi-use laboratories equipped with Pi
boards to support both the plethora of Python-, Scratch-
and Linux-based educational activities already in use and
low-level, embedded activities with access to GPIO pins,
fine-grained clock facilities, a network stack, and the graph-
ics processing unit. No hardware modifications are required
to run XinuPi, so the same Raspberry Pi board can be easily
retasked for higher-level activities with the swap of an SD
card and a power cycle.

The source code of XinuPi, documentation, and class-
tested laboratory activities from previous ports of Embed-
ded Xinu are all freely available under a BSD-style license
at http://xinu.mscs.mu.edu.



2. PRIOR AND RELATED WORK
The Raspberry Pi is now easy to obtain, and is used by a

broad spectrum of hobbyists, researchers and educators. Ap-
plications of Raspberry Pis range from computer-controlled
stage lighting[6], automatic coffee-brewing systems[16], and
home entertainment systems[20]. Many computing educa-
tors have expressed interest in using the Raspberry Pi in
their classrooms[4], whilst others have designed entire classes
around the Pi.

Cambridge University has developed a series of hands-
on Raspberry Pi exercises that builds a simple command
line interface[11]. Their target is a single-thread assembly
language executable which does not provide many of the core
features of an operating system, such as concurrent threads,
device drivers, or interrupts.

Raspberry Pi educational resources include programming
environments such as Scratch and Python, which are fully
implemented in the vendor-provided Raspian distribution,
as well as a user guide written by co-creators of the Pi
for beginners[15]. Similarly inexpensive embedded systems,
such as the Arduino board, are commonly used as teaching
resources beyond simply systems education. For example,
high school teachers are using the Arduino to take creative
approaches in teaching computational sciences. A recent ex-
ample is the LilyPad e-textile approach, in which students
sew textiles together to create programs out of quilts[17].

The Raspberry Pi also has a vibrant user community, as
can be seen by the constant activity on the Raspberry Pi
Forum. Many of the forum moderators are creators or de-
signers of the board, who often share technical knowledge
with the community. Because the Pi is so new, lessons have
not been fully tested before classroom implementation; the
forum represents a place to test lessons and applications.

Embedded Xinu has been used by a multitude of schools
in a variety of classes to teach operating systems [9], net-
working [10], compilers [19], embedded systems [24], hard-
ware systems [8], and software testing [21]. As a research
platform, it has supported novel systems work ranging from
IP telephony [22] to distributed, many-core operating sys-
tems [28].

While other groups have begun efforts to port Xinu to the
Raspberry Pi[7], we believe our effort is the first successful
project that ports all relevant functionality, including USB
and networking.

3. PORTING XINU TO THE PI
The following subsections describe the hardware details

relevant to porting a lightweight operating system to the
Raspberry Pi. Much of this technical detail has been syn-
thesized from unrelated sources or discovered by experimen-
tation, and does not appear to be documented to this level
in any prior work.

3.1 Hardware Overview
The core of the Raspberry Pi is the BCM2835 SoC (Sys-

tem on a Chip), which contains an ARM1176JZF-S CPU
along with Broadcom’s proprietary VideoCore co-processor
and various ARM-accessible peripherals such as a system
timer, interrupt controller, SD card interface, UART, and
PCM audio interface [5]. USB 2.0 is supported through
the “Synopsys DesignWare High-Speed USB 2.0 On-the-Go
Controller”. The Model A has one USB port, while the
Model B has two USB ports. The Model B furthermore

has an Ethernet port, but the actual hardware supporting
it, likely for cost reasons, is in fact a USB device (namely,
the “SMSC LAN9512 USB 2.0 Hub and 10/100 Ethernet
Controller”).

3.2 Booting and Startup
To boot the Raspberry Pi, one simply needs to apply

power1 after inserting a SD card containing appropriate boot
files. The SD card must contain an MS-DOS-style disk label
(partition table) with at least one FAT-formatted partition
whose root directory contains three “binary blobs” provided
by Broadcom (start.elf, bootcode.bin, and loader.bin)
along with the actual kernel that gets started on the ARM
processor (kernel.img). The reason for this somewhat in-
flexible boot method is that the VideoCore co-processor is
in charge of the boot process. However, an optional file con-

fig.txt allows users to customize certain parameters, such
as the memory split between the ARM and VideoCore.

After the VideoCore performs various tasks, kernel.img
is loaded at physical memory address 0x8000 and the ARM
begins execution at that address. The kernel is expected to
be raw binary and not in a format such as ELF. To make
Embedded Xinu comply with this boot protocol, we use a
linker script that links the kernel to run at address 0x8000

and places the entry point at that address, then use objcopy

to convert the kernel from ELF to raw binary.
The ARM startup code then must perform at least the

following tasks:

1. Set up the ARM exception vector table, which is com-
mon to all ARM CPUs as described in [1], at physical
memory address 0. The only handler strictly required
for basic operating system functionality (including pre-
emptive multitasking, but no memory protection etc.)
is the IRQ handler, described in more detail later.

2. Enable desired CPU features, such as unaligned mem-
ory accesses, by reading and writing to the System
Control Coprocessor (again, standard to the ARM ar-
chitecture as described in [1]). The ARM contains L1
instruction and data caches that are initially disabled
and can be enabled if desired.

3. Clear the .bss section of the kernel image for zero-
initialized global variables.

4. Reserve memory for operating system use. In Em-
bedded Xinu, we reserve space for the stack of the
“nulluser” thread, which is the thread that runs the
initial C startup code. We assign the rest of available
physical memory to the “memheap”, which is used for
Embedded Xinu’s dynamic memory allocator.

The bootloader also passes some additional information
in the “atags” format[25] at address 0x100. Embedded Xinu
currently obtains the actual memory size and board serial
number from there, but for basic operation no information
is needed from these boot tags.

3.3 UART
Once code is running on the ARM following a successful

boot, an essential task (at least for development) is to im-
plement a way by which text can be “printed”. Like many
1The Raspberry Pi is powered with 5V supplied through
either the micro-USB port or the GPIO pins.



ctxsw :
mrs r12 , cpsr
push { r0−r14 }

s t r sp , [ r0 ]
l d r sp , [ r1 ]

pop { r0−r12 }
msr cpsr c , r12
pop { l r , pc}

Figure 1: Context switch routine, written in ARM
assembly language, for the Raspberry Pi port of Em-
bedded Xinu. The corresponding C declaration is
void ctxsw(void **oldstackpp, void **newstackpp).

embedded devices, the Raspberry Pi has a Universal Asyn-
chronous Receiver/Transmitter available that makes it pos-
sible to interact with the device through a serial connection.
The connection can be made through a USB-to-serial con-
verter with 3.3V logic levels. On the Model B, Tx is GPIO
pin 8 and Rx is GPIO pin 10. No hardware modification is
required.

In software, a PrimeCell (PL011)-compatible UART is
available as a memory-mapped peripheral at physical ad-
dress 0x20201000. Software can operate this UART syn-
chronously by polling it or asynchronously by configuring it
to issue an interrupt when a character is received or when
there is space to transmit a character. Rx and Tx FIFOs can
be enabled but make asynchronous operation of the UART
more complicated.

More details about the PL011 UART, including the regis-
ter layout and interrupt handling, can be found in the Em-
bedded Xinu driver2, in ARM’s documentation for PL011-
compatible devices[2], or in Broadcom’s documentation for
the BCM2835 ARM peripherals[5].

3.4 Threads and Context Switching
Since Embedded Xinu supports multitasking, a critical

next step is to implement support for threads and switching
between them (context switching). On the Raspberry Pi,
context switching deals only with the ARM CPU. Therefore
the necessary bits and pieces are documented by ARM Ltd.
and various other sources. For any CPU, context switching
must save the registers of the currently executing thread
and load the registers of the next thread. This includes
general-purpose registers as well as the stack pointer and
program counter. The ARM is no exception to this, but as
shown in Figure 1, one must be careful to use the correct
instructions and appropriately handle the CPSR (Current
Program Status Register), which is not considered a general-
purpose register.

In Embedded Xinu, creating new threads is implemented
by constructing, from C code, a context record that can be
switched to using the same code shown in Figure 1. The pro-
gram counter (“pc”) is set to the address of the new thread’s
starting routine. As per the standard ARM calling conven-
tion[3], up to the first four arguments are passed in registers
r0 through r3, and any additional arguments are passed on
the stack.

2See: device/uart-pl011/

IRQ line Device
1 System timer output compare register 1
3 System timer output compare register 3
9 USB controller
55 PCM module
57 PL011 UART

Table 1: IRQ lines for devices described in this pa-
per. Note: Embedded Xinu currently only uses lines
3, 9, and 57.

3.5 Interrupts
Threads by themselves are not very useful unless they

can be interrupted by devices, such as the timer needed to
implement preemptive multitasking. To receive interrupt
requests (IRQs), software running on the Raspberry Pi must
deal with two separate, yet interrelated mechanisms:

• The standard ARM architecture IRQ handling

• The BCM2835-specific interrupt controller

The ARM architecture mandates that the CPU can re-
ceive interrupts if and only if bit 7 of the Current Program
Status Register is 0.3 Therefore, software can write to this
bit to enable and disable interrupts globally. When IRQs
are enabled and an IRQ is received, the ARM automatically
enters a special IRQ mode and jumps to the 7th word in
the ARM exception vector table, which software must set
up to contain a valid ARM instruction that jumps to the
actual IRQ handling code[1]. To avoid disturbing the run-
ning thread, the IRQ handling code must save the values of
any registers it may use, except those banked in IRQ mode.
However, to simplify Embedded Xinu, we actually transi-
tion the processor out of IRQ mode immediately and run
the IRQ handling code in the ARM CPU mode in which
the kernel normally operates, which in Embedded Xinu is
System mode.

The global IRQ handling mechanism described above is
standard to the ARM architecture. But to actually con-
trol interrupts from specific devices, software must use the
BCM2835 SoC’s interrupt controller, which is partially doc-
umented in [5]. The interface to this controller is a set of
memory-mapped registers at physical address 0x2000B200

that allows software to enable or disable specific IRQ lines
and check whether specific IRQs are pending. Since all IRQ
lines are initially disabled, software must make use of the
interrupt controller to receive any interrupts at all. Further-
more, software must know which interrupt line corresponds
to which device, which is partially but not completely doc-
umented in [5]. For this reason, in Table 1 we list some of
the important IRQ lines.

More details about the BCM2835 interrupt controller can
be found in the Embedded Xinu source code.4

3.6 System Timer
3We do not consider the use of FIQs (Fast Interrupt Re-
quests), which are an optional feature, not used by Embed-
ded Xinu, for prioritizing interrupts from a specific device.
4See: system/platforms/arm-rpi/dispatch.c



ARM1176JZF-S CPU

ARM memory GPU memory . . . Peripherals memory . . .

0x0 0x080000001 0x100000002 0x20000000

Physical memory

. . . System Timer
(Section 3.6)

. . . Interrupt Controller
(Section 3.5)

. . . Mailboxes
(Section 3.9)

. . . PL011 UART
(Section 3.3)

. . . USB Controller
(Section 3.7)

. . .

0x20003000 0x2000B200 0x2000B880 0x20201000 0x20980000

1 Actual split of memory between ARM and GPU is configurable and can be discovered at runtime.
2 Actual total memory available to ARM and GPU depends on Raspberry Pi model and revision.

Figure 2: Logical view of the Raspberry Pi from software running on the ARM, primarily the physical
memory map and locations of the various peripherals. As is the case on other ARM SoCs, most devices
are directly accessible at fixed physical addresses. An exception is that USB devices can only be accessed
indirectly, through the host controller. The Model A has no built-in USB devices, while the Model B includes
a built-in SMSC LAN9512 USB 2.0 Hub and 10/100 Ethernet Controller (not visualized above).
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Figure 3: BCM2835 System Timer registers, based
at physical memory address 0x20003000. CLO and
CHI make up the 64-bit free running counter. C0
through C3 are the output compare registers, but
only C1 and C3 are available to the ARM.

Preemptive multitasking in Embedded Xinu requires a
basic timer capable of interrupting the CPU after a pro-
grammable number of timer cycles have elapsed. Functions
that must directly interface with the timer are the following:

• void clkupdate(unsigned long cycles); — sched-
ules a timer interrupt to occur after the specified num-
ber of additional timer cycles have elapsed.

• unsigned long clkcount(void); — returns the cur-
rent number of timer cycles.

The above does not include clkhandler(), the timer in-
terrupt handler itself, which is platform-independent except
for a call to clkupdate().

On the Raspberry Pi, the BCM2835 System Timer pro-
vides the needed functionality. This timer, which is a memory-
mapped peripheral, is partially documented in [5]. It has
a 64-bit free-running counter, shown as CLO (Clock Low)
and CHI (Clock High) in Figure 3, that contains a value
that monotonically increases at a rate of 1,000,000 cycles
per second. Directly following the 64-bit counter are four
32-bit “output compare” registers that software can set to

trigger a timer interrupt to occur when CLO matches the
programmed value. Directly preceding the 64-bit counter
is the 32-bit Timer Control/Status register. In that regis-
ter, software must set the bit corresponding to the output
compare register index (0—3) to clear the corresponding in-
terrupt.

A caveat not documented in [5] is that the VideoCore
co-processor uses the output compare registers of indices 0
and 2 for itself, thereby leaving only the ones with indices
1 and 3 available for the ARM. However, Embedded Xinu
only needs one such register anyway. Still, the presence of
two separately-controlled microsecond-accuracy timers, us-
ing different interrupt lines, makes it possible to implement
a variety of embedded and real-time software for the Rasp-
berry Pi. Furthermore, [5] describes an additional timer, the
“ARM Timer”, that is also available to software.

3.7 Universal Serial Bus
As noted in Section 3.1, the Raspberry Pi contains sup-

port for Universal Serial Bus (USB) 2.0, and in fact USB
support is required to access the Ethernet adapter on the
Raspberry Pi Model B. Since Embedded Xinu did not con-
tain support for USB, we implemented a relatively simple
USB subsystem. It follows the standard design of parti-
tioning functionality between the USB core, hub, and host
controller drivers. The responsibilities of each driver are as
follows:

• The USB core driver is platform-independent code re-
sponsible for maintaining the USB device model, per-
forming device enumeration, and providing a frame-
work in which USB device drivers can be written.

• The USB hub driver is a platform-independent USB
device driver that controls hubs, which provide attach-



ment points for additional USB devices.

• The USB host controller driver is platform-dependent
software responsible for interacting with the USB host
controller hardware to actually send and receive data
over the USB to or from a particular endpoint on a
USB device.

Since USB is very complicated, not all relevant details,
especially those pertaining to the USB core and hub drivers,
can be mentioned here. Instead, we refer the reader to the
USB 2.0 specification[12] and/or the Embedded Xinu source
code5. Our focus here is instead on the platform-dependent
portion of USB support, namely the USB host controller
driver.

The USB specification does not standardize the inter-
face USB host controllers present to software. Some host
controllers present interfaces conforming to separate stan-
dards, such as OHCI or EHCI. However, the interface pre-
sented by the Synopsys DesignWare High-Speed USB 2.0
On-the-Go Controller used on the Raspberry Pi, which is a
set of memory-mapped registers based at physical address
0x20980000, does not conform to any particular standard,
nor is there any publicly available documentation for it.

Therefore, the only way to support the Raspberry Pi’s
USB controller (other than by getting access to internal
documentation, which may or may not even exist) was to
glean the essential hardware details from other sources, pri-
marily Synopsys Inc.’s Linux driver for the device[26]. This
is, unfortunately, a difficult task because Synopsys’ driver
contains approximately 37,000 lines of code. From our anal-
ysis of the code, this extreme complexity is a result of a
number of factors, including support for different modes of
operation, different transfer types and speeds, multiple ab-
straction layers, support for multiple parameterizations of
the same design in silicon, and support for power manage-
ment features. There are many comments in the code, but
no executive summary, that we could find, of what the code
overall actually does.

Our contribution is a working, well-commented driver6

to control the same hardware that runs in the lightweight
Embedded Xinu environment and is approximately 20 times
shorter than the corresponding Linux driver, mainly because
our driver supports only a carefully-chosen subset of features
and does away with unnecessary abstraction layers.

The entry point of our driver is hcd_start(), which must
perform the following tasks to prepare the DesignWare Core
to be ready to use:

1. Enable power to the Core by telling the VideoCore to
do so, via the same memory-mapped“mailbox”message-
passing mechanism the framebuffer driver (see Section
3.9) uses.

2. Reset the Core by setting a bit in the Core Reset Reg-
ister, then waiting for the Core to clear it.

3. Enable DMA (Direct Memory Access) mode and con-
figure dynamic FIFO locations and sizes. Explicitly
configuring the dynamic FIFOs is required because the
reset values are invalid. Failing to do so will result in
silent memory corruption.

5See: device/usb/
6See: system/platforms/arm-rpi/usb_dwc_hcd.c

4. Software not performing USB transfers completely syn-
chronously must enable interrupts from the Core, both
in the AHB Configuration Register in the Core itself
and in the BCM2835 interrupt controller described in
Section 3.5. At minimum, software must enable Host
Channel interrupts, which are required to be notified
when USB transfers have completed, and Host Port in-
terrupts, which are required to emulate the root hub.

After initialization, a minimal host controller driver need
only support sending and receiving messages over the USB.
Our driver implements this with the hcd_submit_xfer_req-
uest() function, which is passed a structure specifying a
transfer to take place over the USB to or from a specific
endpoint on a specific device. To actually perform such a
transfer, software must, briefly, do the following:

1. Program one of the 8 available DesignWare Core host
channels with the parameters of the USB transfer, in-
cluding the transfer type, direction, size, and packet
count, the device address and endpoint, and a pointer
to a word-aligned buffer for DMA.

2. Wait for an interrupt to occur from the DesignWare
Core (BCM2835 IRQ line 9).

3. Check the Core Interrupt Register, then the Host All
Channels Interrupt Register, to determine which chan-
nel(s), if any, have halted.

4. Check the Channel Interrupt Register for each halted
channel to determine whether the corresponding trans-
fer completed successfully or failed.

The above is a simplified description and does not cover
a multitude of special cases, such as the following:

• Transfers to or from low or full-speed devices, such as
most USB HID devices (mice, keyboards, etc.) must
be performed as a series of split transactions. To tell
the DesignWare Core to execute such a transfer, spe-
cial parameters must be set in the Split Control Reg-
ister. Furthermore, on such transfers, the controller
does not act autonomously to complete the full trans-
fer. Instead, it halts the channel after every Start Split
or Complete Split transaction, and software must take
an appropriate action, such as retrying the transaction
later.

• Although USB is a polled bus, as far as we can tell the
DesignWare Core provides no support for hardware-
based polling of devices. If an interrupt transfer is
attempted from a device, such as a hub or keyboard,
that has no data to send at the time, the DesignWare
Core halts the channel and sets the “NAK response re-
ceived”flag, thereby forcing software to explicitly delay
for an appropriate interval for polling.

• The DesignWare Core seems to have some special schedul-
ing requirements related to periodic transfers and frame
boundaries which we do not yet fully understand. Our
driver currently works around certain problems by au-
tomatically retrying certain transfers if they fail.

To provide more technical information about the undocu-
mented Synopsys USB hardware, we have already provided



detailed documentation for the essential registers in Embed-
ded Xinu’s header file declaring them,7 and we plan to fur-
ther document the driver and hardware on the Embedded
Xinu Wiki.8 However, we can only document the function-
ality actually used by our driver, so we do not expect that
our documentation by itself could be used to, for example,
write a drop-in replacement for Synopsys’ Linux driver that
will not have any feature regressions.

3.8 Ethernet Support
The Raspberry Pi Model B’s Ethernet port is part of the

integrated SMSC LAN9512 USB 2.0 Hub and 10/100 Ether-
net Controller. The hub component of the device is directly
attached to the host port of the Synopsys USB controller.
This hub contains three ports. Two are the ports physically
available to plug devices into, while the third is a vendor-
specific class device that implements the actual Ethernet
Adapter. The software interface of the Ethernet Adapter
device is not documented by SMSC, so here we provide a
summary of it. However, do note that writing a driver for
this device relies on USB support, which when not available
is a much more difficult component to implement, especially
when dealing with the undocumented USB hardware de-
scribed in Section 3.7.

To configure the SMSC LAN9512 Ethernet device, soft-
ware must read and write its control registers, which are
accessible by sending vendor-specific class requests to its
default control endpoint. To read a register, software must
send a USB control message with bRequest set to 0xA1, bm-
RequestType set to 0xc0, wValue set to 0, wIndex set to
the register offset, wLength set to 4, and the data buffer set
to a 4-byte location into which to read the register’s con-
tents. Writing a register proceeds similarly, but bRequest

must be 0xA0, bmRequestType must be 0x40, and the data
buffer must specify the 4-byte value to write. At minimum,
software must explicitly set a MAC address in the MAC ad-
dress low and MAC address high registers (offsets 0x108 and
0x104, respectively), then enable Tx and Rx by setting bits
2 and 3 in the MAC Control Register (offset 0x100) and bit
2 in the Tx Configuration Register (offset 0x10). We have
documented these registers and more in Embedded Xinu’s
header file declaring them, and we plan to write additional
documentation on the Embedded Xinu Wiki.

Finally, to actually send and receive packets, the SMSC
LAN9512 Ethernet device has two USB bulk endpoints. One
is oriented host-to-device and is used to send Ethernet pack-
ets; the other is oriented device-to-host and is used to receive
Ethernet packets. Incoming Ethernet packets are prefixed
by a 4-byte status field. Outgoing Ethernet packets must
be prefixed by two 4-byte command fields. See the code
for details.9 For simplicity, we do not attempt to support
advanced features, such as TCP/IP checksum offloading.

3.9 Framebuffer
In addition to USB and networking, another important

Raspberry Pi hardware feature to support is graphics out-
put via a framebuffer. Before pixels can be rendered, a com-
munication channel between the ARM and the VideoCore
(VC) must be initialized. On the Raspberry Pi, a “mail-
box system” exists to simplify communication. Mailboxes

7See: system/platforms/arm-rpi/usb_dwc_regs.h
8Available at http://xinu.mscs.mu.edu
9See: device/smsc9512/

are used on the board for communication between various
systems, such as the power management system, the frame-
buffer, and the LEDs. In order to initialize the framebuffer
device (the structure used by the VC to keep track of pixel
data), one needs to create a framebuffer structure, write its
address to the appropriate mailbox channel, and read from
the status register. Much of the driver was influenced by the
video driver provided by Broadcom.

The framebuffer structure[23] expected by the VC is a list
of unsigned little endian 32 bit integers, corresponding to,
in order:
• requested width of physical display
• requested height of physical display
• requested width of virtual display
• requested height of virtual display
• requested depth (in bits per pixel)
• pitch (bytes between rows; zero upon request)
• requested x offset of virtual framebuffer
• requested y offset of virtual framebuffer
• framebuffer address (zero upon request; failure if zero

upon response)
• framebuffer size (zero upon request)

A more detailed outline of the steps required to initialize
the framebuffer:

1. Create framebuffer structure, as above.

2. Read from status register until full flag is not set.

3. Write data (shifted into upper 28 bits) combined with
channel (in lower four bits) to write register.

4. Read from status register until empty flag is not set.

5. Read data from read register. Ensure that lower four
bits are desired channel number.

6. Upper 28 bits should be all zeroes, unless there was a
read error.

7. Ensure that the VC has written both the framebuffer
address and the framebuffer size into the structure.
If these values remain zero, the VC has rejected the
request.

It should be noted that the framebuffer communication
occurs on channel 1 of mailbox 0. The mailbox 0 read
register is located at 0x2000B880, the write register is lo-
cated at 0x2000B8A0, and the status register is located at
0x2000B898.

Once the framebuffer is correctly initialized, pixels can
be rendered. Each pixel is a 32-bit memory-mapped value
(will vary depending on requested depth). All pixels start
off as zeroed values: zero transparency, zero red, zero green,
zero blue. In order to change a pixel onscreen, a new 32-
bit color value must be written to the pixel’s location in
memory, which can be calculated by adding the address of
the framebuffer to an offset of:

(y ∗ pitch) + (x ∗ (depth/8))

In order to display characters onscreen, we created an ar-
ray of the first 128 ASCII characters to use as an 8 x 12
monospace font. Each character is represented by 12 bytes,
and each byte corresponds to a line of pixels. A bit value
of zero is rendered in background color, and a bit value of
one is rendered in foreground color. For example, to draw



a space character, no pixels need to be changed from back-
ground to foreground. Thus, a space can be represented as
12 bytes of zeroes.

In order to draw shapes quickly and with enough accuracy,
we employed Bresenham’s Algorithm for drawing lines, and
a modified version of his algorithm, the Midpoint Algorithm,
for drawing circles[27].

3.10 PCM Audio
In addition to graphics output described in Section 3.9,

the Raspberry Pi supports sound output via HDMI, GPIO
pins, or the 3.5mm TRS connector. Here we describe how a
PCM sound signal can be sent over the GPIO pins.

The PCM module on the BCM2835 provides three output
signals:
• Bit Clock (PCM CLK)
• Frame Sync (PCM FS)
• Serial Data Output (PCM DOUT)

Each of these three signals is easily accessible from the
GPIO pins. In order to enable output to the GPIO, however,
the pins must be set to the appropriate alternate function.
The PCM CLK signal can be read on GPIO 18 on the P1
header when the pin is set to alternate function 0. The
PCM FS and PCM DOUT signals can be read on GPIO 29
and GPIO 31, respectively, on the P5 header when the pins
are set to alternate function 2.

The BCM2835 ARM Peripherals document[5] provides in-
formation about the registers and the overall PCM interface
that is sufficient to initialize and configure the PCM module.
The documentation specifies how to configure the module to
accept an input clock but does not specify where the audio
clock control registers are located in memory, nor does it
provide any information about how to manipulate these reg-
isters. This is necessary information because without choos-
ing, configuring, and enabling the input clock, the module
will receive no driver clock signal and no output signals will
be transmitted.

The registers used to configure the input clock are doc-
umented in a separate datasheet[18]. They include a clock
control register and a clock divisor register. It is important
when modifying these memory mapped registers that 0x5a

is written to the most significant 8 bits, otherwise no change
will occur. Using the following settings:
• Clock source set to internal oscillator (19.2MHz)
• MASH set to 1
• Integer Divisor set to 13
• Fractional Divisor set to 2479
• Frame length of 32 (PCM MODE Register)
• Frame Sync length of 16 (PCM MODE Register)

one can measure the PCM CLK and PCM FS output signals
running at 1.44MHz and 44.1kHz, respectively. These are
the frequencies appropriate for producing standard 44.1kHz
stereo audio.

4. FUTURE WORK

4.1 Laboratory Environment
As described in [9], Embedded Xinu has been deployed on

the WRT54G family of embedded wireless routers to create
a laboratory environment for teaching embedded operating
systems. The overall design is that students can work on
their custom Embedded Xinu kernels remotely for various
assignments, then submit them to a central server to be

automatically run on real backend hardware selected from
an available pool. The setup is such that students can in-
teractively use the backend’s console remotely. Since the
educational value of this approach has been demonstrated,
one of the goals of porting Embedded Xinu to the Rasp-
berry Pi is to use it for this purpose as a substitute for the
WRT54G-family routers. This will have several advantages,
including eliminating the need for hardware modifications,
reducing per-unit cost, updating the platform to one that is
in commercial production as of 2013, and using a more flex-
ible platform that can easily be removed from the backend
pool and used for other purposes simply by swapping out
the SD card.

To configure a Raspberry Pi as a backend device, it must
run a bootloader that can download a new kernel over the
network and execute it. Since the Raspberry Pi firmware
does not offer this functionality, our solution is to use a
customized image of Embedded Xinu itself, booted from the
SD card. As of this writing, all necessary functionality to
make Embedded Xinu act as a network bootloader has been
implemented. This includes Ethernet support, as described
in Section 3.8, simple DHCP and TFTP clients, and special
code to abandon the running kernel and transfer control to
a new kernel. In the coming months we plan to actually set
up such a backend pool, then document the setup on the
Embedded Xinu Wiki and demonstrate its educational use
in a university-level operating systems class.

4.2 Documentation
As Embedded Xinu is an educational operating system, it

is critical that it be well-documented. To this end, the Em-
bedded Xinu Wiki already documents the supported MIPS
platforms. This complements the detailed API documenta-
tion generated from the source code. We plan to expand
this documentation to include the Raspberry Pi port and
improve the API documentation to better document all ma-
jor Embedded Xinu components and be easier to navigate.

4.3 Keyboard-and-Monitor Setup
The major advantage of using the Raspberry Pi over the

Linksys routers is increased flexibility. USB support and
a framebuffer driver allow Xinu to act as an experimental
embedded laboratory platform that does not rely on remote
booting or serial output.

We have developed a simple LOGO-like Turtle Graphics
environment for the board that can be used in K-12 class-
rooms to enhance lessons in areas such as angles and shapes,
in algorithmic, sequential reasoning, or in RGB color mixing.

We have also achieved communication from the Dell L100
USB keyboard. Our goal is to complete the HID (Human
Interface Device) driver and create a HID device structure
that is simple enough for Xinu and allows for additional
HID class device drivers to be built on top of it. We aim
to implement a keyboard-specific device structure so that a
USB keyboard can be read from like other devices in Xinu.

With this “standalone” setup, Embedded Xinu can es-
cape the remote access and power management infrastruc-
ture currently in place for the Linksys routers and be better
suited for smaller educational environments.

5. SUMMARY & CONCLUSIONS
We present XinuPi: Embedded Xinu running on the Rasp-

berry Pi. This project takes advantage of new, inexpensive



hardware explicitly designed for computing education, and
simplifies the system programmer’s view of the hardware to
a level well-suited for undergraduate education.

This work builds upon an established body of Embed-
ded Xinu curriculum materials that weaves hands-on embed-
ded systems laboratories into core computer science courses
ranging from introductory hardware systems through oper-
ating systems, networking, compiler construction, and em-
bedded systems.

Finally, in the course of porting Embedded Xinu to the
Pi board, we have learned a great deal about the platform
that is not well-documented in any of the existing materials.
We present those insights here as a reference for like-minded
developers with an eye on developing their own software to
run directly on the Raspberry Pi, without needing to rely
on Linux to communicate to the hardware.
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