
STATIC CHECKING OF INTERRUPT-DRIVEN SOFTWARE

A Thesis

Submitted to the Faulty

of

Purdue University

by

Dennis W. Brylow

In Partial Ful�llment of the

Requirements for the Degree

of

Dotor of Philosophy

August 2003

ii

To my parents:

my stepfather, who taught me patiene;

my stepmother, who taught me organization;

my father, who taught me humor;

and my mother, who taught me faith {

all qualities I ould not have made it

this far without.

iii

ACKNOWLEDGMENTS

This dissertation would not be what it is if it were not for the olleted e�orts of

many friends and olleagues over the years. Several should be thanked here:

� William Rueth of Greenhill Manufaturing who provided me with years of em-

ployment before graduate shool, a wealth of knowledge and experiene, and

the use of Greenhill's proprietary software in my experiments.

� Niels Damgaard, my o-author for the ICSE paper, who wrote a great deal of

ode for the ZARBI Simulator and geneti searh algorithm. Also, Wanjun

Wang for timely maintenane of JTB and for writing the GUI omponents for

the Simulator.

� Mike Grypp, Phil MGahey, Mayur Naik, Krishna Nandivada, John Regehr,

Mihael Rihmond, and Ben Titzer for proofreading and omments on drafts of

this dissertation or its predeessor douments.

� My ommittee members at Purdue: Doug Comer, Tony Hosking and Jan Vitek,

for guidane throughout my graduate areer, and espeially in the �nal stages

of this work.

� Somesh Jha, my external ommittee member from University of Wisonsin, for

bearing with this proess despite the additional overhead that being two states

away entails.

� Jens Palsberg: My patient adviser, my Evil Master. A model researher, a

brilliant mentor, and a good friend.

� Petra Earius, who provided moral support for unountably many long nights

working in the Lab, and who always knew I ould do it.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES : viii

ABSTRACT : x

1 Introdution : 1

1.1 Thesis Statement : 1

1.2 Overview : 1

1.3 Embedded Systems : 2

1.3.1 Interrupt-Driven Software : 2

1.3.2 Testing : 3

1.3.3 Pratial Challenges : 4

1.4 Contributions : 5

2 Related Work : 7

2.1 Soure-Level Timing Shemas : 7

2.2 The False Path Problem : 8

2.3 Higher-Level Languages : 8

2.4 Speial-Purpose Languages : 9

2.5 Preonditions for Suess : 10

2.6 Call Graphs and Model Cheking : 10

2.7 Type Theory : 11

2.8 Tools : 12

2.9 Summary of Related Work : 13

3 Framework : 14

3.1 Control Flow Graphs : 14

3.2 Stak Size Analysis : 15

3.2.1 Negative Cyles : 15

v

Page

3.2.2 Summary Edge Closure : 15

3.2.3 Positive Cyles : 16

3.2.4 Null Cyles : 17

3.3 Staks and Contexts : 17

3.4 Re�nements : 18

3.4.1 Graph Building : 18

3.4.2 Demand-Driven Constrution : : : : : : : : : : : : : : : : : : 18

3.4.3 Avoiding False Paths : 19

3.4.4 Adaptive sliing : 19

3.5 Deadline Analysis : 19

3.5.1 Time Summary Edges : 20

4 Stak Size Analysis : 22

4.1 Overview : 22

4.1.1 The Stak Size Problem : 23

4.1.2 Results : 25

4.2 Model Building : 26

4.3 Model Cheking : 29

4.3.1 The Z86 Assembly Language : : : : : : : : : : : : : : : : : : : 29

4.3.2 From Z86 Assembly Code to a Flow Graph : : : : : : : : : : : 30

4.3.3 Stak-Size Analysis : 32

4.3.4 Type Cheking of Stak Elements : : : : : : : : : : : : : : : : 33

4.4 Experimental Results : 33

4.4.1 Benhmarks : 33

4.4.2 Infrastruture : 34

4.4.3 Building the graph : 34

4.4.4 Stak-Size Analysis : 35

4.4.5 Type Cheking of Stak Elements : : : : : : : : : : : : : : : : 37

4.5 Summary : 37

vi

Page

5 Deadline Analysis : 39

5.1 Overview : 39

5.1.1 The Deadline Analysis Problem : : : : : : : : : : : : : : : : : 39

5.1.2 Results : 41

5.2 Example Analysis : 43

5.2.1 A Program and its Flow Graph : : : : : : : : : : : : : : : : : 43

5.2.2 Initial Coloring of the Example Graph : : : : : : : : : : : : : 46

5.2.3 Testing Orales : 47

5.2.4 Multi-Resolution Analysis : 50

5.2.5 Magenta and Blue Nodes : 51

5.3 Experimental Results : 54

5.3.1 Benhmark Charateristis : 54

5.3.2 Measurements : 54

5.3.3 Assessment : 57

5.4 User Experiene : 58

5.5 Summary : 63

6 Zilog Arhiteture Resoure-Bounding Infrastruture : : : : : : : : : : : : 65

6.1 Data Strutures : 65

6.2 Stak Size Cheking Tools : 66

6.2.1 Simpli�er : 66

6.2.2 Simulator : 67

6.2.3 State Mahine Models : 67

6.2.4 Geneti Algorithm : 69

6.3 Deadline Analysis Tools : 70

6.3.1 Coloring Algorithm : 70

6.3.2 Adaptive Sliing : 72

6.3.3 Colordot : 74

6.3.4 Graph Crawler : 77

vii

Page

6.3.5 Graph File Format : 78

6.4 Summary : 80

7 Summary and Future Work : 82

7.1 Summary : 82

7.2 Future Work : 83

LIST OF REFERENCES : 85

APPENDICES : 94

Appendix A: Miro00 Example Program : : : : : : : : : : : : : : : : : : 94

A.1 Example System Overview : 94

A.2 Example System Program : 96

A.3 ZARBI results : 98

Appendix B: Simpli�ed Z86 Grammar : : : : : : : : : : : : : : : : : : : 103

Appendix C: Interrupt Shedule File Format : : : : : : : : : : : : : : : : 109

Appendix D: Flow Orale Grammar : 111

Appendix E: Time Orale Grammar : 113

VITA : 114

viii

LIST OF FIGURES

Figure Page

1.1 Example of an Interrupt-Driven System : : : : : : : : : : : : : : : : : 2

3.1 Summary Edge Closure : 16

3.2 Time Summary Edge : 21

4.1 Example Program (part 1) : 26

4.2 Example Program (part 2) : 27

4.3 Example Program Flow Graph : 28

4.4 Instrutions and the orresponding edge labels : : : : : : : : : : : : : 31

4.5 Rules for Inserting Summary Edges : : : : : : : : : : : : : : : : : : : 31

4.6 Graph size and resoure usage for benhmarks : : : : : : : : : : : : : 35

4.7 Stak size results : 36

5.1 Coloring a Flow Graph : 42

5.2 Example Program : 44

5.3 Example Program Flow Graph : 45

5.4 Time Summary Orale in the Example : : : : : : : : : : : : : : : : : 48

5.5 Example Program Adaptive Sliing : : : : : : : : : : : : : : : : : : : 51

5.6 Coloring Graph for Lateny Analysis : : : : : : : : : : : : : : : : : : 53

5.7 Benhmark Charateristis : 54

5.8 Results With Completed Orales : 55

5.9 Adaptive Sliing vs. Fixed k-CFA : 56

5.10 Orale Information Provided : 57

6.1 Sreenshots from the ZARBI Simulator : : : : : : : : : : : : : : : : : 68

6.2 ZARBI Graph Coloring Deision Rules : : : : : : : : : : : : : : : : : 71

6.3 Adaptive Sliing Algorithm : 72

6.4 Colordot Output for FSE03 : 75

ix

Figure Page

6.5 Colordot Output for FSE03 with Colors Abbreviated : : : : : : : : : 76

6.6 Crawler State Mahine : 78

6.7 Crawler Interfae : 79

6.8 ZARBI Graph File Format : 79

6.9 ZARBI Graph File Format Dump of FSE03 : : : : : : : : : : : : : : 81

A.1 Coneptual Diagram for Miro00 Example : : : : : : : : : : : : : : : 94

A.2 Hardware Con�guration for Miro00 Example System : : : : : : : : : 95

A.3 Z86 Instrutions Used in Miro00 Example System : : : : : : : : : : 96

A.4 Z86 Speial Registers Used in Miro00 Example System : : : : : : : : 97

A.5 Partial Call graph for the Miro00 Example Program : : : : : : : : : 98

A.6 Miro00 Example Program : 99

A.7 Miro00 Example Program (ontinued) : : : : : : : : : : : : : : : : : 100

A.8 Miro00 Example Program (ontinued) : : : : : : : : : : : : : : : : : 101

A.9 Miro00 Example Program Stak Height Results : : : : : : : : : : : : 102

C.1 Example Interrupt Shedule : 110

D.1 Flow Orale Input Grammar : 111

D.2 Flow Orale Input Example : 112

D.3 Flow Orale Loop Bound Syntax : 112

E.1 Time Orale Input Grammar : 113

x

ABSTRACT

Brylow, Dennis W. Ph.D., Purdue University, August, 2003. Stati Cheking of

Interrupt-Driven Software. Major Professor: Jens Palsberg.

Stati heking an provide safe and tight bounds on stak usage and exeution

times in interrupt-driven systems. This dissertation presents stati analysis algo-

rithms and a prototype implementation of those algorithms for statially omputing

resoure bounds in interrupt-driven systems. Advaned knowledge of resoure bounds

enables real-time system designers to eliminate whole lasses of errors from their soft-

ware before testing begins, thereby reduing the testing e�ort neessary to ahieve

on�dene in their system.

Despite the ubiquity of hardware interrupts in real-time systems, little prior re-

searh has dealt with interrupt-driven software. The benhmark suite of ommerially-

deployed, interrupt-driven systems examined here inludes proprietary Z86-based mi-

roontrollers programmed in assembly language with multiple vetored interrupt

soures, a shared system stak, extensive use of unstrutured loops, and no formal

loop annotations.

The stak analysis bounds the maximum stak size to within one byte of the

true maximum in all but one of the programs in the benhmark suite. The deadline

analysis found �rm worst-ase latenies in 30% of the ases; in the remaining 70% of

the benhmarks, the prototype redued the size of the testing problem by an average

of 98%. While the testing e�ort still required for these systems is large, it is several

orders of magnitude smaller than the testing problem without deadline analysis.

This dissertation presents novel algorithms for stati analysis in the ontext of

interrupt-driven assembly ode. The prototype implementation is one of the �rst

tools to inorporate stati analysis with testing orales in an interative fashion.

1

1 INTRODUCTION

1.1 Thesis Statement

Stati heking an be employed to provide safe and tight bounds on stak usage

and exeution times in interrupt-driven systems.

1.2 Overview

It was the goal of this researh to �nd a balane between stati analyses and de-

sign spei�ations for the purpose of onstruting pratial development tools in the

area of real-time, interrupt-driven software. This e�ort has been suessful; the pro-

totype tool, alled \ZARBI" (Zilog Arhiteture Resoure-Bounding Infrastruture),

implements novel stati analysis algorithms for �nding safe and tight bounds on both

stak usage and worst-ase interrupt lateny in the analyzed systems.

The systems analyzed in this dissertation exemplify a lass of interrupt-driven

software with vetored interrupt handling, unstrutured and unbounded loops, limited

indiret addressing and limited indiret proedure alls. The benhmark suite inludes

seven ommerial miroontroller systems available to the author, as well as many

smaller example programs that demonstrate other interesting real-time programming

idioms.

The struture of this dissertation follows the outline below.

� Chapter 1 presents introdutory material, the thesis statement, and outlines

ontributions.

� Chapter 2 desribes related work.

� Chapter 3 de�nes terms and explains onepts that are used throughout later

hapters.

� Chapter 4 presents the stak size heking algorithm [14℄, demonstrating that a

ontrol-ow representation ontaining a program ounter, interrupt mask regis-

ter, and the top stak element at eah node is suÆient to bound stak usage in

many interrupt-driven systems, as well as hek several other safety properties.

� Chapter 5 presents the deadline analysis algorithm used to bound interrupt

lateny [15℄. The ZARBI implementation of the algorithm olors ontrol ow

graphs based on interrupt lateny, inorporating external timing information

into the stati analysis in order to bound maximum latenies.

2

(2)

Power
Pulse

(1)

(3)
Network

Microcontroller Fan

Figure 1.1. Example of an Interrupt-Driven System

� Chapter 6 desribes the infrastruture of the prototype system, detailing design

hoies, algorithmi details, and experienes relevant to building this stati

heking tool.

� Chapter 7 summarizes and onludes with a disussion of future researh dire-

tions.

1.3 Embedded Systems

Real-time, reative and embedded systems are used in appliations suh as ight

ontrol, vehile management systems, teleommuniations, home eletronis and med-

ial devies [25, 31, 40, 92℄. Many suh appliations are long lived, interat with their

environment ontinuously, and operate under important real-time onstraints. The

systems analyzed in this dissertation were designed and marketed with the expeta-

tion that they would run for months or years without down time. They are expeted

to ontinuously reat to input, and failures an potentially ause tangible monetary

loss. As the deployment of suh embedded systems grows, the need for ost-e�etive

software assurane tehniques grows orrespondingly.

1.3.1 Interrupt-Driven Software

This dissertation fouses on a ommon lass of real-time systems known as interrupt-

driven systems. Interrupts and interrupt handlers are used in systems where fast re-

sponse to an event is essential. Interrupt-driven systems are those in whih signi�ant

portions of the overall omputation rely on interrupts and their handlers.

3

For example, Figure 1.1, illustrates the operation of one of the miroontroller

systems analyzed in later hapters. The example miroontroller has three interrupt

soures whih interat in a omplex fashion. The �rst interrupt soure is an internal

timer, used to generate the waveform that ontrols a bank of variable speed ventilation

fans. The interrupt handler regularly realulates the timer interval to maintain the

desired waveform. The seond interrupt soure is a 60Hz power pulse, whih enables

the miroontroller to synhronize the waveform output with the fan power soure.

The �rst and seond interrupt handlers must oordinate with one another in order to

orret for phase hanges in the fan power, or drift in the internal timer alulations.

The third interrupt soure is a network ommuniation hannel via RS-485 long-haul

modem, used by a entral network ontroller to poll status, examine sensor readings,

and even reprogram the remote miroontrollers. Network ommuniation interrupts

an ome at virtually any time, and must be given highest priority when they arrive.

(The proessor manually sequenes the RS-485 pakets, bit by bit, at the proper baud

rate.) If the proessing of network traÆ takes too long, proper ontrol of the fans

annot be maintained. The full version of the miroontroller system shown here is

part of a ventilation system used in an agriultural setting; fan lokup an result in

danger to livestok from heatstroke, pneumonia, or deleterious levels of ammonia and

methane.

Testing of real-time embedded systems like the example in Figure 1.1 is diÆult.

While powerful proessors an be used for embedded systems, the demand for ost-

e�etive omputation results in the use of smaller, resoure-onstrained devies in

far greater numbers [92℄. For developers, the reality of resoure-onstrained devies

an mean that the use of onvenient, high-level abstrations (e.g., real-time operat-

ing systems whih provide ertain guarantees) is not an option. Software in reative

and real-time embedded systems is often programmed by hand in low-level languages

like C and assembly [25℄. Real-time software an rely heavily on hardware interrupt

handling, have no high-level proess model, and leverage little or no ompiler assis-

tane { all fators whih an make analysis of the software more diÆult. Without

the high-level abstrations most software analysis tehniques depend upon, suh sys-

tems are often evaluated for safety and orretness only through extensive testing or

simulation.

1.3.2 Testing

Component and integration testing of embedded systems an be intensely time-

onsuming, prohibitively expensive, and is often less than omprehensive. Unlike

software on general purpose omputing platforms, embedded systems are hard to in-

strument. Embedded systems have narrow information hannels: internal register

states are diÆult to aess externally without altering the system; hardware inter-

ations are diÆult to manipulate without distorting key timing properties of the

system; and �nally, resoure onstraints usually render on-hip monitoring infeasi-

ble [42℄.

4

Testing of real-time embedded systems is even more diÆult than embedded sys-

tems, beause the real-time omponents of the software add nondeterminism to the

system. Small variations in the interrupt requests aused by external triggers and

internal timers an result in di�erent behavior between runs even if the ontroller is

exeuting the same omputation on the same data.

Furthermore, even if it were pratial to asertain preise mahine state from

embedded systems, the number of possible exeution paths inreases ombinatorially

in a interrupt-driven system. For any given mahine instrution in a segment of

ode where interrupts are enabled, ontrol ould potentially pass either to the next

instrution, or to any of the enabled interrupt handlers. In this way, the number

of transitions in an equivalent state mahine for a interrupt-driven system inreases

exponentially in the number of available interrupts. Traditional overage testing

quikly beomes intratable in this setting.

Consider the example system from Figure 1.1: assume that the �rst interrupt

soure (internal timer) is triggered 180 times per seond, with the handler exeuting

for 100 miroseonds; the seond interrupt soure (power pulse) ours 60 times per

seond, with the handler exeuting for 10 miroseonds; and the third interrupt soure

(network traÆ) ours one per seond, and takes 100 miroseonds to handle. If

these events take plae ompletely independently, then the odds of observing all

three handlers onjuntively ontributing to the maximum stak height in any given

miroseond time-slie are roughly 1 � 10

�9

. This worst ase behavior ould be

expeted one in a billion observations, assuming it was even possible to gather stak

height data from the embedded system and that normal test inputs would even explore

that orner of the problem spae. Nevertheless, if 1000 suh systems are deployed and

operated for years, it is a near-ertainty that this unusual worst-ase behavior will

our in the �eld. Further note that these probabilities are for a greatly simpli�ed

example system.

While it is unlikely that the need for full-sale testing will ever be ompletely

supplanted by any other methodology, there is great potential for software veri�ation

tools to substantially derease both the time and e�ort for testing real-time systems.

For example, stati analysis of timing properties in real-time systems ould eliminate

whole lasses of errors prior to testing.

1.3.3 Pratial Challenges

The example in Figure 1.1 is a simpli�ation of a real-time system atually in

prodution; the proessor is an 8-bit Z86 miroontroller, with 256 bytes of RAM,

4K of program ROM, and a 12MHz lok [100℄. The software for the example system

was written by hand, in Z86 assembly language, and is about 2500 lines of ode, with

omments. The prototypes of this partiular system underwent months of testing

prior to atual prodution. The �nal prodution model did not inlude the RS-

485 network hardware; even though the software was written to handle the network

5

onnetion, prodution deadlines did not allow suÆient testing to determine what

adverse impats, if any, ould be expeted when the interrupts interated.

Several pressing questions prevented the deployment of the network funtionality

for the example ontroller.

� How high would the stak grow if the ontroller's network ommuniation han-

dlers were triggered during normal operating modes? The memory layout of

the Z86 does not o�er hardware protetion for global data registers from the

system stak; if the stak grew larger than the designers had antiipated, it

would overwrite other data registers.

� How would the network ommuniation handlers interfere with the other in-

terrupts in the system? Could a network paket ause the ontroller to miss

one of its deadlines for generating the proper ontrol signals? Could the other

interrupts ause the network ommuniation interrupt to miss its deadline for

properly interpreting a network paket?

Worse yet, even without the network interrupts enabled, it was not lear that the

ontroller would neessarily meet all of its deadlines.

The ZARBI tool was designed to help address questions like the ones above when

analyzing interrupt-driven systems. The stati analyses presented later in this disser-

tation produe safe, tight bounds on stak usage and interrupt lateny. With these

bounds in hand, system designers an avoid muh of the ostly testing e�ort that

would otherwise be required to determine whether or not the system has suÆient

resoures.

1.4 Contributions

The prodution miroontrollers studied in this dissertation rely on vetored, asyn-

hronous interrupt handling to aomplish their work. They use a limited form of in-

diret proedure all, extensive goto-like \JMP" instrutions, and have no formally an-

notated loop bounds. The goal of this researh projet was to devise automated teh-

niques for produing aurate bounds on resoure onsumption in interrupt-driven

systems. A side bene�t of the researh was the onstrution of a prototype tool

apable of providing resoure bounds for the kinds of systems exempli�ed by the

harateristis above.

The primary ontribution of this work is ZARBI, the Zilog Arhiteture Resoure-

Bounding Infrastruture. The prototype tool omputes onservative, tight bounds on

stak usage and worst-ase interrupt lateny for interrupt-driven systems written in

Z86 assembly language. These bounds allow the system designer to eliminate whole

lasses of errors from the software before testing even begins, thereby reduing the

testing e�ort neessary to ahieve on�dene in the system.

Seondary ontributions of this work inlude novel algorithms used in the ore

of ZARBI to bound stak height and maximum interrupt lateny, respetively. This

6

is the �rst suh work on tratable ontrol-ow analysis in the presene of vetored

interrupt handling.

Additional analyses also hek for several lasses of semanti errors in the Z86 pro-

gram, inluding using simple types to detet stak manipulation errors. In addition,

ZARBI ontains omponents for enhaned visualization and debugging of ontrol-ow

graph yles during the interative proess of interrupt lateny analysis.

7

2 RELATED WORK

In the general ase, the problem of bounding stak sizes and maximum exeution

times is equivalent to the halting problem [84℄; it is a basi theorem of omputer

siene that these questions are undeidable. Muh work has been done on tools

that operate on deidable subsets of programming languages, for example, Berkeley

Paket Filters [56℄, or Agere Systems' C-NP language [1℄ for programming network

proessors, whih do not allow bakward branhing.

Most researh in the area of alulating real-time software resoure bounds stems

from Pushner and Koza's work [80℄, whih uses the following onditions to guarantee

deidability:

� No asynhronous interrupts

� No reursion

� No indiret alls

� No goto instrutions

� Stritly bounded loops

In the 1990's, researhers have worked to relax several of these restritions, with

a variety of trade-o�s. However, despite the fat that asynhronous interrupts are

the most salient feature of atual real-time systems, they remain the least researhed

topi on the above list.

2.1 Soure-Level Timing Shemas

In 1989, Alan Shaw wrote, \When interrupts are permitted and both interrupt

handling times and frequenies are bounded, the e�ets of proessor sharing between

a user proess and one or more interrupt handlers an be inluded in a timing analy-

sis," [89℄. While this is ertainly true, it remains very diÆult in pratie to automat-

ially asertain interrupt handling times. Interrupt frequenies are entirely beyond

the sope of automated program analysis, and generally fall under the ategory of

design riteria for a given system. Shaw's timing shema for high-level languages,

(by whih he meant Algol,) has served as the basis for over a deade of subsequent

researh on analyzing maximum exeution time for software. On the topi of inter-

rupts, Shaw indiated that the system ould be extended to aount for interrupts

using the equation,

8

t

0

max

(S) = t

max

(S)=(1� f

max

� t

max

(IH))

where t

max

(S) if the uninterrupted, straightline maximum exeution time for state-

ment S, t

0

max

(S) will be the maximum exeution time of statement S taking interrupts

into aount, and f

max

and t

max

(IH) are the known interrupt frequeny and interrupt

handler exeution time. Shaw onluded that, \timing preditability seems impra-

tial when a proess an be preempted at arbitrary points in its ode," and left the

matter at that. A large body of work has stemmed from this original premise, as

exempli�ed by papers like Lim et al. [48℄, whih extend Shaw's basi timing shema

to aount for features of modern proessors suh as pipeline, data ahe, and instru-

tion ahe e�ets. Engblom et al. [28℄ onentrate on o-transformation of soure-level

shema in order to inform analysis of ompiler-optimized objet ode. All of the work

listed above assumes an absene of interrupts, or trivially isolatable interrupt behav-

ior, in spite of the fat that virtually all modern proessors used in real-time systems

have vetored interrupt handling failities, and all real-time systems known to the

author have made use of those failities.

2.2 The False Path Problem

In 1996, Altenbernd identi�ed that a key issue in aurate worst-ase exeution

time (WCET) analysis is the False Path Problem [4℄. In onstruting a ontrol-ow

graph, the abstration often ontains paths that annot atually take plae in a real

program exeution { branhes that aren't taken, interrupt handlers that aren't yet

enabled, et. In order to alulate tight bounds on exeution time, the algorithm

must searh for the longest exeutable path in the graph, rather than the longest

strutural path in the graph. This is equivalent to an NP-omplete problem that

exists in hardware design; �nding the longest exeutable path in a network of logi

gates is substantially more diÆult than �nding the longest struturally onneted

path [54℄. Altenbernd used symboli exeution to trak possible values of key on-

ditional variables, and thereby pruned infeasible paths out of the ontrol-ow graph.

This is essentially the same tehnique used by ZARBI to prune away a substantial

number of infeasible interrupt handler paths from the ontrol-ow graphs.

2.3 Higher-Level Languages

Liu and G�omez [50℄ automatially transformed Sheme ode diretly into time-

bound funtions, based upon partially-known input strutures. They then plugged in

numbers gleaned from intensive pro�ling to approximate the atual exeution time

of the ompiled ode. Their method has fared well initially, yielding exeution time

estimates very lose to measured exeution times. However, the soure language and

its aompanying transformations have no provisions for vetored interrupts, and the

9

tehnique glosses over issues onerning aurate low-level timing of primitives by

averaging together tens of millions of runs of representative ode. It remains to be

seen whether the need for �rst-lass lambda expressions will outweigh the need for

aurate low-level timing in the ommunity of real-time system designers.

Applying essentially the same onept as [50℄, but at a lower level, Lundqvist

and Stenstrom [51℄ augmented a PowerPC simulator to use an \unknown" value.

The unknown value allows a variant of instrution-level simulation, without having

to know preise input. In addition, they used path-merging heuristis to maintain a

tratable number of paths. Their work does not onsider vetored interrupt handling,

although their path-merging tehnique may be generalizable to assist in keeping paths

aused by interrupt handlers to a manageable number.

Researh on Real-Time Java [12℄ aims to make Java a legitimate language hoie

for real-time programmers. While the objet-oriented programming model has little

in ommon with Z86 assembly language, work on RTJ addresses many of the same

problems as this dissertation. Implementation of sopedmemory for RTJ [9℄ addresses

issues of bounding memory alloation, and more importantly, bounding exeution

time impats of memory management. Others have worked on WCET analysis for

Java Byte Code [8℄ and portable WCET annotations for Java Byte Code [10℄. How-

ever, the very abstrations that make Java an attrative development environment

hamper aurate analyses; just getting bak the gain time lost to overestimation of

WCET due to dynami dispath is a diÆult problem [43℄.

2.4 Speial-Purpose Languages

Many speial-purpose languages have been reated for use in real-time systems.

Real-Time Eulid [46℄ has provisions for shedulability analysis built in { all loops

have a bounded number of iterations or exeution time.

ESTEREL [11℄ is a prime example of a synhronous language that an be used for

programming reative systems. Synhronous languages use instant broadast between

proesses, whih means that interproess ommuniation and other data handling

take an irrelevantly small amount of exeution time. While synhronous languages

are well-suited to purely reative systems, they are not as well-suited to interative

or transformational systems. The embedded systems examined in this dissertation

exhibit harateristis of all three kinds of systems: reative, interative, and trans-

formational.

Like synhronous programming languages, the Giotto projet [40℄ seeks to provide

a platform-independent abstration for programming real-time systems. Giotto pro-

grams are onerned with funtionality and timing properties of the system. Tasks are

organized into modes, and ommuniate with one another through drivers { underly-

ing ode for transporting data between proesses, sensors, and atuators. The atual

tasks and drivers are not implemented in Giotto; they are exeuted in a platform-

dependent fashion using ompilers that must onform to Giotto's onstraints in order

to guarantee that the �nal system meets the properties promised by the Giotto model.

10

Extending the Giotto projet, the E-Mahine [41℄ is a platform-independent virtual

mahine that supervises the timing of a real-time system with respet to the external

environment.

2.5 Preonditions for Suess

As mentioned in the previous setion, Pushner and Koza odi�ed the standard

onditions for making WCET analysis tratable in 1989 [80℄. These limitations were

no interrupts, reursion, indiret alls, or goto's, with a-priori bounds on all loops.

Nine years later, a survey paper on tehniques for stati analysis of embedded

software [52℄ assumes all of these preonditions exept for the goto rule. The brunt

of work in the WCET area ontinues to revolve around timing e�ets aused by ahe

misses. Cahe e�et analysis is not appliable to many real-time systems, like the

Z86 family of proessors, whih do not even have ahe memory.

Li and Malik's Cinderella projet [47℄, so named for the �titious girl's hard real-

time onstraint with respet to midnight and pumpkins, automatially formulates

WCET analysis as an integer linear programming problem. Their tool analyzes soure

ode for the Intel i960KB proessor, and loates ritial variables with respet to the

timing analysis. The user then manually assigns bounds to the ritial variables, and

the analysis alulates �nal exeution times. Cinderella operates under the standard

Pushner and Koza assumptions, and does not allow interrupts.

Work in automati detetion of indution variables [62℄, and bounding of unnat-

ural loops in low-level languages [38℄ is appliable to loops present in the ommer-

ial miroontroller systems examined later in this dissertation. Healy and Whal-

ley's approah [39℄ onentrates on the branh instrutions themselves. By searhing

bakward to �nd all of the assignments that inuene registers used in the branh

omparison, they are able to lassify all jumps as one of unknown, fall-through, or

jump. The searh ontinues until all registers in the expression an be replaed by

immediate values, or a ontrol-ow merge point is enountered. This intra-proedural

analysis allows tighter bounds to be alulated for many loops.

2.6 Call Graphs and Model Cheking

A stati analysis of assembly ode may attempt to approximate the values in

spei� registers or on the stak. This problem is losely related to the problems of

all-graph onstrution and points-to analysis for objet-oriented programs. Au-

rate, salable analyses for these purposes exist in the programming languages om-

munity [75, 95℄.

The FLAVERS system at University of Massahusetts, (FLow Analysis for VER-

ifying Spei�ations), is a exible framework for ow analysis of onurrent pro-

grams [23,65℄. FLAVERS has even been extended to analyze in�nite exeutions [66℄,

whih are ommon in embedded systems. However, the FLAVERS system has a muh

11

higher-level abstration of onurrent tasks; separate tasks do not have ompletely

shared stak and data registers. Suh a high-level analysis thrives on a more rigidly

spei�ed interfae between tasks than an exist at the Z86 miroontroller level.

The stak-size heking algorithm in ZARBI an be seen as a demand-driven

version of an algorithm for model heking of pushdown systems like Podelski [79℄.

The algorithm presented later in this dissertation di�ers from Podelski [79℄ in that

it generates edges on demand, thereby ensuring that many unreahable nodes are

automatially pruned away. This demand-driven quality, ombined with tight ap-

proximation of feasible IMR values, prevents the exponential state-spae explosion

that would our in more na��ve analyses.

Analysis of partially-implemented real-time systems [7℄ is tangentially related to

this dissertation, in that the Z86 simulator in ZARBI models the unimplemented

portions of systems for test purposes, and stati analysis of timing bounds may involve

modeling external inputs in a similar fashion.

Researh at University of Wisonsin has used graph reahability [83℄ as a meha-

nism for program analysis. Context-sensitive analysis of the sort employed by ZARBI

has been shown to be undeidable in the general ase [84℄, as it is equivalent to Post's

Correspondene Problem. Fortunately, the straightforward heuristi that stak sizes

in Z86E30 software an be no larger than the meager 256 bytes of total RAM gives

the ZARBI algorithm deidability.

Maximum exeution time is formulated as a graph theoreti problem in Pushner

and Shedl [81℄, using T-graphs. T-graphs are substantially similar to the ontrol

ow graphs used in ZARBI with edges weighted by exeution times. Relative a-

paity onstraints provide information about infeasible paths in the T-graphs using

information provided by the user. When the T-graph onstrution is omplete, the

searh problem is passed on to an integer linear programming (ILP) solver. The T-

graph approah allows goto statements and an provide preise maximum exeution

time { rather than exeution time bounds { in ases where every instrution takes an

invariable amount of time to exeute under all irumstanes.

Like Brylow et al. [14℄, Wegener and Mueller [98℄ shows that stati analysis and

evolutionary testing an be used suessfully in onert to seek both upper and lower

bounds on worst-ase exeution time.

2.7 Type Theory

Advanes in the stati analysis of programs have addressed a plethora of safety

issues, inluding bounding resoures like stak size.

Palsberg and O'Keefe [74℄, and Palsberg and Shwartzbah [76℄ present and prove

soundness for a type system that heks the safety of a alulus with untyped lambda

terms. This is essentially the same kind of safety problem as type heking the basi

stak operations in Z86 programs, and a similar type system is used by the ZARBI

stak-bounding analysis to ath several lasses of potential errors.

12

In 1996, Neula and Lee proposed a tehnique for embedding a formal proof of

orretness in ode [69℄. In 1997, Neula re�ned his Proof-Carrying Code meha-

nism [67℄, and showed what suh a framework might look like. In 1998, Neula and

Lee revealed a working, non-trivial implementation of the PCC onept [68℄. The

proof-arrying ode onept inludes annotations for loop invariants, whih ould

ultimately be helpful in WCET analysis of loops.

Morrisett's TAL [59℄ is a RISC-like assembly language, with annotations at basi

blok and alloation points that allow the ode to be proven type-safe. In this way,

typed assembly language is a partiular kind of proof-arrying ode, with the overhead

of the proof being dramatially redued. Extensions to TAL inlude type-safe stak

management [58℄ for a substantial subset of the Intel x86 instrution set [57℄. Another

extension to the TAL system is Crary and Weirih's type system for bounding resoure

onsumption, partiularly time bounds [22℄.

The tool presented in [99℄ heks SPARC mahine ode for memory safety using

type state heking and input annotations. This approah has bene�ts similar to [68℄

and [59℄, in that safety heking is done at the lowest level, and does not entail trusting

an optimizing ompiler. Also like [68℄ and [59℄, the systems presented in [99℄ was not

designed with analysis of timing properties in mind.

While all of the papers above present valuable tehniques for stati analysis of

low-level programs, none allow for preemptive interrupts of any kind.

2.8 Tools

The Advaned Software Tehnology (ASTEC) group entered at Uppsala Uni-

versity has built a substantial infrastruture for analysis of WCET in real-time sys-

tems [29℄. The ASTEC group represents ontrol ow using a basi unit alled a sope,

whih is intuitively a looping onstrut. All sopes have an iteration ounts assoi-

ated with them; non-looping ode is a sope with zero or one iteration. Sopes are

assembled into a sope tree, whih impliitly represents all possible ontrol ow in the

program. Sopes are a very general onept, to whih a wide variety of exeution fats

an be attahed, inluding ow information fats [27℄ to desribe feasible exeution

paths, or fats about low-level fators like pipeline e�ets on the exeution time [30℄.

Sope trees are proessed into a system of onstraints using an impliit path enumer-

ation tehnique (IPET) analysis to determine the maximum exeution ount for eah

point in the program. WCET an then be estimated using the funtion

WCET = maximize(

X

8entity

x

entity

� t

entity

)

where x

entity

is the exeution ount for eah entity, t

entity

is the known exeution time

of eah entity, and ow onstraints ensure that the system examines only feasible

paths [27℄. The researh at ASTEC is in onert with IAR Systems, and therefore

has been tested at several points against realisti real-time systems. Work on the

13

ASTEC infrastruture ontinues, with support now inluded for ow analysis of C

programs [35℄.

The University of Saarland Embedded Systems (USES) group has used abstrat

interpretation [21,70℄ and ILP solvers to extensively model the Motorola \ColdFire"

MCF 5307 proessor [31℄. Their modular arhiteture breaks down the overall WCET

problem into smaller parts: a value analysis approximates possible addresses of mem-

ory aesses; a ahe analysis haraterizes all memory aesses as hits or possible

misses; a pipeline analysis takes into aount the speedup aused by subsequent in-

strutions passing through the pipeline in suession; a �nal path analysis alulates

the WCET of the program. Eah analysis an make use of information provided by

the previous analysis in the hain. The USES group's tool has been applied to test

programs supplied by AIRBUS [31℄.

Commerial ILP solvers like CPLEX [44℄ and lp solve [72℄ have been employed

to analyze advaned proessor features like ahe and pipeline analysis [3, 32℄, and

branh predition [55℄.

2.9 Summary of Related Work

Muh work has been done on timing shema for high-level languages, and on mit-

igating the timing e�ets of pipelines and ahes in modern proessors. Symboli

exeution and impliit path merging are among several tehniques intended to elimi-

nate false paths in representative ontrol-ow graphs in order to keep stati analysis

tratable in size. Model heking and type system advanes have been used to verify

many useful software properties. Nevertheless, previous work in the area of bounding

resoures for real-time software an be separated into two ategories:

� Work that ignores preemptive interrupts altogether, and

� Work that assumes interrupt handlers are trivially isolatable from the main

proess.

All of the real-time systems examined in this dissertation have interrupt handlers

heavily integrated with the main program; they share the same system stak, op-

erate on the same relatively small set of registers, and in many ases a�et ontrol

ow within the main program. Prior researh does not attempt analysis of interrupt

handlers as an integral part of the real-time system, and thus annot provide useful

bounds on interrupt-driven systems. Furthermore, for most prior work, the expo-

nential inrease in state-spae that ours when taking interrupt-handler ontrol-ow

into aount would make analysis largely intratable.

Chapters 4 and 5 present tehniques for analysis of interrupt-driven programs that

mitigate muh of the exponential inrease in state-spae during analysis.

14

3 FRAMEWORK

The next several hapters present the stati analysis tehniques used to bound stak

size (Chapter 4) and exeution time (Chapter 5) in interrupt-driven software. This

hapter de�nes ommon onepts and abstrations used throughout hapters 4 and 5,

as well as in the hapter on implementation details (Chapter 6).

3.1 Control Flow Graphs

The algorithms presented in this dissertation operate on an abstration of pro-

gram states known as a ontrol ow graph [2℄. This setion de�nes ow graphs and

terminology that will be used in subsequent disussions of the algorithms.

A ontrol ow graph is an abstration of program states and the transitions be-

tween them. Details and examples of ontrol ow graph onstrution are given in

setions 4.2, 5.2, and 6.1.

A ontrol ow graph G is de�ned as the tuple hV;Ei, onsisting of a �nite set of

verties V and edges E � V � V . A vertex is also sometimes alled a node. For the

analysis algorithms presented later in this hapter, a ontrol ow graph (abbreviated

hereafter as CFG) is the �rst omponent of a tuple hG;w; terminusi, where w is a

weight funtion that maps edges e 2 E to integers (w : E 7! Z) and terminus is the

designated vertex (terminus 2 V) to be the starting or ending point of a searh.

A ontrol ow graph, (abbreviated hereafter as CFG,) is a digraph [87℄, meaning

that all edges e 2 E are direted, or one-way; the �rst vertex in e is the soure, and

the seond vertex is the destination. Let A(v) be the set of edges e 2 E suh that

v is the destination vertex for e. Let
(v) be the set of edges e 2 E suh that v is

the soure vertex for e. A(v) is vertex v's inoming edge set, and
(v) is v's outgoing

edge set. A vertex v

0

is upstream of v

k

if there exists a path from v

0

to v

k

, but not

vie-versa.

Resoure-bounding algorithms deal extensively with paths in the CFG. A path �

is a sequene of verties v

0

; :::; v

k

suh that 8i 2 f0; :::; k�1g : hv

i

; v

i+1

i 2 E. A simple

path is a path in whih eah v

i

in � is distint. A yle [87℄ onsists of a simple path

from v

0

to v

k

, with an additional edge from v

k

bak to v

0

. A vertex v

k

is reahable

from vertex v

0

if there exists a path from v

0

to v

k

.

The resoures to be analyzed in a CFG are represented as edge weights. The weight

funtion w maps eah edge to an integer ost. G is therefore a weighted digraph, or

network [87℄. Every path � has a path weight or ost C(�) =

P

i2f0;:::;k�1g

w(v

i

; v

i+1

).

Let a null path be a path in whih 8i 2 f0; :::; k � 1g : w(v

i

; v

i+1

) = 0.

Many of the algorithmi details of resoure bound analysis in this dissertation

deal with the di�erent types of yles in CFG's. A negative yle refers to a yle �

15

in whih C(�) < 0. A yle is said to be positive if C(�) > 0. A zero-weight yle is

one in whih C(�) = 0. A zero-weight yle whih is also a null path is a null yle.

The longest path problem is a lassial graph problem [87℄ equivalent to many

problems in stati analysis. The longest path in the graph is de�ned as the path with

the largest ost, whih is not neessarily the path with the largest number of edges.

3.2 Stak Size Analysis

This setion presents properties that a CFG may possess. Later hapters will

show how a stak size analysis algorithm an take advantage of these properties. For

stak analysis, the weight funtion w is de�ned to assoiate eah edge in the graph

with an integer hange in stak height. In the resulting weighted digraph, stak size

analysis is equivalent to the searh for a longest path rooted at vertex terminus.

In the general ase, the longest path problem is known to be NP-hard and thus

is onsidered intratable [87℄. However, the ontrol ow graphs examined here have

additional struture that an be exploited to provide a more eÆient analysis. The

next several subsetions outline properties that make a CFG more amenable to stak

size analysis.

3.2.1 Negative Cyles

In the algorithms presented later, the longest path in a graph is unde�ned if the

graph ontains negative yles. While it is possible to onstrut atual programs

that result in negative yles in CFG's, suh programs are not dealt with in this

dissertation. Negative yles an be deteted in O(V

3

) using Floyd's Algorithm [87℄.

3.2.2 Summary Edge Closure

Later algorithms will use the onept of summary edges, as de�ned below. A

summary edge e

�

has weight zero, a soure vertex v

0

, and a destination vertex v

k

suh that there exists a path �

�

from v

0

to v

k

in whih the edge e

+

= (v

0

; v

1

) has a

positive weight, edge e

�

= (v

k�1

; v

k

) has an equal but opposite negative weight, and

the subpath from v

1

to v

k�1

is a null path. An example summary edge is shown in

Figure 3.1. The �rst and last edges in �

�

are said to be mathed, sine they have

the same absolute value of weight, with opposite polarity. Beause �

�

onsists of two

mathed edges and a null path, the total ost of �

�

is zero.

A graph is said to be losed with respet to summary edges if and only if every

non-zero-weighted edge is part of a zero-weighted path �

�

, and thus assoiated with

a summary edge e

�

. Closed graphs annot ontain a negative edge e

�

that does not

have a mathing e

+

. Likewise, a losed CFG annot ontain an e

+

that does not

have a mathing e

�

, or a summary edge e

�

with a non-zero weight. These onditions

16

0v

v 1 v 2 v k−2 v k−1

v k

0 0...0 0

Σe = 0

+
−e = +2

e = −2

Figure 3.1. Summary Edge Closure

orrespond to the type-heking of stak elements spei�ed in Setion 4.3.4, whih

ensure that pushes math pops, proedure alls math returns, et.

Summary edges summarize well-strutured zero-weight paths in suh a way that

all negative-weighted edges an be deleted from the graph without altering the length

of the longest paths. In a summary edge losed graph, any path from terminus

through a negative-weighted edge must pass through an equal and opposite positive-

weighted edge. If a longest path passes through a negative-weighted edge, then there

exists another path of equal length passing through the assoiated summary edge

instead. If a longest path does not pass through a negative-weighted edge, then again

no negative-weighted edges were required. Summary edge losure is a key property

that allows all negative-weighted edges to be removed from the graph without altering

the length of any longest paths. Constrution of summary edges is explored in greater

depth in Setion 4.3.

A graph with no negative yles an be losed with respet to summary edges in

time polynomial in V [53℄.

3.2.3 Positive Cyles

In this dissertation, the longest path in a CFG is not de�ned for graphs with

positive yles. If a positive yle exists in the graph, a path an beome arbitrarily

long by passing through the yle multiple times. A graph with neither negative nor

positive yles is bounded. Given a graph G that has no negative edges, positive yles

an be heked for by a bounded depth-�rst searh, in whih a graph is not bounded

if the ost of a path exeeds a given boundary, m. For stak size analysis it is assumed

17

that there is a known bound on allowable stak size for the program; the maximum

allowable size is used as m when heking for positive yles in the graph. This hek

an be performed in time O(V �m), whih is linear in V when m is onstant.

3.2.4 Null Cyles

A graph with no negative edges and no positive yles annot ontain any y-

les exept those that are zero-weight yles. Zero-weight yles without negative-

weighted edges an only be null yles. Null yles annot ontribute to the longest

path, and thus an be ollapsed into a single vertex without hanging the ost of the

longest path. Null yles an be deteted in a graph with no negative edges and no

positive yles in at worst O(V

2

) time [87℄.

A digraph with no yles is a direted, ayli graph, or DAG. For DAG's, the

longest path problem an be solved in linear time, O(V) [87℄.

3.3 Staks and Contexts

Some of the algorithms and tehniques presented later in this dissertation annot

be understood solely in the ontext of ontrol ow graphs without additional pro-

gram analysis onepts. This setion de�nes terminology that will be used in later

disussions.

A stak is a last-in, �rst-out data struture [71℄. The stak has at least two

operations de�ned, push and pop. An element x pushed onto a stak � results in a

new stak, x�. The pop operation on a stak x� returns element x and stak �. Let

the pop operation be unde�ned for an empty stak, written \fg".

An abstration used in many programs is the proedure all, in whih a ommon

segment of ode is fatored out into a proedure or subroutine, whih an then be alled

from multiple program loations [2℄. The program points from whih proedures are

alled are termed all sites.

A CFG that di�erentiates the verties for the same proedure when alled from

di�erent all sites is ontext sensitive [70℄. Context sensitivity neessitates represent-

ing additional state information at verties in the graph. Beause a proedure A an

all another proedure B before ompleting, the ontext required to distinguish two

states in the program may require more than one all site. Context represented as a

stak of all sites is a all string [70, 88℄.

With all strings omes a notion of valid or realizable paths in the CFG. Realizable

paths �

real

2 G are those in whih the sequene of program states orresponding to

verties along �

real

preserve the proedure all semantis of the original program.

That is, for all �

real

outgoing from vertex v

all

, �

real

returns from the proedure

subgraph to all site v

all

, rather than some other all site.

18

3.4 Re�nements

Coneptually, there are two mappings required to get from a raw program to

resoure bounds. The �rst mapping is from the program to the CFG. The seond

mapping is from the CFG to the resoure bounds. The previous setions in this

hapter have onentrated on the seond mapping. This setion onentrates on the

�rst mapping { translating a raw program into a preise and ompat CFG.

The next several subsetions present onepts underlying the onstrution of om-

pat and preise graphs for resoure bounding analysis. Further details an be found

in [2, 70℄.

3.4.1 Graph Building

Na��ve CFG onstrution algorithms an result in a ombinatorial explosion of the

vertex state spae. It will be important later to optimize the size and omplexity of

the graphs.

At one end of the spetrum, onsider a CFG representation where every vertex

in the graph ontains the values of every binary digit of state stored in any variable

used in the program. The preision of this representation is very good, beause every

possible state of the program an be unambiguously di�erentiated from every other.

However, the size of the state spae for verties in the CFG is exponential in the

number of bits of storage, resulting in very large graphs even with small programs.

At the other end of the spetrum, onsider a CFG representation where eah

vertex of the graph represents a partiular exeutable instrution in the program.

Suh a representation is ompat, being linear in the size of the program. However,

beause suh a CFG laks ontext sensitivity, it may ontain many unrealizable paths,

and thus laks the preision required to give useful resoure bounds for any of the

programs examined in this dissertation. Setion 4.1.1 revisits this disussion in the

ontext of a spei� hardware arhiteture.

Later hapters will show that for pratial reasons, an implementation must �nd a

middle ground where the CFG has enough preision to aurately model the resoures

that must be bounded, without the size of the graph beoming unmanageable.

3.4.2 Demand-Driven Constrution

For the algorithms presented in this dissertation, there is no need to represent

program points that annot be reahed by any exeution path. Unneessary expansion

of the CFG an be avoided by onstruting the graph in a demand-driven fashion,

where portions of the graph will only be onstruted when they are known to be

needed aording to a given riteria. An example of this is to build only the CFG

ontaining program states that are reahable from the terminus vertex.

19

The algorithms presented in later hapters also do not need CFG's to represent un-

realizable interrupt paths. Abstrat interpretation an be used to approximate values

without ompletely simulating a program [21℄. Later hapters show that by approx-

imating the ontents of ertain ontrol values in the hardware, many unrealizable

interrupt paths an be omitted from the CFG's.

3.4.3 Avoiding False Paths

As alluded to in Setion 2.2, model preision an be inreased by avoiding false

paths in the CFG. A false path �

false

is de�ned as a path for whih the sequene

of verties orresponds to a sequene of states that annot our, either beause the

sequene would violate the semantis of the program, or does not orrespond to what

the hardware does.

One of the tehniques available for urtailing false paths is to model only realiz-

able paths using all strings [88℄. Call strings introdue ontext-sensitivity to CFG

onstrution, whih is both more preise and more expensive to alulate [70℄. The

disadvantage of this tehnique is that the allowable state spae of verties in the graph

inreases exponentially in the number of bits required for the all strings.

3.4.4 Adaptive sliing

While arbitrary length all strings add preision to CFG's, the size penalty an

greatly inrease the omplexity of building the graph. A trade-o� an be made be-

tween preision and size by using all string suÆxes [88℄, with whih only the topmost

n elements of the all string are stored, for some limiting value of n.

Varying the value of n in the CFG allows the degree of stak ontext to be adjusted

for the preision required for analysis. In this way, additional ontext an be stored in

verties that are otherwise diÆult to analyze, while more ompat all string suÆxes

an be used in graph segments requiring less preision.

A graph with variable length all string suÆxes is multi-resolution, indiating

that the amount of ontext at verties an be varied aording to spae and preision

onerns. The tehnique of adding more detail to a stati analysis only where it is

required to reah desired preision is desribed in [78℄.

CFG yles aused by insuÆiently long all string suÆxes an be deteted in

time polynomial in V , as desribed in Setion 6.3.2. Setions 5.2.4 and 6.3.2 present

the adaptive sliing tehnique used for onstruting multi-resolution CFG's, and Se-

tion 5.3.2 disusses the preision/spae trade-o� of multi-resolution analysis.

3.5 Deadline Analysis

Deadline analysis of CFG's is similar to stak size analysis, but the CFG's have

di�erent properties. The weight funtion w is de�ned to assoiate eah edge in the

20

graph with a positive integer exeution time ount. Like stak analysis, the �nal

deadline analysis graphs do not ontain yles. Unlike stak size analysis, deadline

analysis CFG's are searhed bakward for longest paths ending at vertex terminus,

rather than starting at terminus. Deadline analysis graphs do not need to be losed

with respet to summary edges beause w is de�ned to provide only positive, non-zero

edge weights.

The problem of searhing for longest paths ending at a given destination vertex

in a digraph is the multi-soure longest path problem and an be solved for ayli

digraphs in linear time [87℄.

Chapter 5 presents methods for identifying, bounding, and eliminating positive

yles in the initial deadline analysis ontrol ow graphs.

3.5.1 Time Summary Edges

A key problem in deadline analysis is that many programs do not naturally or-

respond to an ayli CFG. In the experiments presented later in this dissertation,

none of the benhmark suite of test programs orresponded to an ayli initial CFG.

Cyles are ommon in deadline analysis CFG's beause positive yles orrespond

to the iterative ontrol ow produed by looping onstruts. Positive yles must

be removed from the graphs before deadline analysis an take plae, beause the

algorithms shown later do not de�ne the longest path in CFG's with positive yles.

Loops that produe positive yles in CFG's may have bounds that an be deter-

mined by other types of analysis. Setion 5.4 gives examples of loop onstruts in

real programs that an be bounded through methods other than stati analysis.

Given a positive yle �

yle

and a maximum ost bound C

max

that has been

determined by other methods to be the maximum ost of any path along �

yle

, the

yle an be replaed with a time summary edge of weight C

max

as shown in Figure 3.2.

In order for the deadline analysis algorithm to remain onservative, time summary

edges must be admissible [86℄. That is, a time summary edge an overestimate the

true exeution time of the loop it summarizes, but it annot underestimate. If un-

derestimated time summary edges exist in a graph, the deadline analysis algorithm

is not guaranteed to arrive at orret bounds.

Time summary edges annot be used to summarize yles in all ases; later hap-

ters will disuss the types of program loops that an be eliminated with time summary

edges. Setion 5.2.3 desribes the use of time summary edges in CFG onstrution,

and Setion 5.3.2 presents results of an empirial study of time summary edges re-

quired for real programs.

21

0vv k

v 1v k−1

πcycle

0vv k

v 1v k−1

maxτe = C

Figure 3.2. Time Summary Edge

22

4 STACK SIZE ANALYSIS

Stati analysis an provide safe and tight bounds on stak usage for interrupt-driven

systems implemented on the Zilog Z86 platform.

This hapter presents in detail the overall problem of stak-size analysis in suh

systems, the algorithm used in ZARBI's analysis, and the results of applying this tool

to a suite of ommerial embedded systems.

After a brief overview in setion 4.1, setion 4.2 presents a small example of an

interrupt-driven program and its ow graph. Setion 4.3 desribes the algorithms used

in this dissertation to �nd bounds on stak sizes, and setion 4.4 shows experimental

results produed with ZARBI. Setion 4.5 summarizes the hapter and evaluates the

prospets for saling up these tehniques to other proessors, suh as the Motorola

68000 family.

4.1 Overview

As mentioned earlier, resoure-onstrained devies are used in many appliations.

Examples inlude ell phones, personal digital assistants, digital thermostats, and

many others. While larger proessors an be employed to omfortably implement

embedded systems, eonomi realities result in the deployment of heaper proessors

with tighter resoure onstraints. It an be diÆult to �t required funtionality into

suh a devie without sari�ing the simpliity and larity of the software.

The fous of this dissertation is on small, interrupt-driven devies based on the

Z86E30 proessor [100℄, a desendant of Zilog's Z8 proessor. The Z86 features 256

8-bit registers, 4K of instrution ROM, and 24 I/O lines organized into three 8-bit

ports. In addition, the Z86 has six levels of vetored interrupt proessing, and two

internal timers. Despite the Z86's limited resoures, it is deployed in many elaborate

systems where larger, more powerful proessors are not ost e�etive. In many suh

systems, the Z86's RAM spae, ROM spae, and I/O lines are pushed to the limit.

One of the proprietary embedded systems we have examined has a single Z86 phase-

ontrolling three variable speed fans, operating �ve heating/ooling units, wathing

four temperature sensors, monitoring 60{yle power for brown-outs, networking with

a system overseer via RS{485 serial port, and displaying all of its readings on an

intelligent LCD unit, all in real time. In suh appliations, the software is often

manually optimized in assembly language, to squeeze every byte out of the ROM,

and to use every available register of RAM.

Other proessors used for embedded appliations omparable to the Z86 inlude

derivatives of the Motorola 68000 series [60℄. For example, Palm Pilots and their

lones are based on the Motorola DragonBall CPUs (MC68328 [61℄), and some ell

23

phones are based on the same arhiteture family. These proessors have maskable,

vetored interrupt handling muh like the Z86. Devies suh as Palm Pilots and

ell phones, whih funtion primarily by proessing external inputs, an use vetored

interrupt handling to provide prompt responses.

Compared with the 68000's, the Z86 has a muh smaller instrution set and fewer

interrupts (6 interrupts versus 18 in the ase of DragonBall MC68EZ328). Yet the Z86

is apable of vetored interrupt handling, making it attrative for rapid prototyping

of programming tools.

The dissertation presents algorithms that have been designed and implemented to

assist developers with three tasks that an onsume a signi�ant part of a real-time

system programmer's time:

� Stak-Size Analysis: On the Z86, the stak exists in the 256 bytes of register

spae, and it is ritial that the stak does not overow into other reserved

registers, orrupting data used elsewhere in the program. At the same time,

overestimating the stak requirements takes away badly needed registers. The

algorithm given later in this hapter �nds safe and tight upper and lower bounds

on the maximum stak size for all but one of the test programs examined.

� Type Cheking of Stak Elements: Items are taken o� the stak either with a

POP instrution, or when returning from a proedure or an interrupt handler.

The analysis presented in this dissertation uses an impliit type system with just

four types { interrupt information, ode address, interrupt mask, unknown {

and heks that the data on top of the stak has the right type at the appropriate

time.

� Interrupt-Lateny Analysis: The miroontroller systems examined need to han-

dle interrupts within hard real-time bounds. Chapter 5 presents tehniques for

�nding upper bounds on interrupt latenies.

While the overall analysis of these embedded systems requires domain-spei�

knowledge about the appliations, the tools presented in this dissertation aept as

input the bare, unannotated Z86 assembly ode.

ZARBI's stak size bounding funtionality is based on a known algorithm for

model heking of pushdown systems [79℄. That algorithm is losely related to the

style of interproedural analysis for C that has been studied by Reps [83℄. However,

the presene of vetored interrupt handling reates additional hallenges, as explained

next.

4.1.1 The Stak Size Problem

Given a program in Z86 assembly language, the stak size heking algorithm �rst

builds a ontrol ow graph (as previously de�ned in Setion 3.1), and then runs the

desired analyses on the CFG. The key question in this onerns the way to abstrat

a Z86-mahine state into a node in the CFG:

24

How muh of a Z86-mahine state should be represented in a CFG node?

In one extreme, a node ontains the whole Z86-mahine state. Suh a ow graph

would be huge, that is, in the worst ase, about 2

256�8

= 2

2048

nodes. It is beyond

urrent means to represent that many nodes.

In the other extreme, a node represents just the program ounter (PC). Suh ow

graphs are useful for interproedural analysis of C programs [83℄, yet they are of little

value in the presene of vetored interrupts. When ontrol transfers to an interrupt

handler, the urrent address is plaed on the stak, and all interrupts are disabled. If

one does not model the interrupt mask register (IMR) in whih it is reorded whether

interrupts are enabled or disabled, then the analysis is led to believe that a new

interrupt an our as soon as ontrol has arrived at the handler. This proess an

be repeated, with the result that the stak, seen from the analysis's point of view,

an grow without bounds.

There is another onsequene of not modeling the IMR; if an interrupt request

arrives at a given exeution point it annot be guaranteed that the request will be

handled within a �nite amount of time. The ore of the problem is that false interrupt

handler paths may appear in the graph if the IMR value is not approximated.

The above observation makes it lear that the stak size heking algorithm needs

to model at least some of the IMR. On the Z86, the IMR onsists of seven bits, of

whih one is the master bit whih enables or disables all interrupt proessing, and six

others enable or disable individual interrupts [100℄. An interrupt will only be handled

if both the master bit and its own bit are set. When an interrupt handler is alled,

the master bit is automatially turned o�. If an interrupt is not handled as soon as

it arrives, it will wait (in the IRQ register) until the IMR hanges to a value that

entails that the interrupt an be handled.

One ould onsider modeling the PC and the master bit of the IMR. However, this

is just as troublesome as modeling only the PC, as one of the tasks of an interrupt

handler often is to re-enable interrupts by turning on the master bit. When this

happens in the interrupt handler itself, the analysis is led to believe that an interrupt

for that same handler an now our exatly at the point of setting the master bit,

leading to a stak growing without bounds, as above.

The CFG used for stak size analysis therefore models the PC and the IMR in

their entirety. A Z86-assembly program is typially on the order of 2

10

lines of ode

(beause there is 4K of instrution ROM), and the IMR is seven bits, so an upper

bound on the number of nodes is 2

10+7

= 2

17

. Beause of the six interrupt soures,

eah node in the ow graph an have up to six edges going to interrupt handlers, and

one or more edges orresponding to non-interrupt operation. This means that the

graph is likely to be less sparse than often seen in program analysis of C programs. It

may be possible to model some abstration of the PC and the IMR, thereby reduing

the overall size of the state spae, but this idea is not explored by this dissertation.

The CFG an model more than the PC and the IMR, but it is not lear in general

whih other registers it would be bene�ial to model. Chapter 5 desribes the addition

25

of stak information to eah node in order to re�ne the model. The next key question

is:

Can modeling just the PC and the IMR be suÆient for a useful program-

ming tool?

In other words, an the modeling of the PC and the IMR be a good middle

ground between modeling the whole mahine and modeling the PC? The riteria for

usefulness in this ontext are given by

� the degree to whih the resultant CFG is a good basis for the three kinds of

heks that the tool should support: stak-size analysis, type-heking of stak

elements, and interrupt-lateny analysis; and

� the amount of time and spae it takes to build the CFG and perform the heks.

The remainder of this hapter presents an experimental evaluation of the above ques-

tion.

4.1.2 Results

The stak size heking algorithm presented here is able to produe tight, safe

bounds on maximum stak usage for six of the seven proprietary embedded systems, as

well as a number of other interesting test inputs. In addition, the CFG's onstruted

are annotated with information about time, spae, safety, and liveness, whih allows

veri�ation of several ode safety properties. The stak size estimation tehnique

presented in this hapter is one of the �rst to give an eÆient and useful stati

analysis of assembly ode, and appears to be the �rst to use symboli exeution

over an interrupt mask register to produe a tratable ow graph in the presene of

vetored interrupts.

The prototype implementation inludes a Z86 simulator, whih has provided lower

bounds on the maximum stak sizes, against whih the upper bounds an be om-

pared.

In six of the seven ommerial ases, and for all of the additional test input ases,

the algorithm gives an exellent estimate of the maximum stak size. In all ases,

this estimate was either exat (that is, equal to the lower bound that we found via

simulation), or at most two bytes more than the lower bound.

For the seventh ommerial ase, the stak size annot be bounded without a

more detailed analysis inluding either expliit loop bounds, or enough data ow

information to infer loop bounds.

Also in six of the seven ommerial ases, the type-heking algorithm was able to

hek the types used in all stak manipulations, and found no errors. The seventh ase

ould not be heked, beause the stak bound must be known for the type-heking

algorithm to sueed. Several additional test inputs were reated with deliberate

26

; Constant Pool (Symbol Table).

; Bit Flags for IMR and IRQ.

IRQ0 .EQU #00000001b

; Bit Flags for external devies

; on Port 0 and Port 3.

DEV2 .EQU #00010000b

; Interrupt Vetors.

.ORG %00h

.WORD #HANDLER ; Devie 0

; Main Program Code.

.ORG %0Ch

INIT: ; Initialization setion.

0C LD SPL, #0F0h ; Initialize Stak Pointer.

0F LD RP, #10h ; Work in register bank 1.

12 LD P2M, #00h ; Set Port 2 lines to

; all outputs.

15 LD IRQ, #00h ; Clear IRQ.

18 LD IMR, #IRQ0

1B EI ; Enable Interrupt 0.

Figure 4.1. Example Program (part 1)

stak manipulation errors; all errors were aught by the prototype implementation of

the algorithm.

In summary, by modeling only the PC and IMR registers, the stak size heking

algorithm is able to provide solid stak-usage bounds for six out of the seven real-time

systems. The analysis is suÆiently fast and preise to be useful in pratie. However,

providing stak-usage bounds for the seventh system, and exeution time bounds in

general, requires modeling of additional information, as disussed in hapter 5.

4.2 Model Building

This setion gives an informal presentation of onepts that will be rigorously

de�ned in setion 4.3. Figures 4.1 and 4.2 show a small Z86 program featuring a

main program loop, and a single interrupt handler, both of whih an all a shared

proedure. Figure 4.3 shows the orresponding ow graph.

27

START: ; Start of main program loop.

1C DJNZ r2, START ; If our ounter expires,

1E LD r1, P3 ; send this sensor's reading

20 CALL SEND ; to the output devie.

23 JP START

SEND: ; Send Data to Devie 2.

26 PUSH IMR ; Remember what IMR was.

DELAY:

28 DI ; Mustn't be interrupted

; during pulse.

29 LD P0, #DEV2 ; Selet ontrol line

; for Devie 2.

2C DJNZ r3, DELAY ; Short delay.

2E CLR P0

30 POP IMR ; Reativate interrupts.

32 RET

HANDLER: ; Interrupt for Devie 0.

33 LD r2, #00h ; Reset ounter in main loop.

35 CALL SEND

38 IRET ; Interrupt Handler is done.

.END

Figure 4.2. Example Program (part 2)

Eah node in the all graph ontains two piees of information. The �rst is the

value of the program ounter, and the seond is the value of the IMR. For this diagram,

representation of the IMR has been simpli�ed to two bits; the �rst represents the

master mask bit, and the seond represents the IRQ0 mask bit. (The example only

makes use of interrupt zero.)

Control ow begins in the upper left orner of the graph, at the label \INIT".

At this time, the program ounter is 0C, and the IMR is leared. Aross the top of

Figure 4.3, straight line initialization ode is exeuted, with no interrupt enabled. At

the node labeled \START", the PC has value 1C, and both the IRQ0 and master

IMR bits have been set. From this point on, all nodes with an IMR of 11 have an

outgoing edge leading to the interrupt handler.

28

Σe Σe Σe Σe

0C 00 00 00 00 00

29

0F 12 15 18 1B 1C

1E

202628282635

33

2C

2E

3038 32 32 23

01 11

11

11

1111

111101

01

01

010101

01

01 01 01

!3

!2 !1 !1 !2

?2 ?2?1 ?1

?3

INIT: START:

HANDLER:

Figure 4.3. Example Program Flow Graph

Edges labeled with \!" or \?" orrespond to pushing and popping operations,

respetively. The number following the puntuation on these edges indiates the

number of bytes involved in the stak operation. The PUSH instrution pushes one

byte on the stak, while CALL pushes two, and an interrupt pushes three. Pop edges

are distinguished with dashed lines. Additional \summary" edges generated by the

analysis are labeled \e

�

", and will be explained in a later setion.

In order to alulate maximum possible stak size, a depth-�rst traversal of the

graph is made, totaling up the push values of all the edges along eah path. Pop

edges are not traversed, but the summary edges are. In the �gure, this means that

the dashed edges are not onsidered during the searh for the longest possible stak

length. From this, a path with maximal stak size is found.

For the example program, the maximum stak size an be seen to be nine bytes.

In short, the maximal path is to take an interrupt from node (28,11), where the size

is already three. The interrupt pushes three more bytes on the stak to get to the

handler, at (33,01). From there, the interrupt takes the edges to nodes (26,01) and

(28,01), adding three more bytes to the stak for a grand total of nine bytes.

All of the bold-edged nodes in the ow graph have a �nite worst-ase path to reah

the interrupt handler. Nodes with thin edges, however, defy the analysis presented

29

in this hapter when trying to alulate maximum interrupt lateny. Chapter 5 will

present the modi�ations neessary for the deadline analysis algorithm to bound

interrupt lateny at these nodes.

4.3 Model Cheking

4.3.1 The Z86 Assembly Language

As alluded to earlier, the Z86 arhiteture has several speial registers that deal

with interrupts. The Interrupt Mask Register (IMR) ontains information about

whih interrupts are turned on. Six of the bits ontrol interrupts zero through �ve.

The Interrupt Request Register (IRQ) indiates whih interrupts have �red, but have

yet to be handled. A third register is used to set interrupt arrival tie-breaking prior-

ities, but tie-breaking does not ome into play for this analysis.

The Z86 arhiteture supports an indiret register addressing mode. The analysis

relies on the unheked assumption that the speial registers IMR, IRQ, and SP are

not altered indiretly. Cheking the assumption would require further analysis of all

256 registers and is left to future work.

The analysis algorithms in this dissertation restrit diret manipulation the IMR,

IRQ, and SP registers, as disussed below. Other forms of use an be loated easily,

and are expliitly agged as errors by an early pass of the tool.

� IMR values are allowed to be pushed on the stak, popped from the stak,

or manipulated by any binary operation in whih one operand is a numeri

onstant, and the other is the IMR. While other operations on the IMR are er-

tainly possible to express in the Z86 assembly language, the analyses presented

here do not allow suh operations. These onstraints on the expressiveness of

the language allow preise sets of possible IMR values to be alulated for all

program points, and have proven to be suÆiently exible to admit all seven of

the ommerial benhmarks.

� IRQ is read only. The Z86 arhiteture allows programs to write to the IRQ

register, essentially raising interrupt requests manually. There does not appear

to be an inherent barrier to analyzing programs that use this feature, but it was

not enountered in any of the benhmark programs, so it has not been modeled

in these analyses.

� SP is allowed to be manipulated impliitly by stak-spei� instrutions or

expliitly by initialization instrutions. In the ommerial benhmarks, it is

not unusual for the stak to be leared by an expliit reloading of the initial

stak pointer, so this is admitted by the analysis, and is noted by a speial

nuke stak edge in the ontrol ow graphs. However, the analysis algorithms

do not allow the stak pointer to be reinitialized to arbitrary values, and will

rejet any program that loads more than one numeri onstant into the stak

30

pointer register. The nuke edge is a speial ase, whih for simpliity will be

omitted from disussion for the rest of the hapter; in the stak-size analysis, it

is treated like an e edge from the start node of the program to the destination

of the nuke edge.

There are other unheked assumptions in this dissertation's stak-size analysis.

It is assumed that the system stak does not overlap with registers used for other

purposes, and therefore is not orrupted by other instrutions. The very purpose of

this stak-size analysis is to help the system developer hek this assumption.

It is also assumed that the Z86 wathdog timer funtionality does not interfere

with ontrol ow. The Z86 has a WDT opode, whih one exeuted, will reset the

proessor if another WDT opode is not exeuted within a programmable deadline.

This feature is intended to allow system designers to prevent the software from loking

up by entering an unintended in�nite loop or other unforeseen ontrol ow. Wathdog

timer reset therefore signals a serious error in the program, and the analyses urrently

assume that wathdog timer e�ets do not our. Cheking this assumption is an

interesting problem all by itself, one for whih these analyses may be extended to

takle in future work.

4.3.2 From Z86 Assembly Code to a Flow Graph

Given a Z86 assembly program, a CFG is onstruted in whih eah vertex is

labeled with a PC value and an IMR value. The start vertex is labeled with 1) the

PC value for the �rst line of the program, and 2) the IMR value where all bits are 0.

The graph is built in a demand-driven way suh that only nodes that are reahable

from the start node are explored. Eah edge represents a possible step of omputation.

The ow graph is a onservative representation of the program: while eah possible

omputation at the program level is represented as a path in the graph, there may

be paths that do not orrespond to a omputation. (This is the False Path problem,

as mentioned earlier in Setions 2.2 and 3.4.3.)

There are ten kinds of edges, eah with a distintive label, as shown in Figure 4.4.

An edge label indiates how many elements are plaed on the stak (or removed

from the stak) by the orresponding step of omputation. An edge with label \e"

or \e

�

" has weight 0, an edge with label \!n . . . " has weight n, and an edge with

label \?n . . . " has weight �n. Label \unk" is used as an abbreviation of \unknown"

in onnetion with edges of weight 1 that are unrelated to IMR. Some of the labels

also ontain the atual values plaed on the stak. Many instrutions do not hange

the stak; they are represented rather anonymously with an edge labeled \e", whih

stands for an \epsilon transition" in the equivalent automaton. Two kinds of edges

do not orrespond to any instrution: the edges for impliit interrupt alls, and the

summary edges, \e

�

", whih are a speial lass of the epsilon edges.

Coneptually, the graph is built in three passes. First, the edges for the normal,

non-interrupt ode are inserted. This inludes all instrutions that plae values on

31

instrution format edge label omputation step

hvariousi e Epsilon edge { no stak hange.

hsummaryi e

�

Epsilon summary edge { no stak hange.

PUSH IMR !1 the value of the IMR is plaed on the stak.

PUSH hnot IMRi !1 some value (not IMR) is plaed on the stak.

CALL hlabeli !2 proedure all. (return address saved)

hinterrupt alli !3 impliit interrupt all. (return + ags saved)

POP IMR ?1 the IMR is assigned the value on top of stak.

POP hnot IMRi ?1 some register (not the IMR) is assigned

the value on top of the stak.

RET ?2 return from proedure all.

IRET ?3 return from an interrupt handler.

Figure 4.4. Instrutions and the orresponding edge labels

-

6

-

?

m p

n q

e

e

�

?1!1 (IMR)

POP IMR

-

6

-

?

m p

n q

e

e

�

!1 \unk" ?1 \unk"

POP hnot IMRi

-

6

-

?

m p

n q

e

e

�

?2!2 (a)

RET

-

6

-

?

m p

n q

e

e

�

IRET

!3 (s,r) !3

Figure 4.5. Rules for Inserting Summary Edges

the stak, or do not hange the stak; instrutions that pop values from the stak are

not yet onsidered. Seond, impliit interrupt all edges are inserted from all program

points, based upon the set of possible IMR values already known from the �rst pass.

Finally, the graph is losed under the four rules shown in Figure 4.5 and the rule that

the epsilon edges, (labeled \e" or \e

�

",) form a transitive relation. In eah of the four

rules, the intention is that if the solid edges are present, then the dashed edges must

also be present.

32

The four rules illustrated in Figure 4.5 govern the generation of 1) pop edges that

orrespond to removing values from the stak, and 2) epsilon summary edges with

label \e

�

" that onnet the point where values are plaed on the stak to the point

where the same values are removed.

Pop edges are not used in this hapter's stak-size analysis, but matter in later

hapters. The e

�

edges summarize a net stak size hange of zero aross a segment

of ode with both push and pop edges.

For example, onsider in detail the �rst rule in the upper left of Figure 4.5. The

node n is for an instrution \PUSH IMR", and there is an edge from n to m that

models the IMR being plaed on the stak. Moreover, there is an edge labeled \e"

from the node m to a node p. The node p is for an instrution \POP IMR". There

ould be an arbitrary number of instrutions between m and p with a net stak hange

of zero, but beause epsilon edges are transitive, these ases are the same as the single

edge ase. It is now straightforward to alulate the label of a node q that will be

the target of an edge (a pop edge) from p. The pop edge represents removing the

IMR value from the stak and assigning it to the IMR register. The epsilon summary

edge, labeled \e

�

", is inserted from n to q. The epsilon summary edge reets that

the stak size is the same at n and q, so it is warranted to allow a shortut.

Notie that there an be more than one outgoing edge from a node for an instru-

tion that removes elements from the stak.

The stak size analysis algorithm an be understood as a demand-driven version

of an algorithm for model heking of pushdown systems [79℄. Unlike [79℄, this algo-

rithm generates pop edges on demand, thereby ensuring that only reahable nodes

are onsidered. The losure proess an be done in O(n

3

) time where n is the number

of nodes in the �nal ow graph [53℄.

4.3.3 Stak-Size Analysis

To alulate a stak-size estimate, it is suÆient to onsider only edges with

weights 0 or higher. This is a fundamental property of all graphs that have been

losed in the sense explained earlier in Setion 3.2.2. The analysis an now alulate

a stak-size estimate by a straightforward depth-�rst traversal. For all paths from the

start node of the graph, the traversal alulates the sum of the weights of the edges

on the path. The maximum number found in this way is the estimated stak size. In

ase the traversal enounters a loop with at least one edge of weight 1 or more, then

the stak-size estimate is \in�nite." Suh a loop indiates a possibly in�nite loop in

the program where the stak grows eah time around the loop. Suh a situation may

signify a programming error.

33

4.3.4 Type Cheking of Stak Elements

The goal of the type hek is to ensure that various instrutions are exeuted in a

mahine state where the top of the stak is of the expeted type. The type-heking

algorithm uses an impliit type system with just four types:

type ::= !1 \IMR" j !1 \unk" j !2 j !3:

Edge labels an be mapped to types in the obvious way.

The type hek ensures that for every path of the form

n

!. . .

������! m

e

! p

where p models one of \POP IMR", \POP hnot IMRi", \RET", \IRET", we have

one of the four situations

n

!1 (IMR)

������! m

e

! p and p models \POP IMR"

n

!1 \unk"

������! m

e

! p and p models \POP hnot IMRi"

n

!2 (a)

������! m

e

! p and p models \RET"

n

!3 (r,a)

������! m

e

! p and p models \IRET".

Suh heks orrespond to the safety heks of Palsberg and Shwartzbah [74, 76℄,

and an be implemented eÆiently as outlined in Setion 3.2.2.

4.4 Experimental Results

4.4.1 Benhmarks

The seven proprietary miroontroller systems used for these experiments are

provided by Greenhill Manufaturing, Ltd. (http://www.greenhillmfg.om/). Three

of the ontrollers, \ZTurk", \GTurk" and \CTurk", drive multiple-zone evaporative

ooling systems, often present in poultry barns, partiularly for turkeys. \Fan" and

\Serial" run variable speed ooling fans for fored ventilation strutures, suh as

modern swine barns. \Rop" and \DRop" handle a water quality / reverse-osmosis

�ltering system ommonly used in ar washes.

In addition to the ommerial systems, test results are inluded for a smaller test

program written to display more interesting interrupt behavior than the ommerial

benhmarks. This benhmark is labeled \Miro00", and its full text an be found in

Appendix A.

34

4.4.2 Infrastruture

The Zilog Arhiteture Resoure-Bounding Infrastruture inludes an instrution

yle-level simulator for the Z86C30 arhiteture, in order to more losely examine

the exeution of programs. The spei�ations for the simulator are taken from the

Zilog produt spei�ation available for this arhiteture, [100℄. Where the spei�-

ations have been found to be ambiguous, worst-ase assumptions have been made.

Simulation has been hosen beause the atual Z86 hips do not ontain hardware

provisions for pro�ling, and beause running software on the Z86C30 requires per-

manently burning a partiular program into a \one-time programmable" hip, whih

would quikly beome ost-prohibitive in a researh setting. The ommerially avail-

able development emulator for this arhiteture has very limited support for timing

analysis, and does not allow single-step examination of interrupt behavior.

All of the miroontroller systems available to us from Greenhill have the Z86

proessors built into a iruit board with several other peripheral hips, and the

software for the systems reets this fat. The simulator must therefore inlude

models of this external hardware in order to properly simulate the environment of

the program. Simple state mahines provide the minimal interation neessary to

simulate the normal exeution paths of the systems. These state mahine models

are generally onstruted from the hardware manufaturers' spei�ations for the

individual omponents, and assume worst-ase delays wherever possible.

It appears to be a fundamental property of the examined embedded systems that

o�-hip resoures must be onsidered in order to undertake any omprehensive mod-

eling of the system. While this kind of information should be readily available to the

system designer in a prodution environment, it means that tools like the prototype

presented here are less likely to be able to be applied to new systems \out of the

box."

ZARBI inludes pilot sripts that drive the simulator using a geneti algorithm

to searh for interrupt onditions that lead to large stak heights. (See Setion 6.2.4

for details.) Beause these onditions yield atual exeutable paths in the software,

(rather than \false paths",) they provide realisti lower bounds for maximal stak

height, against whih stati analysis results an be ompared.

4.4.3 Building the graph

This setion displays results taken from running the stak-heking algorithm on

the test suite of programs.

All algorithms presented in this hapter are implemented in Java, and run on the

IBM Java2 SDK 1.3. Runs were made on a 500 MHz Pentium3-based laptop.

The stak-heking implementation has been optimized for speed, but avenues

for further optimization remain. Spae usage has not been optimized, and ould be

redued signi�antly with further e�ort. However, the urrent prototype implemen-

tation is suÆiently fast (most runs take a few seonds) and suÆiently ompat (at

35

Building the graph

Program Nodes Edges Time Spae

CTurk 1,209 2,316 4.01 s 31.6 MB

GTurk 1,581 3,101 4.20 s 32.2 MB

ZTurk 1,493 2,885 4.12 s 32.1 MB

DRop 1,138 2,043 4.02 s 31.1 MB

Rop 1,217 2,278 4.08 s 31.7 MB

Fan 5,149 17,195 5.13 s 39.3 MB

Serial 394 1,082 3.78 s 31.0 MB

Miro00 148 222 3.16 s 34.9 MB

Figure 4.6. Graph size and resoure usage for benhmarks

most 40 MB) for experimentation. Naturally, both speed and spae usage ould be

improved if implemented in C.

All time measurements are averages over 10 runs. To prevent external fators suh

as hard disk speed or ahe behavior from inuening the simulator results, several

\warm-up" runs are made prior to the reorded runs. The reported time usage is the

real time elapsed for the run from start to �nish.

The spae measurements were made with top. The spae reported is the maximum

total size during the run, inluding spae taken by the Java virtual mahine, garbage

olletor, and JIT. Measured spae usage was deterministi (the same for eah run of

the same program).

Roughly half of the time and spae usage reported in Figure 4.6 is spent building

the graph; the rest is spent starting the Java virtual mahine and parsing the Z86

assembler �le. The parser uses the tools JavaCC [96℄ and JTB [91℄ for parser generation

and syntax tree manipulation.

4.4.4 Stak-Size Analysis

The upper bounds on the stak sizes found by the analysis are reported in Fig-

ure 4.7, in the olumn labeled \Upper Bound". The lower bounds reported in Fig-

ure 4.7 are from the geneti algorithm searh with the simulator; beause these repre-

sent stak heights from known exeution traes, the true maximum stak height must

be no less than these lower bounds.

The stak-size analysis typially takes around 0.1 seonds, and takes little extra

memory beyond the base size of the Java virtual mahine. Note that the olumns

36

Stak-size analysis

Program Lower Upper Total Total

Bound Bound Time Spae

CTurk 17 18 4.11 s 31.6 MB

GTurk 16 17 4.31 s 32.2 MB

ZTurk 16 17 4.22 s 32.1 MB

DRop 12 14 4.14 s 31.1 MB

Rop 12 14 4.18 s 31.8 MB

Fan 11 N/A N/A N/A

Serial 10 10 3.87 s 31.0 MB

Miro00 37 37 3.21 s 34.9 MB

Figure 4.7. Stak size results

Total Time and Total Spae inlude the ost of building the graph, as well as the

stak size analysis.

The analysis presented here is unable to asertain an upper bound on the program

\Fan" beause it has the assembler equivalent of a for loop with a PUSH in the

body. This orresponds to a positive yle in the CFG (see Setion 3.2.3). While it is

obvious to a programmer that the number of loop iterations (and therefore the stak

size) is bounded for this partiular loop, the analysis algorithm annot see the bound

based solely on the PC and IMR registers. The prototype implementation inludes

provisions in its data strutures to model this kind of ontrol ow, but the analysis

extensions have not been implemented at this time.

Despite e�orts to limit unrealizable ontrol ow paths in the graphs, the upper

bounds presented in Figure 4.7 may not orrespond to genuine exeution paths in the

running miroontroller programs. The following approah is used to evaluate the

preision of the upper bounds by �nding lower bounds in atual program runs.

ZARBI's yle-level simulator for the Z86E30 arhiteture inludes all but a few

obsure proessor features that are not used by the benhmark programs. The simula-

tor an interat with state mahine models of external devies, inluding an intelligent

LCD display, an 8-bit Analog-to-Digital onverter, a 9600-baud RS-485 serial port,

and a 64-byte EEPROM hip. The simulator an monitor stak size, and reords the

maximal value together with the orresponding program path. Any run of one of the

benhmark programs with some interrupt shedule will generate a lower bound on

the stak height; a geneti algorithm direts the evolution of interrupt shedules to

searh for a tight lower bound.

The input to the simulator is an assembly program and an interrupt shedule.

The shedule onsists of a number of interrupt request sequenes that should be �red

37

during the run in order to test the assembly program. The format of the interrupt

shedules supports both single-point interrupts and periodi interrupts. A full de-

sription of the interrupt shedule �le format an be found in Appendix C.

For ompleteness, the experiments presented above used several strategies to

searh for an interrupt shedule that gave as tight a lower bound as possible. These

strategies inluded simulation with 1) an \expert" interrupt shedule written by a per-

son familiar with the Greenhill miroontroller systems, 2) 1,000 randomized shed-

ules, and 3) 1,000 shedules generated by the geneti algorithm. The geneti algorithm

onsistently mathed or outperformed the results of the other two approahes. The

lower bounds found by the simulator with the winning interrupt shedule are reported

in Figure 4.7.

4.4.5 Type Cheking of Stak Elements

For the six benhmark programs for whih the analysis produed a �nite stak

size, all stak operations type hek. This was also true for all additional test inputs

that were not written with deliberate stak manipulation errors. All of the test inputs

with intentionally broken stak operations were deteted and properly agged. The

tool arries out the heks while exeuting the losure rules that insert pop edges.

The algorithm for type heking does not apply to programs with unbounded

stak size. Intuitively, this is beause in suh programs, it is not possible to math

the push and pop operations \one to one."

4.5 Summary

The experiments shown in this hapter were designed to explore the question,

\Can modeling just the program ounter and interrupt mask registers lead to a useful

programming tool?" The answer is ertainly yes.

The stak size heking algorithm was able to provide tight upper bounds on six

of the seven proprietary programs. Furthermore, it e�etively type heked the stak

operations on those six programs.

The seventh program de�es analysis only beause of a single loop whih depends on

other registers to determine stak size. While this kind of limitation is symptomati

of the undeidability of this problem in the general ase, muh work has been done

in the past on handling simple instanes, as are likely to our in assembly programs

of this type. Identi�ation of indution variables and loop unrolling [62℄, and loop-

invariant spei�ation [67, 68℄ are suessful tehniques that may be ombined with

the analyses presented here to takle the upper bounds on the seventh program.

As for alulating maximum interrupt lateny, PC and IMR values alone are not

suÆiently preise to di�erentiate nodes with disparate latenies; lateny analysis will

be overed in depth in Chapter 5.

38

This work has the potential to impat far more assembly languages than that of

the Z86. The maskable, vetored interrupt arhiteture present on the Z86 is very

similar to many other proessors, suh as the Motorola 68000 family, and many RISC

DSP hips. Palm Pilots, handheld digital phones, and many other interrupt-oriented

appliations use software that ould be amenable to analysis along the lines presented

in this dissertation. While the Z86 programs examined here are on the order of 4K in

size, average Palm Pilot programs are 100K in size, with about three times as many

interrupt vetors. Estimating based upon urrent results, this would result in graphs

with a few hundred thousand nodes, and a few million edges { still within grasp of

urrent mahine power for analysis. The larger instrution sets and register sets of

these proessors are a largely orthogonal issue to the omplexity of the analysis, and

only add details to the omplexity of the implementation.

A key di�erene between the Z86 and larger interrupt-oriented proessors is the

issue of program progress. With ode in ROM, and no apaity for bus errors,

the Z86 proessor is guaranteed to always proeed in its omputation, regardless of

what garbage instrutions it might be fored to exeute. (It is possible for a poorly-

written Z86 program to jump to data onstants stored in ROM, whih would result

in \garbage" being exeuted.) In short, at least one of the edges leaving eah node

in the graph is guaranteed to be taken upon exeution. Not so with more omplex

proessors, where a badly formed jump address ould ause omputation to stop,

due to a bus error, a protetion error, or a misaligned memory address. For these

reasons, additional safeguards, like Typed Assembly Language [59℄ would be required

in order to provide the neessary struture to guarantee program progress in suh a

saled-up framework. As an added bonus, suh typing annotations may assist in elim-

inating \yellow" lateny ambiguity in the graph, as will be explained in Chapter 5,

by providing muh-needed limits on the ow of ritial data. Finally, type systems

ould enfore the safety heks on indiret addressing modes and diret addressing

instrutions that the urrent implementation neglets.

The stak size estimation tehnique presented in this hapter is one of the �rst to

give an eÆient and useful stati analysis of assembly ode. It employs stati analysis

to provide safe, tight bounds on stak size for interrupt-driven Z86 miroontroller

systems.

The next hapter will present tehniques for bounding interrupt lateny in interrupt-

driven systems.

39

5 DEADLINE ANALYSIS

The deadline analysis algorithm presented in this hapter ombines timing orales

with stati analysis to provide safe bounds on interrupt lateny for real-time systems

implemented on the Z86 platform.

This hapter presents the diÆulties of deadline analysis in suh systems, the

algorithm used for deadline analysis in this dissertation, and the results of applying

the prototype implementation to a suite of ommerial embedded systems.

After a brief overview in Setion 5.1, Setion 5.2 presents a program whih will

be used as a running example throughout rest of the hapter. Setion 5.2.3 presents

the onept of orales, and Setion 5.2.4 presents multi-resolution stati analysis.

In Setion 5.3, experimental results are given, and Setion 5.4 walks through an

interative deadline-analysis session with ZARBI.

5.1 Overview

Corretness of real-time software an be thought of as having two parts. The �rst

issue is orretness of input-output behavior, and the seond is timeliness of that be-

havior. Veri�ation and validation of input-output behavior has been widely studied;

there are many stati-heking tools available, inluding type hekers [17℄, byteode

veri�ers [49℄, and model hekers [19℄, as well as numerous tools for supporting the

test proess. Veri�ation of timing properties is more diÆult, but progress has been

made toward understanding the foundations of heking the timing properties of real-

time software in work suh as [5℄ and [6℄. Major open issues still remain, due to the

low-level nature of real-time systems. Many are still implemented either in assembly

language or at lower levels, suh as FPGAs or ustom-built ASICs. Even when real-

time software is written in a higher-level language suh as C, it is desirable to hek

the real-time properties of the ompiled ode beause it an be diÆult to predit the

e�ets of the ompiler. Most previous work on analysis of assembly ode [99℄ is not

onerned with timing properties.

5.1.1 The Deadline Analysis Problem

The analysis presented later in this hapter heks timing properties of real-time

assembly ode. A prototype tool has been onstruted as a demonstration of the

pratial bene�ts of these tehniques. This work fouses on interrupt-driven software,

where a signal from a soure outside the diret ontrol of the software an ause

omputation to be interrupted by ontrol being transferred to an interrupt handler.

40

Typial interrupts in the systems analyzed in this dissertation an our beause new

sensor data is available, a signal pulse arrives at the ontroller, an internal timer

goes o�, or for many other reasons. The spei�ation of an interrupt-driven system

will usually list deadlines for the handling of eah type of interrupt. It is part of

the orretness of the system that all deadlines are met. Reasoning about the timing

behavior of interrupt-driven software is ompliated beause interrupts an be enabled

and disabled by the software itself, an interrupt handler an be interrupted, and

interrupts an arrive in a myriad of di�erent senarios. It is ritial to know whether

an interrupt arrives at a point where it is enabled and an be handled right away,

or whether it arrives 50 lok yles later, when, for example, the system has just

disabled interrupt handling and will be doing other work for the next two million

lok yles. Deadline analysis seeks to answer the following question.

Deadline Analysis: Will every interrupt be handled before the deadline?

One an approah this question in a testing-based manner, by trying a suite of in-

terrupt shedules and measuring whether all deadlines are met. Developing a good

suite of interrupt shedules is a diÆult problem beause of the �ne granularity of the

timing domain. Even if a lok yle is as long as one miroseond, it is very diÆult

to engineer or disover interrupt shedules that lead to any reasonable overage of

the program. Statement overage would be easy in this setting, but is not a useful

overage riteria beause it does not take into aount the interplay of di�erent in-

terrupts and the times when they our. Branh overage is more aurate but far

more expensive; at every program point where an interrupt is enabled, there is an

impliit branh to the handler. Covering all branhes an therefore be a ombinatori-

ally explosive problem. In summary, the problem with a test-based approah is that

it is diÆult to test a suÆiently wide variety of shedules to gain on�dene in the

software.

An alternative is a stati-analysis-based approah to deadline veri�ation. As

shown in Chapter 4, stati analysis an be suessfully employed to bound stak

usage in interrupt-driven systems. However, when timing analysis was applied to the

model presented in Chapter 4, worst-ase exeution time ould not be estimated for

most of the paths in the program.

Stati timing analysis for embedded systems annot sueed without information

about the behavior of external devies that interfae with the embedded proessor.

For example, if the proessor uses a loop to busy-wait on a new value from a port,

stati analysis will view it as an in�nite loop, even if the programmer knows that

an external devie will deliver a new value every 100 milliseonds. One the stati

analysis has deteted that there is an in�nite loop on the path from A to B, it will

determine that if an interrupt ours when the exeution is at program point A and

the handler for the interrupt has exit point B, the handling may never terminate,

let alone meet its deadline. In summary, the stati analysis approah presented in

Chapter 4 fails to perform useful deadline analysis.

This hapter explores the thesis that better results an be obtained by ombining

stati analysis and testing. In pratial terms, the fundamental hallenge is:

41

Challenge: Can stati analysis signi�antly derease the required testing

e�ort?

There are previous suess stories of ombining stati analysis and testing. For ex-

ample, in the area of regression testing, rather than re-running the software on the

whole test suite every time a hange has been made, one an use stati analysis to

onservatively estimate whih test inputs must be tried again [37℄. In the deadline

analysis setting, stati analysis an redue the required testing e�ort, allowing the

testing e�ort to be more foused on key areas of the ode that a�et deadlines.

The deadline analysis presented here uses test orales [85℄ to answer ertain worst-

ase exeution time (WCET) questions that annot possibly or easily be answered

by stati analysis. An orale asserts to the stati analysis that if exeution reahes

program point A, then it will reah program point B at most t miroseonds later.

Returning briey to the high-level CFG abstrations of Chapter 3, orale assertions

are expressed in the CFG's as time summary edges (Setion 3.5.1). When A and

B are lose, then a muh smaller testing e�ort is required to verify suh an orale

assertion than to do the entire deadline analysis. Moreover, if more than one orale

assertion is needed for a program, the work of validating eah assertion an be done

in parallel. The goal is to ombine stati analysis with timing orales to improve the

preision of the deadline analysis.

Deadline analysis annot be performed without WCET analysis. However, most

researh on deadline analysis assumes that WCET analysis has already been su-

essfully performed, and most published papers on WCET analysis do not onsider

the needs of deadline analysis. Many papers in this area onentrate on estimat-

ing the exeution time from one program point to another, usually from start to

�nish, sometimes even fousing on a partiular input, and they rarely handle inter-

rupts [10, 20, 27, 30, 77, 93, 97℄. Deadline analysis is more ompliated than simple

WCET analysis beause the interrupts an our at any time and their handlers an

be enabled or disabled at any program point. In deadline analysis, the starting point

for the analysis is not given. It is a task of the analysis to identify the worst-ase

program point at whih an interrupt an our and then estimate the WCET to the

exit point of the handler for that interrupt.

In summary, deadline analysis for interrupt-driven assembly ode remains a diÆ-

ult and little-studied problem.

5.1.2 Results

ZARBI has been designed and implemented to be used as a tool for integrated

deadline andWCET analysis of interrupt-driven assembly ode. Expressed in simplest

terms, the ZARBI methodology is:

deadline analysis = stati analysis + testing orales.

For six ommerial miroontroller programs, eah on the order of 1000 lines

of ode, less than 17 orales were suÆient to omplete deadline analysis. In the

42

Handler
other

Blue
Green

Magenta

Handler

Figure 5.1. Coloring a Flow Graph

experimental session presented in Setion 5.4, an expert user was able to interatively

add all of the required orales for one of the ommerial benhmarks in less than an

hour.

The tehnique presented here uses a multi-resolution analysis (Setion 3.4.4),

whih allows exploration of diÆult segments of the ontrol ow graph in suÆient

depth to bound the lateny while avoiding the intratable omplexity that would arise

from using suh �ne-grained analysis over the whole program.

The stati analysis proeeds by building and oloring a ow graph. Eah node is

given one of �ve olors: Green, Magenta, Blue, Yellow, and Red. Intuitively, Green

means that WCET an be estimated, Magenta means that starvation is possible,

Blue means that starvation is possible at a later node, Yellow means that the analysis

thinks that the deadline might not be met, and Red means that the analysis is ertain

that the deadline annot be met. For the test suite, no red nodes were found, the

analysis was able to eliminate all yellow nodes with the addition of orales, and very

few nodes were magenta.

Figure 5.1 illustrates a ow graph at the time the deadline analysis is omplete,

that is, when all yellow nodes have been eliminated. Notie that \other Handler" an

starve an interrupt that is to be handled by \Handler".

The deadline analysis presented here is intended to be used as part of a three step

proess. For a given interrupt, (1) add orales until all nodes are green, magenta,

43

or blue, (2) use simulation and testing to �nd a WCET for the magenta louds, and

(3) ombine the WCET's from the green, blue, and magenta louds to ompute the

WCET for handling the interrupt.

5.2 Example Analysis

5.2.1 A Program and its Flow Graph

The example program shown in Figure 5.2 is a short exerpt of Z86 assembly ode

designed to exhibit interrupt lateny harateristis hostile to stati analysis. There

are two vetored interrupt handlers, IRQVC0 and IRQVC1, both of whih do nothing

but exeute the return-from-interrupt instrution, IRET. The proedure PROC pushes

a value from a register onto the stak, pops it o�, and returns. The main loop, LOOP

branhes to itself in�nitely. The OUTLP loop outputs the bytes 255 through 1 to an

external data port and terminates, while the BSYLP loop waits until data from an

external port arrives with 0 as the most signi�ant bit.

The two-digit hexadeimal numbers along the leftmost olumn of the �gure are the

ROM addresses that would be generated for this program if it were atually ompiled

into mahine ode. These addresses will be used throughout the rest of this setion

to refer to spei� lines of the example.

Figure 5.3 shows the ow graph onstruted for the example program in Figure

5.2. Eah node in the graph has three piees of information:

� Code address { the value of the instrution pointer when the proessor begins

exeuting the instrution. The upper leftmost node in the graph (\INIT") on-

tains address \0C", whih is the �rst instrution exeuted by the Z86 proessor

on powerup.

� IMR value { the bits in the Interrupt Mask Register ontrol vetored interrupt

handling by the Z86 proessor. The layout of the IMR is \M.543210", where bit

\M" ontrols global interrupt handling, and the lower order bits enable the six

orrespondingly-numbered interrupt soures. The seventh bit is reserved. The

node at INIT has IMR value \00", indiating that all interrupts are turned o�,

while the node at LOOP has IMR value \83", indiating that vetored interrupt

handling is turned on and the handlers for interrupts 1 and 0 are enabled.

� Stak ontext { initially, this �eld ontains the top element on the system stak,

\fg" for an empty stak, or \?" when the exat value on the top of the stak is

irrelevant. As shown later, multi-resolution analysis may add additional items

of stak ontext to nodes as needed.

Solid arrows in the graph represent possible ontrol ow between nodes. When

the transition between two nodes involves a hange in the stak, the edges have been

annotated with \!" and \?". The notation \!3" indiates an operation that pushes

three bytes onto the stak { an interrupt. (When an interrupt handler is invoked,

44

.ORG %00h ;INTERRUPT VECTOR TABLE

.WORD #IRQVC0 ; Vetor IRQ0

.WORD #IRQVC1 ; Vetor IRQ1

.ORG %0Ch

INIT: ;INITIALIZATION

0C CALL PROC ; Call a little proedure.

0F CALL PROC ; Call it a seond time to introdue

; an artifiial yellow yle.

12 LD IMR, #81h ; Enable global interrupts and IRQ handler 0.

OUTLOOP: ;OUTPUT LOOP

15 LD P3, r1 ; Send the ontents of r1 out data port 3.

17 DJNZ r1, OUTLOOP ; De r1, jump to top of loop if not zero.

19 CLR IMR ; Disable interrupts.

BSYLOOP: ;INPUT LOOP

1B TM P2, #80h ; Chek the high bit on data port 2.

1E JR NZ, BSYLOOP ; If the bit is 1, ontinue looping.

20 LD IMR, #83h ; Enable global interrupt handling,

; and both handlers 0 and 1.

LOOP: ;MAIN PROGAM

23 JP LOOP ; An infinite loop.

;SUBROUTINES

PROC: ; This subroutine just pushes and value

26 PUSH r0 ; onto the stak, and then pops it bak

28 POP r0 ; off before returning. Its sole purpose

2A RET ; is to onfuse the analysis tool and

; demonstrate the benefits of adaptive

; sliing.

;INTERRUPT HANDLERS

IRQVC0: ; Both of these handlers do nothing exept

2B IRET ; exeute the return from interrupt

IRQVC1: ; instrution. Even so, the omplexity

2C IRET ; that arises from having both in play

.END ; at the same time auses all five olors

; from our analysis to appear.

Figure 5.2. Example Program

the Z86 pushes two bytes of return address and one byte of ondition ode bits onto

45

0C

0F

12

26

2A

26

2A

00

00

00

00

00

00

00

{}

{}

{}

{0F}

{0F}

{12}

{12}

0028 {?}

15 81 012B {15}{}

17 81 {}

19 81 {}

2B 01 {17}

2B 01 {19}

1B 00 {}

1E 00 {}

23 83 {}

20 00 {}

2B 03 {23}

{23}032C

!3

!3

!3

!3

!3

!2

!2

!1

!1

?3

?3

?3

?3

?3

?2

?2

?1

?1

INIT:

LOOP:

BSYLP:

OUTLP:

Figure 5.3. Example Program Flow Graph

the stak.) The notation \?2" indiates two bytes being popped o� of the stak { a

return from a proedure all. Dashed arrows in the graph represent stak summary

edges, as de�ned earlier in Chapter 4.

46

5.2.2 Initial Coloring of the Example Graph

The designer of the example program in Figure 5.2 would like to know if the

tasks orresponding to interrupts 0 and 1 will meet their deadlines. This requires

information about the minimum inter-arrival time for eah interrupt soure. But even

before that kind of data an be onsidered, there is another key piee of information

that any suh analysis must have: the WCET of the program with respet to interrupt

lateny. The maximum possible delay between the arrival of an interrupt request and

subsequent handling of that request must be known in order to make any aurate

statement about the system's ability to meet deadlines.

In order to perform deadline analysis for a given interrupt, the algorithm lassi�es

the nodes in the ow graph into �ve olors. Three of those olors will be explained

here; two more will be overed in Setion 5.2.4.

� Green nodes in the graph are those from whih omputation will inevitably

reah the handler of interest. For a green node, the analysis an ompute the

WCET from the node to the handler in linear time (see Setion 3.5).

� Red nodes are those from whih it is impossible to reah the handler of interest.

In ZARBI's model of omputation, this would be a signi�ant program error,

suh as an in�nite loop with interrupt handling disabled. The test suite of

prodution miroontroller software ontained no suh errors, so red will not be

disussed any further in this hapter.

� Yellow nodes are those whih ould not be de�nitively lassi�ed as green or red

for the handler of interest.

When the analysis olors the example system ow graph (Figure 5.3) with respet

to interrupt handler 1, the nodes with addresses 2C, 23, and 20 are olored green, as is

the node for the lowest instane of the interrupt zero handler, 2B, o� of the LOOP node.

Nodes 1B and 1E are olored yellow beause the analysis annot statially determine

how long it will take to omplete the BSYLP loop. Finally, sine the remaining nodes

in the graph above BSYLP an reah interrupt handler 1 only through BSYLP, they too

will be olored yellow in the initial round.

Eliminating all yellow nodes in the graph would allow the analysis to give �rm

bounds on the exeution time of any path in the program leading to the interrupt

handler. The yellow nodes fall into �ve basi ategories:

� External Yellow nodes omprise a yle that depends on external input. These

annot be resolved through stati analysis, and will require some form of ad-

ditional information about the external environment of the ontroller. (For

example, the node with PC value 1B in Figure 5.3 is part of an external yellow

yle.)

� Ultra Yellow nodes omprise a yle in the graph orresponding to some kind

of unbounded loop.

47

� Starvation Yellow nodes are yellow beause the interrupt handler of interest

an be starved (delayed inde�nitely [16℄) by another interrupt soure alling its

own handler frequently enough to prevent the proessor from making progress

toward the handler of interest. (Nodes 15, 17, and 19 in the example an be

starved by the handler starting at 2B.)

� Arti�ial Yellow nodes omprise unrealizable yles that appear in the graph

as a result of impliit path merging. (The yle of 0F, 26, 28, and 2A in the

example is an arti�ial yellow yle.)

� Upstream Yellow nodes are yellow only beause they are upstream of other

yellow nodes. (Nodes 0C and 12 in the example are upstream yellow.)

Intuitively, yellow represents a \don't know" ategory of nodes whih lie along pos-

itive yles in the CFG. External and ultra yellow nodes an be dealt with through

the use of orales, as explained in the next setion. Arti�ial yellow nodes are elim-

inated using adaptive sliing, as outlined in the setion on multi-resolution analysis.

Starvation yellow nodes will be assigned a new olor, to be dealt with by simulation

and testing. Finally, upstream yellow nodes will disappear when the other four lasses

of yellow nodes are eliminated.

5.2.3 Testing Orales

Real-time, interrupt-driven software an ontain loops that annot be bounded

through stati analysis. Synhronous ommuniation with o�-hip resoures, dei-

sions prediated on external data, or interation with the user an be expressed as

loops whose bounds depend on additional information outside the realm of the system

soure ode.

The BSYLP area of the example system is suh a loop. It is a simpli�ed version of a

busy-wait loop found in several of the prodution miroontroller systems. Typially,

suh a loop ould be waiting for a peripheral devie to signal that it has reeived the

last ommand, and an be issued further ommands. The designers of the system

would know that the manufaturer of the devie guarantees the maximum response

time for this operation will be, for example, 40mS, a fat that annot be asertained

from the soure ode. In order to take advantage of this external information the

analysis uses an orale, an entity that answers questions about lateny that annot

be answered by stati analysis.

An orale gives an assertion of the form:

Address

1

! Address

2

= Lateny

whih says that the program will take at most Lateny mahine yles to get from

Address

1

to Address

2

.

When onstruting the initial ontrol ow graph, information provided by the

orale is used to insert time summary edges from a node N in the graph with address

48

1B 00 {}

1E 00 {}

20 00 {}

BSYLOOP: 1B 00 {}

1E 00 {}

20 00 {}

BSYLOOP:

Time =
320000

(a) before (b) after

Figure 5.4. Time Summary Orale in the Example

Address

1

to a node M in the graph with address Address

2

suh that M and N have

the same IMR value and stak ontext. It was initially antiipated that the analysis

would need more omplex syntax for speifying orale edges, suh as pattern mathing

on IMR values or stak arithmeti. However, in the six prodution miroontroller

systems examined, the address-mathing-only edges have proven suÆient to bound

all of the external yellow loops.

The semantis of these time summary edges is suh that the olor of the destination

node an be safely extended bakward to the soure node of the summary edge. This

does not in itself imply anything about maximum lateny between nodes that lie

along a path from the soure to the destination. The time summary applies stritly

to the maximum lateny between two nodes touhed by the time summary edge.

For the example program, a time summary orale spei�es that the BSYLP loop

takes at most 320,000 mahine yles (40mS on the example arhiteture). The input

to the orale is:

[0x001B℄ -> [0x0020℄ = 320000

The resulting hange to the graph is shown in Figure 5.4. The time summary edge

from 1B to 20 (whih is already a green node) allows 1B to be reolored green. This in

turn auses 1E to be reolored green as well, so this orale edge has eliminated BSYLP

as an obstale to determining maximum interrupt lateny for the entire program.

This dissertation uses orales in three ways:

49

� External event delays { bounds for loops that rely on data external to the

system, suh as bytes arriving on the input ports of the proessor.

� Internal loop bounds { many of the for-loop style onstruts ould be bounded

using well-known stati analysis tehniques [27,62℄. However, implementing the

proper strutural loop analysis for assembly language soure, without any an-

notations from the programmer, ould be far more expensive than asertaining

the loop bounds manually. Many of the loops found in the benhmarks are

trivially bounded by asual examination of the ode, and the time summary

orale onstrut is suÆiently general to bound the maximum loop exeution

time. This would not be a preferred use of the tool in pratie. An industrial

strength version of ZARBI would infer these bounds statially, or interatively

assist the programmer in annotating the ode with proper bounds. The urrent

tool leaves this for future work.

� Internal data dependent loop bounds { a small number of loops in the test suite

relied not on immediate onstants near the top of the loop, but rather on data

elsewhere in the program. The most ommon example of this was a display

routine that iterated over a zero-terminated ASCII string. Tehniques exist to

automatially infer these kinds of bounds, but for simpliity of implementa-

tion, these were not employed. Instead, bounds on these loops were manually

asertained, and equivalent time summary edges were inserted.

Fully two thirds of the input provided to the time summary orale for these ex-

periments were loop bounds that ould either be statially heked as annotations or

statially inferred by other means. The remaining third of the input was for external

event delays of the kind that ould not possibly be determined statially. A very

small number of the input items were for loops dependent on internal data, whih

ould probably be determined with a very thorough ow analysis of all registers in

the program.

The interfae provided to assist the user in giving these assertions to the orale

is quite straightforward. After initial oloring of the graph, the tool produes a list

of border yellow nodes { yellow nodes that are one edge away from green nodes.

Typially, these will be branh or jump instrutions that omprise the bottom of a

loop. In the ase of the example program, the prototype tool would produe the

result,

Border Yellow instrutions:

L001E: JR NZ, L001B

direting the user to the BSYLP loop.

The orretness of assertions made by the user to the orale are taken for granted

by the urrent system. Assertions must be admissible (Setion 3.5.1) for the overall

analysis to produe orret results. In pratie, one would want to onentrate system

testing or simulation on these areas to gain on�dene in the validity of the assertions.

50

However, the key point to be made is that the stati analysis has greatly redued

the sheer volume of program states that must be tested. In eah of the prodution

miroontrollers analyzed, there were fewer than 20 overall assertions to the orale,

eah of whih overed only a handful of nodes in the graph, out of tens or hundreds

of thousands of nodes in the graph overall.

Stati analysis an redue the size of the lateny testing problem from an utterly

intratable sale down to a subset of the program small enough that one ould on-

eivably use exhaustive simulation to asertain the remaining WCET information, or

apply other �ner-grained and less-salable analyses.

5.2.4 Multi-Resolution Analysis

Initial onstrution of the ontrol ow graph inludes estimates of the possible

IMR values and top stak elements for eah node. Abstrating away the rest of the

mahine state impliitly merges ontrol ow paths, thereby allowing the size of the

graph to remain tratable { typially muh less than a million nodes, rather than the

2

27

nodes whih is the worst ase for this model. (7 bits of IMR, 10 bits of stak

element, and 10 bits of PC = 27 bits per node.) However, the impreision of having

nodes distinguished by only one element of stak ontext (analogous to 1-CFA in ow

analysis parlane [90℄), an result in arti�ial yles appearing in the ontrol ow

graph.

Suh is the ase in the example program, where proedure PROC is alled twie

within a segment where interrupt handling is disabled. Ignoring for a moment the

question of how to bound lateny from node 12, the INIT segment of the graph

would still be olored yellow beause of the path [0F,00,fg℄, [26,00,f12g℄, [28,00,f?g℄,

[2A,00,f0Fg℄, and bak to [0F,00,fg℄. This is a false path [4℄, whih does not orre-

spond to genuine ontrol ow { the seond all to PROC will return to the originating

all site, not the previous all site.

The approah to multi-resolution analysis shown here improves the ontrol ow

graph by eliminating many unrealizable paths.

False paths are a well known problem in ontrol ow analysis, (see Setion 2.2); one

solution is to employ k-CFA with larger values of k. However, it ould be expensive to

reompute the entire ontrol ow graph with a higher value of k, as this quikly auses

a ombinatorial explosion in graph size for interrupt-driven software. The CFG is

onstruted using multi-resolution analysis, where the value of k (the amount of stak

ontext used to distinguish nodes) is inreased only in the areas of the graph where it

is neessary to alleviate ambiguity in lateny analysis. Thus, nodes like [28,00,f?g℄ in

the example are adaptively slied into non-yellow nodes with greater stak ontext,

[28,00,f?,0Fg℄ and [28,00,f?,12g℄, as shown in Figure 5.5. This approah is inspired

by Plevyak and Chien [78℄. Independently of our work, Guyer and Lin [36℄ have also

used multi-resolution analysis.

Multi-resolution analysis takes plae automatially; the algorithm (shown in Se-

tion 6.3.2) iteratively identi�es nodes that are both border yellow and stak popping

51

26

2A

26

2A

00

00

00

00

{0F}

{0F}

{12}

{12}

28 00 {?,0F}

28 00 {?,12}
?1

!1

?1

!126

2A

26

2A

00

00

00

00

{0F}

{0F}

{12}

{12}

0028 {?}

!1

!1

?1

?1

(a) before (b) after

Figure 5.5. Example Program Adaptive Sliing

instrutions (POP, RET, and IRET), and adaptively slies these nodes and their assoi-

ated graph segments to the neessary depth. This tehnique represents a substantial

savings in graph omplexity, reduing the size of the graph by 20% to 60% ompared

to running the analysis of the prodution programs with a �xed, non-adaptive k-CFA.

However, the redution in graph size an ome at the ost of inreased analysis time,

as explained below.

While the multi-resolution analysis redues the number of nodes and edges in the

graphs in all ases, when ompared with the running time of straight k-CFA, it runs

faster in some ases, but slower in others. In two ases, the multi-resolution analysis is

an order of magnitude slower than straight k-CFA. This wide variation in relative run

times is highly dependent on the struture of the program under analysis { the depth

that the adaptive sliing must go to in order to disambiguate lateny, the number of

all sites involved, and the lengths of the subroutines being slied are all fators in

the ost of multi-resolution analysis. For this reason, the prototype tool inludes a

ommand-line option whih tells it to use straight k-CFA with a spei� k, rather than

automati multi-resolution analysis, so that the user an hoose whihever method

performs better for their given program input.

The multi-resolution analysis is guaranteed to terminate beause the ontrol ow

graphs have a bounded stak size, whih is veri�ed by a previous phase of the tool,

(see Chapter 4.) The full details of the adaptive sliing an be found in Chapter 6.

5.2.5 Magenta and Blue Nodes

Time summary orales allow the deadline analysis to resolve both external and

internal yellow loops. Multi-resolution analysis slies apart arti�ial yellow nodes. Of

52

the �ve types of yellow nodes, all that remain are starvation yellow and upstream

yellow.

Beause these nodes are yellow for a fundamentally di�erent reason than the other

nodes dealt with thus far, a new olor is designated for them.

� Magenta nodes are those whih are one edge away from either green or magenta

nodes in the graph, AND are one edge away from a non-green interrupt handler.

Magenta nodes are set aside as a speial ase for whih maximum lateny of

the green interrupt handler annot be bounded without additional, detailed meta-

knowledge about the harateristis of the other non-green interrupt handlers involved

(knowledge suh as inter-arrival times of interrupts, jitter, et). These nodes are also

di�erent in that the straightforward orale-inserted time summary edges annot help

render these nodes green, even if the orale provides bounds on the WCET of the

segment of magenta nodes. This is beause eah magenta node an be starved, sine

the non-green interrupt handler an in the worst ase exeute so frequently that the

omputation does not make progress from the magenta node. (This is a point on

whih the Z86E30 doumentation is vague; it is not lear whether an interrupt an

our frequently enough to ompletely halt progress in the non-interrupt ode. In the

absene of a lear answer, the worst ase is assumed.)

The WCET of ontiguous lusters, or louds, of magenta nodes annot be reasoned

about at the individual node level, unlike all of the other analyses presented here.

For this reason, the problem of bounding magenta louds is left as future work and is

beyond the sope of this dissertation. Fortunately, the urrent analysis has revealed

that on average, fewer than 2% of the nodes in the prodution miroontroller suite

are magenta; in several ases, there are no magenta nodes at all.

Those yellow nodes whih are upstream of the newly designated magenta nodes

are also assigned a new olor.

� Blue nodes are those for whih the deadline analysis algorithm an preisely

bound the WCET to reah a loud of magenta nodes.

Intuitively, blue nodes are well-behaved segments of the graph whih would be

green if there were not a magenta loud of potential interrupt starvation between

them and the green handler, as suggested by Figure 5.1.

The algorithm for oloring the graph is summarized in Computation Tree Logi

[24℄ notation in Figure 5.6. H is a prediate that is true for a node when that

node is the �rst instrution of the interrupt handler of interest. In CTL nota-

tion, AF means \exists globally", whih an be thought of as \inevitable". So

Green � AF (UltraGreen) means that Green nodes are those for whih all outgoing

edges inevitably reah UltraGreen nodes. Notation EF means \exists eventually",

or \reahable". EX means that there is an outgoing edge that leads immediately

to the prediate. Thus, Magenta � EF (Green) ^ EX(handler 62 H) says that

a Magenta node has a path that eventually reahes Green, and a path that leads

53

UltraGreen � H � Head of handler of interest.

Green � AF (UltraGreen) � Inevitable that omputation

will reah an UltraGreen node.

Magenta � EF (Green) � Path exists to Green, and

^ EX(handler 62 H) to non-Green IRQ handler.

Blue � AF (Magenta) � Inevitable that omputation

will reah a Magenta node.

Red � :EF (UltraGreen) � Not possible to reah

an UltraGreen node.

Y ellow � :(Red _Green � Don't Know.

_Magenta _ Blue)

Figure 5.6. Coloring Graph for Lateny Analysis

in one edge to a non-Green interrupt handler. The ZARBI implementation of this

oloring algorithm is explored in Chapter 6.

Returning to the ontrol ow graph from Figure 5.3, the three nodes at 15, 17,

and 19 are olored magenta. The interrupt handler nodes, 2B, hanging o� of the

magenta setion are onsidered blue. The entire segment above OUTLP, with the help

of the sliing explained in the previous setion, is olored blue.

All edges in the CFG are annotated with exeution yles; all timing information

is taken from the Z86 referene manual [100℄. The entire ow graph of the example

program is now green, blue, or magenta. The magenta yles annot be statially

bounded, but the green and blue nodes an be broken into direted, ayli subgraphs,

eah of whih an be evaluated for WCET by a reursive traversal in whih

WCET (B) = max(WCET (A) + edge

AB

)

where A ranges over all nodes that onnet diretly to node B, and edge

AB

is the ost

of the edge from A to B. Running this traversal over the green nodes in the example

program produes a WCET time of 320010 mahine yles between the magenta node

at 19 and the interrupt handler at 2C. The same alulation over the blue subgraph

reveals a maximum WCET of 102 mahine yles from the start of the program to

the start of the magenta nodes.

Combining this information with additional knowledge about the magenta setion,

suh as, it will take at most 200 yles to get from 12 to 1B through the magenta

setion, bounds the maximum interrupt lateny to be 320312 yles.

54

Program Lines IRQs Purpose

CTurk 1367 2 Agriultural ontrol

GTurk 1687 2 Agriultural ontrol

ZTurk 1612 2 Agriultural ontrol

DRop 1162 3 Reverse osmosis ontrol

Rop 1172 3 Reverse osmosis ontrol

Serial 795 3 RS-485 network relay

Miro00 84 2 Example from Chapter 4

ICSE01 55 1 Example from Chapter 4

FSE03 35 2 Example from Chapter 5

Figure 5.7. Benhmark Charateristis

5.3 Experimental Results

The following setions present experiments applying the prototype implementa-

tion of this analysis to the suite of ommerially available miroontroller systems.

Following these results, Setion 5.4 presents a narrative of a representative session

with the tool, starting from a fresh program, and iterating the deadline analysis until

all nodes are either green, blue, or magenta.

5.3.1 Benhmark Charateristis

The benhmarks used for evaluating the deadline analysis (Figure 5.7) are the

same suite of test inputs used in Chapter 4 with the addition of the examples from

Figure 4.1 (\ICSE01") and Figure 5.2 (\FSE03"). The ommerial program \Fan"

has been omitted beause the stak size analysis presented in the previous hapter

annot bound its maximum stak height (due to both positive and negative yles

in the orresponding CFG); bounded stak height is a preondition to running the

deadline analysis algorithm.

Eah of the ommerial systems underwent months of testing prior to atual pro-

dution, but an overall deadline analysis of the systems was not performed beause

no suh tools ould be found.

5.3.2 Measurements

The results shown in Figure 5.8 give the �nal perentages of nodes by olor after

ompletion of the deadline analysis algorithm. For larity of presentation, interrupt

55

Perentage green

Prog IRQ

1

IRQ

2

IRQ

3

CTurk 100% 5% .

GTurk 100% 2% .

ZTurk 100% 2% .

DRop 99% 62% 40%

Rop 99% 66% 37%

Serial 100% 54% 49%

Miro00 56% 45% .

ICSE01 100% . .

FSE03 100% 28% .

Perentage blue

Prog IRQ

1

IRQ

2

IRQ

3

CTurk 0% 87% .

GTurk 0% 94% .

ZTurk 0% 94% .

DRop 1% 36% 58%

Rop 1% 32% 60%

Serial 0% 44% 49%

Miro00 38% 49% .

ICSE01 0% . .

FSE03 0% 57% .

Perentage magenta

Prog IRQ

1

IRQ

2

IRQ

3

CTurk 0% 7% .

GTurk 0% 3% .

ZTurk 0% 3% .

DRop 1% 1% 1%

Rop 1% 1% 2%

Serial 0% 1% 1%

Miro00 5% 5% .

ICSE01 0% . .

FSE03 0% 14% .

Perentage yellow

Prog IRQ

1

IRQ

2

IRQ

3

CTurk 0% 0% .

GTurk 0% 0% .

ZTurk 0% 0% .

DRop 0% 0% 0%

Rop 0% 0% 0%

Serial 0% 0% 0%

Miro00 0% 0% .

ICSE01 0% . .

FSE03 0% 0% .

Figure 5.8. Results With Completed Orales

soures in the tables are numbered as \IRQ

1

", \IRQ

2

", and IRQ

3

. This does not

imply any kind of priority relationship between the various interrupt soures, nor are

these the atual interrupt soure numbers from the Z86 proessor; they are merely

organized into olumns. (E.g., Cturk has interrupt handlers for Z86 IRQ3, IRQ4, and

IRQ5, and these are labeled 1st, 2nd, and 3rd IRQ respetively in the table.) Note

that the tool rounds perentages down in most ases, or up in the ase of perentages

less than 1%, so the tables in Figure 5.8 may not total preisely to 100%.

Yellow nodes were ompletely eliminated, and the perentages of green and blue

were quite high. The amount of magenta present in the �nal graphs was uniformly

low, less than 2% of the overall graph size on average. Several of the benhmarks had

0% magenta for a given IRQ, whih means the analysis an safely and ompletely

bound interrupt lateny for those partiular handlers from anywhere in the program.

The ZARBI deadline analysis tool is implemented in Java, and took less than the

128 Megabytes of available RAM to omplete the analysis in all ases. The running

56

Adaptive Sliing �xed k-CFA

Program Max k Nodes Edges Nodes Edges

CTurk 9 35750 51329 63904 84594

GTurk 10 140817 184724 215603 272421

ZTurk 10 127892 168104 190813 241118

DRop 5 19206 25244 46246 58510

Rop 5 21837 28731 54900 69597

Serial 3 8158 10753 19352 24775

Miro00 1 339 619 339 619

ICSE01 1 46 74 46 74

FSE03 2 18 33 21 33

Figure 5.9. Adaptive Sliing vs. Fixed k-CFA

time of the tool inreases as the number of orale assertions allows the tool to slie

deeper into the graphs. Run-time varied from less than 2 seonds up to an hour for

the largest benhmark (with full multi-resolution analysis), with an average run-time

of 15 minutes overall. The urrent implementation has been optimized toward rapid

prototyping and easy debugging of the tool, with little regard for running time and

spae requirements. It is expeted that an industrial-strength version of the tool

ould be onstruted to run more eÆiently.

Figure 5.9 shows the sizes of the graphs generated by the analysis, both with

adaptive sliing, and with a �xed k-CFA, where the value for k is �xed to the depth

needed by the adaptive sliing.

As mentioned earlier, employing multi-resolution analysis results in a substantial

savings in graph omplexity, with multi-resolution graphs 20% to 60% smaller than

the equivalent �xed k-CFA graphs. While the �xed k-CFA graphs an be onstruted

substantially faster in some ases, the redution in yellow nodes o�ered by the multi-

resolution analysis is usually far more valuable. When using the tool to iteratively

disover time summary assertions for reduing yellow nodes, (as demonstrated in

Setion 5.4,) anything that auses larger graphs potentially reates more yellow nodes,

adding more data to the output of the tool, and making the entire proess inreasingly

diÆult.

Figure 5.10 haraterizes the number and types of assertions that were provided

to the time summary orale in order to eliminate all yellow nodes in the test suite.

In all ases, there was only one ontiguous magenta loud for eah program that

had any magenta nodes.

57

Number of Summary Edges

Program Total External Internal Data

CTurk 15 5 9 1

GTurk 17 5 11 1

ZTurk 17 5 11 1

DRop 16 6 9 1

Rop 16 6 9 1

Serial 2 1 1 0

Miro00 0 0 0 0

ICSE01 1 0 1 0

FSE03 1 1 0 0

Figure 5.10. Orale Information Provided

5.3.3 Assessment

The omplete elimination of yellow nodes from the ontrol ow graphs of the om-

merial miroontrollers was the primary goal in the deadline analysis experiments,

and this was aomplished by the algorithms presented.

The high perentage of green and blue nodes makes it possible to ompletely

bound interrupt lateny for some of the interrupt soures in some of the benhmarks,

and greatly dereases the remaining work to be done in bounding the others.

The low perentage of magenta nodes in the graphs, ombined with the fat that

magenta nodes are onstrained to a single, ontiguous loud in all of the benhmarks,

paves the way for being able to automatially bound these most troublesome parts

of the graph in the future. The only ase where magenta levels reahed a double

digit perentage was the FSE03 example program, whih was onstruted to have a

prominent magenta segment. In many ases, the magenta setion is small enough

that the total uninterrupted WCET of the magenta loud ould be less than the

minimum period of the interfering interrupt handler(s), whih would make it possible

to reason about these setions with a �rst-orderworst-ase response time analysis [94℄

or by detailed simulation and testing.

The number of time summary orale assertions neessary to eliminate yellow nodes

from the benhmarks is small and manageable. Well over half of the assertions are of

the type that ould be automatially inferred by loal data ow analysis.

58

5.4 User Experiene

This setion details the omplete proess of starting with a raw program, and

iterating with the deadline analysis to add time summary orale assertions until all

yellow nodes are eliminated.

This example will use one of the medium sized benhmarks, Rop.

The initial run of the tool takes 23 seonds and outputs:

Border Yellow instrutions:

L0667: JR ULT, L0680

L0675: JR ULT, L0680

L00D2: JR EQ, L00E3

L066C: JR UGT, L067C

L067A: JR ULE, L0681

L0312: JR C, L0308

L062D: JR ULE, L061C

L0268: JR UGE, L02B7

L0080: JR EQ, L00F2

L02BA: JR UGE, L02C3

L034C: JR EQ, L0354

L0396: PUSH %FBh

L04E6: DJNZ r14, L04E0

Edges = 24503 Green Yellow Magenta Blue

Nodes = 18559 12522 6029 2 6

Perent = 67% 32% 1% 1%

The list of potential yellow nodes is long for the initial run, beause it is not trivial

for the tool to distinguish between key yellow loops that must be broken and loop

instrutions that happen to be on the yellow border for other reasons.

Looking through some of the tool's suggested loations in the ode, the user's

attention is immediately drawn to a potential loop to bound { the DJNZ instrution

at L04E6 is part of a double loop that debounes the input from a mehanial swith

attahed to the system. The design of the system spei�es that this mehanial

ontat should not boune for more than 10mS when in good working order.

The double loop is atually two intertwined loops (whih would be diÆult to im-

plement in most higher level languages), but an be bounded with a pair of assertions

to the time summary orale:

[0x04E0℄->[0x04E8℄=80000 ; Deboune. (10mS) [E℄

[0x04DC℄->[0x04E8℄=80000 ; Deboune. (10mS) [E℄

59

The syntax on the left desribes the soure and destination nodes, and the length

of time to assert. To the right of the semi-olon, a omment douments the reason

for the assertion, and the time translated into seonds. (80,000 mahine yles equals

10 milliseonds with an 8MHz lok.) The full grammar of the time summary orale

�le format an be found in Appendix E.

The user reruns the tool, with the new orale assertions. After 31 seonds, the

tool responds:

Border Yellow instrutions:

L0667: JR ULT, L0680

L0675: JR ULT, L0680

L00D2: JR EQ, L00E3

L066C: JR UGT, L067C

L067A: JR ULE, L0681

L0312: JR C, L0308

L062D: JR ULE, L061C

L0268: JR UGE, L02B7

L0080: JR EQ, L00F2

L02BA: JR UGE, L02C3

L034C: JR EQ, L0354

L0396: PUSH %FBh

L04DA: JR NZ, L04D6

Edges = 24513 Green Yellow Magenta Blue

Nodes = 18559 12528 6023 2 6

Perent = 67% 32% 1% 1%

Note that the node total has remained the same, but six nodes that were yellow are

now green. The DJNZ instrution at L04E6 is no longer listed as a border yellow node,

and a new border node is listed in its plae. The tool also outputs the number of red

nodes in the graph, if any, but none of these graphs ontained red nodes.

The loop at L04DA is a holding pattern that waits for the human operator to

release one of the push buttons. The user interfae segments of this miroontroller

system are only exeuted when the system is in a programming mode, so attention

to interrupt handlers is not important here. The user assumes that no one is pushing

the button, and the branh will never be taken.

The loop at L0312 waits on an external devie that the miroontroller has syn-

hronous ommuniation with. The manufaturer guarantees a maximum 40mS delay

before the devie responds.

The loop at L062D has a visible bound, but alls several levels of omplex subrou-

tines. This is the sort of loop that would be extremely tedious to estimate by hand

60

with any auray, but whih ould probably be automatially bounded by a loal

data ow analysis around the loop and its subroutines. For now, the user puts in an

outrageous overestimate of 3 full seonds; this area should be simulated in depth in

order to tighten the estimate later.

The jump instrution JR EQ, L0354 at L034C is part of a loop that writes ASCII

strings to a onneted LCD panel one byte at a time. The number of iterations

for the loop is dependent upon the length of the string passed into the subroutine,

but the system is designed to have a 16 harater LCD display, and none of the zero-

terminated ASCII string onstants in the program are longer than 17 haraters. The

subroutine alled from within the loop is green from some other all sites, so with

some work, the user an onservatively bound the loop to be 17 haraters times at

most 40mS, for a total of 680 mS.

The orale is provided with the next set of assertions. The braketed letters on

the far right of the omment are personal notes about the type of assertion. An \[E℄"

indiates \external delay loops," whih are impossible to statially bound. An \[A℄"

indiates loops dependent on internal data, and the letter \[D℄" indiates a more

diÆult lass of internal data-dependent loops.

[0x04D6℄->[0x04DC℄=30 ; No button press. [E℄

[0x061C℄->[0x062F℄=24000000 ; Punt. (3se) [A℄

[0x0308℄->[0x0314℄=320000 ; Display. (40mS) [E℄

[0x033D℄->[0x0354℄=5440000 ; 17 har (680mS) [D℄

This run takes 36 seonds, and has redued the number of suggested border nodes

to look at. The PUSH instrution ontinues to appear in the list only beause some

other yellow obstale is preventing the slier from identifying the orret segment to

whih additional stak ontext should be added.

Border Yellow instrutions:

L0396: PUSH %FBh

L0608: DJNZ r12, L0601

L0650: JR ULE, L063F

L042A: JR Z, L041C

Edges = 25044 Green Yellow Magenta Blue

Nodes = 18992 16470 2431 2 89

Perent = 86% 12% 1% 1%

The loop at L042A is part of another software debouning area. The user will

assume no button press.

61

The loop at L0650 is a twin to the loop at L062D above, so the user dupliates

the assertion edge with new soure and destination addresses.

The DJNZ instrution at L0608 is part of a nested loop that was designed to wait

20mS before sending more data to a peripheral hip.

More assertions are added, and the tool is rerun.

[0x0420℄->[0x0427℄=46 ; No button press. [E℄

[0x0420℄->[0x042C℄=66 ; No button press. [E℄

[0x063F℄->[0x0652℄=24000000 ; Punt. (3se) [A℄

[0x0601℄->[0x060A℄=166086 ; EEPROM write (20mS) [A℄

[0x0603℄->[0x060A℄=166086 ; EEPROM write (20mS) [A℄

Border Yellow instrutions:

L0396: PUSH %FBh

L05E5: DJNZ r13, L05D8

L05F6: DJNZ r13, L05EA

Edges = 25088 Green Yellow Magenta Blue

Nodes = 19020 17562 1367 2 89

Perent = 92% 7% 1% 1%

After 39 seonds of analysis, the perentage of green nodes has topped 90%, and

the remaining yellow nodes are in the single digit range. The user is in the home

streth now.

Both of the suggested DJNZ instrutions belong to loops with obvious bounds.

While somewhat tedious, the user is able to total up the exeution time of the dozen

instrutions in the bodies of the loops, and multiply them by the bounds.

[0x05EA℄->[0x05F8℄=144 ; RDLP1 (8*18y=18uS) [A℄

[0x05D8℄->[0x05E7℄=1200 ; SENDBF (8*150 =150uS) [A℄

Border Yellow instrutions:

L0396: PUSH %FBh

L0490: DJNZ r14, L048D

Edges = 28728 Green Yellow Magenta Blue

Nodes = 21837 21242 504 2 89

Perent = 97% 2% 1% 1%

After a 1 minute, 19 seond analysis, the program has 97% green nodes.

62

The next border node belongs to a loop with obvious bounds alling a 40mS

subroutine. There are two very similar loops with slightly di�erent bounds on the

page above L0490. The user adds assertions for all three.

[0x048D℄->[0x0492℄=1601000 ; DSPBCK 5x (201mS) [A℄

[0x046C℄->[0x0471℄=1601000 ; DSPBCK 5x (201mS) [A℄

[0x0445℄->[0x044A℄=1280800 ; DSPBCK 4x (161mS) [A℄

The �nal run of the tool takes 1 minute, 26 seonds, but produes zero yellow

nodes.

63

Edges = 28731 Green Yellow Magenta Blue

Nodes = 21837 21746 0 2 89

Perent = 99% 0% 1% 1%

There is still muh testing to be done for this embedded system. The user has

presented 16 assertions to the orale, 10 of those based upon manual inspetion of

the ode, rather than external design riteria. Simulation and testing of the system

should aim to validate and/or tighten these unheked assertions.

While the two magenta nodes in the system seem to be a small window of op-

portunity for interrupt starvation, they omprise an in�nite loop with a non-green

interrupt soure turned on. In other words, the system turns o� all other interrupts,

and waits for a partiular, di�erent interrupt to our before returning to normal op-

eration. Thus, deadline analysis for this system and this partiular interrupt handler

depends ultimately upon knowing the upper bound on the time the system will have

to wait for this other interrupt soure to be triggered.

Overall understanding of the example system's timing behavior has inreased as

a result of the deadline analysis. Testing and simulation an onentrate on the lines

of ode for whih assertions have been provided, and on the magenta nodes, both of

whih omprise a tiny fration of the total state spae for the ode. The prototype

implementation also produes ow graphs that depit the olors of ode regions, or

an dump the graph in a at �le format suitable for import into other visualization

tools. Additional implementation details are presented in Chapter 6.

5.5 Summary

The algorithms presented in this hapter perform deadline analysis on interrupt-

driven assembly ode. Stati analysis was able to redue the required testing e�ort

to onentrate on the validity of ertain orale assertions about timing.

In 30% of the analyses of a partiular interrupt handler for a partiular benhmark,

the deadline analysis was able to �rmly bound maximum interrupt lateny. In the

remaining 60% of the ases, the analysis redued the size of the testing problem by

an average of 98%. While the testing of the orales and remaining magenta nodes is

still a large task, it is several orders of magnitude smaller than the testing problem

without the deadline analysis presented in this hapter.

The multi-resolution analysis allows for ompat and eÆient representation of

timing properties while smoothly inorporating the orales. For eah of the test

inputs, less than 17 orales are suÆient, and these an be added in an interative

fashion until the deadline analysis is omplete. In the experiments, it was observed

that an expert user an go from a bare program of about 1000 lines of assembly

ode to a ompleted deadline analysis in less than an hour. (This does not inlude

64

the subsequent exhaustive testing of the orales, whih would normally be done even

without any analysis by ZARBI.)

While the urrent inarnation of the tool uses a Z86 front end, the abstrations

used in the graph analysis are appliable to a wide range of other proessors whih use

bit-maskable, vetored interrupt handling, suh as the Motorola 68000 family [60,61℄,

the Intel 8051 family [45℄, the National Semiondutor COPS8 family [64℄, as well as

several RISC DSP arhitetures, and other speial purpose hips.

This hapter presents one of the �rst algorithms to allow deadline analysis of

interrupt-driven assembly ode. The proof-of-onept implementation demonstrates

its usefulness when run on ommerial-grade real-time software. ZARBI is also one

of the �rst tools to inorporate stati analysis with testing orales in an interative

fashion.

The next hapter presents �ne-grained details of the tools demonstrated above,

inluding implementation issues, limitations, and features intended for future use.

65

6 ZILOG ARCHITECTURE RESOURCE-BOUNDING INFRASTRUCTURE

The previous hapters have presented algorithms for stak size analysis and deadline

analysis at a high level of abstration without fousing on implementation details.

This hapter is the ompliment to that high level view, detailing the prototype tools

that implement the resoure bounding analyses desribed earlier.

6.1 Data Strutures

The primary data strutures used in ZARBI are for storing and manipulating the

ontrol ow graph representation. Four main lasses are responsible for this funtion:

GraphNode, GraphEdge, GraphID and GraphNexus.

The GraphNode is the entral data struture and represents a single node in the

ontrol ow graph. Eah GraphNode has a unique GraphID whih ontains the PC,

IMR, and stak ontext for the GraphNode. The GraphID lass exists to separate the

methods for storing, manipulating, and omparing this information from the methods

for graph building and traversals. GraphNodes have two arrays of GraphEdges: one

for inoming edges and one for outgoing edges. The GraphNode lass implements the

GraphNodeInterfae and an be used in the same graphs with other sublasses of the

GraphNodeInterfae interfae.

The GraphEdge lass implements the GraphEdgeInterfae and represents a di-

reted edge in the graph. GraphEdge has a referene to a soure GraphNodeInterfae

and a destination GraphNodeInterfae.

The GraphNexus struture is a joining point for all of the GraphNodes that have

the same PC value. There is one GraphNexus for eah line of ode in the original

Z86 program, plus several speial nexi for other lines in the original assembler �le.

The GraphNexus serves as a bookkeeping entity, traking data and statistis that all

of its GraphNode hildren have in ommon. The most ommon searhes performed

on the graph during onstrution require �nding a referene to partiular GraphNode

given only a PC and an IMR value. In this way, the array of GraphNexus objets is

the bakbone of the ontrol ow graph, providing an organizational struture that is

reeted in many of the ZARBI visualization and analysis tools.

While the GraphID lass is primarily onerned with the PC, IMR, and stak

values of GraphNodes, it also ontains ow soure pointers, referenes to the GraphID

belonging to the node whih pushed the urrent top element on the stak. This

extra piee of information allows optimized onstrution of stak summary edges,

(Setions 4.3.2 and 3.1), beause eah node already has a referene to the soure

node of the potential summary edge without exeuting an expensive searh. The

ow soure pointer also allows omparisons of GraphID's to di�erentiate between

66

idential top stak elements whih were assigned by di�erent soure nodes. This

tehnique auses top stak elements from partiular soure nodes to be treated as

unique identi�ers, whih allows the stak size analysis to sueed in bounding the

stak for ertain degenerate ases where spurious summary edges would otherwise be

onstruted.

An abstrat GraphTraversal lass exists whih allows both forward and bakward

breadth-�rst traversals of the ontrol ow graphs. At least seven onrete sublasses

of GraphTraversal exist, allowing many of the analysis passes in ZARBI to use a

uniform traversal mehanism.

6.2 Stak Size Cheking Tools

The next four subsetions desribe the implementation of four major parts of the

stak size analysis presented in Chapter 4. The simpli�er (Setion 6.2.1) is a Z86

assembly language parser, whih partially ompiles the input programs and performs

error heking that need not be repeated in later phases of analysis. The simulator

(Setion 6.2.2), state mahine models (Setion 6.2.3), and geneti searh algorithm

(Setion 6.2.4) were all key omponents for �nding the realisti lower bounds on

maximum stak height presented in Chapter 4.

6.2.1 Simpli�er

In order to avoid dupliation of ode and work in many of the tools in the ZARBI

suite, Z86 programs are �rst passed through a simpli�ation stage { essentially par-

tially ompiled { before being parsed in by later tools in the hain.

The simpli�er expands all symbol table referenes to their �nal immediate values,

labels eah line of exeutable ode, and performs a variety of error heks before

passing the program on to the simulator, stak analysis, or deadline analysis engines.

The ode for parsing raw Z86 assembly language �les and building abstrat syntax

trees was largely automatially generated with the Java Tree Builder [91℄, another

tool built at Purdue. Transformation of the abstrat syntax tree into the simpli�ed

tree is handled through extensive use of the \Visitor" design pattern [33℄ and the

Generi Java extension [13℄.

Error heking undertaken by the simpli�er inludes: ensuring that all arithmeti

onstants are in range to be stored in the available register size, whether those on-

stants are expressed in binary, deimal, otal, or hexadeimal notation; heking that

all jumps and alls are to valid ode addresses; and identifying any unresolvable

symbol referenes.

The simpli�er outputs the partially ompiled ode into a �le, whih must then

be parsed bak in by the striter grammar of later tools in the hain. This keeps

ompilation onerns like symbol table resolution ompletely separate from other

67

analyses in ZARBI, and alleviates the need for redundant error heking in other tool

omponents.

The output of the simpli�er onforms to the grammar found in Appendix B.

6.2.2 Simulator

The ZARBI toolset inludes a yle-level simulator of the Z86E30 proessor, on-

struted from Zilog's spei�ations [100℄. Building a simulator based upon published

spei�ations from the manufaturer an be error-prone, as suh douments an be

vague, inomplete, or simply wrong [26℄. In the many ases where spei�ations were

vague, the simulator was implemented with worst-ase assumptions about the atual

hardware. Nevertheless, the ZARBI simulator has not been validated against real

Z86E30 hips in any way, and this would be an absolutely neessary step for an in-

dustrial strength version of ZARBI. The urrent simulator was intended primarily as

an exploratory tool for evaluating the role of suh a simulator in resoure-bounding

analyses. This simulator also does not implement several features of the Z86E30

arhiteture whih are not used by the benhmark suite.

The simulator is approximately 7400 lines of Java ode, not inluding the �le

reated by the parser-generator tool. Both a graphial user interfae (pitured in

Figure 6.1,) and a ommand-line bath mode are available.

Upon graphial startup, the simulator reads in a simpli�ed Z86 program and

displays the ROM, register and ag windows. Single-step and break-point exeution

are available, with the various windows updating all register and ag values as the

program is stepped through.

The simulator interfae allows the user to alter values in any Z86 register and a-

urately displays proessor state not otherwise available, even to the program running

on raw hardware. (For example, exat timer ount values.)

One of the key bene�ts of the ZARBI simulator is yle-aurate interrupt be-

havior. The ommerially-available Zilog in-iruit emulator does not allow single-

stepping through interrupt handlers and does not maintain orret lok state when

single-stepping.

The absene of yle-aurate simulators and models for many modern proessors

is a major obstale to veri�ation of real-time software in pratie.

When run in ommand-line mode, the simulator outputs maximum stak depth

for a given run, and may allow devie models to output status information to the

onsole.

6.2.3 State Mahine Models

All of the ommerial benhmarks examined in this dissertation were written

for Z86 hips onneted to other peripheral devies like analog-to-digital onverters,

liquid rystal displays, universal asynhronous reeiver/transmitters, and external

68

Figure 6.1. Sreenshots from the ZARBI Simulator

memory devies. The exat funtions of these various devies are unrelated to the

Z86 hip or its simulator, but the interations they provide are neessary for the

software to exerise typial ontrol ow paths. For example, most of the benhmarks

ommuniate with an intelligent LCD display over a 4- or 8-bit data bus. If the

display does not aknowledge eah ommand, the ontrol software does not proeed

to the main operating loop.

In order to address this problem, the ZARBI simulator inludes an interfae for

models of external hips to be plugged into the simulation.

The external devie interfae allows the simulator to reset external devie models,

simulating a power yle, or to pass information about elapsed time in the simulation.

In the real system hardware, external devies are not onneted to the Z86's internal

lok, but the simulator needs to pass a time referene to the devie models.

69

The external devie models are implemented as simple state mahines in Java

ode, whih was suÆient for all of the external devies found in the benhmark

systems. They interat with the simulated Z86 through memory-mapped I/O, just

as in the atual systems.

This modular interfae allows many kinds of external devies to be simulated

and permits the types, versions, and loations of external devies to be reon�gured

appropriately for eah of the di�erent benhmark systems.

The external devie models, in turn, are separated from the onerns of the Z86

model and an perform their own funtions. For example, the model of the external

LCD devie an alulate based on internal state what text would appear on the LCD

panel in the real system and pipe this to standard output during simulation.

Aounting for external devies in embedded systems has proven to be an impor-

tant part of this projet, despite the fat that these fators are overlooked in muh

of the researh in embedded systems researh.

6.2.4 Geneti Algorithm

Searhing for realizable paths that lead to a maximum stak height is intratable

in the general ase (see Setion 3.2). Exhaustive searh for suh a path is also im-

pratial given the ombinatorially explosive size of the state spae. Instead, heuristi

searhes must be relied upon to �nd realizable paths with large stak heights. Thus,

ZARBI employs what is known as a geneti or evolutionary searh algorithm [34℄ to

�nd tight lower bounds on the maximum stak height of the benhmarks. Geneti

algorithms are a omplex topi largely beyond the sope of this dissertation, but this

setion outlines the major parameters supplied to the searh heuristi for the sake of

ompleteness.

When performing a geneti algorithm searh for interrupt shedules that yield

large maximal stak heights, the ZARBI Simulator bakend is run without the graph-

ial user interfae, in bath mode. A shell sript manages the simulator runs, and

performs the evolutionary adjustments to the population of interrupt shedules.

Briey, geneti algorithms use a �tness heuristi to selet good solutions out of

diverse population of possible solutions. The searh then merges and mutates the

qualities of good solutions in hopes of �nding better solutions.

For the experiments in Chapter 4, the geneti algorithm searhes were run for 25

generations, eah with a population of 25 interrupt shedules. The initial population

was 400 randomly generated interrupt shedules. The simulator was run for 120

seonds of simulated time on eah interrupt shedule, and the maximal stak size

during the run was taken to be the �tness funtion for the interrupt shedule. (It

is the nature of the ommerial benhmarks that they have 1-seond long operating

yles. Thus, disounting a few seonds of startup time, it was expeted that their

behavior would stabilize after eah seond, so 120 seonds of run time per individual

would be quite suÆient to observe maximal stak size under given onditions.)

70

From eah generation to the next, the top three interrupt shedules were auto-

matially passed on to the next generation. The remainder of the new population

was generated using two parents seleted from the old population using tournament

seletion. The parental pair of shedules was merged using standard rossover, and

subjeted to probabilisti mutation.

The full details of interrupt shedules are explained in Appendix C; rossover

between two interrupt shedules was de�ned as three separate randommerges between

the three distint lasses of interrupt shedule lines.

Overall mutation rate for hildren was linearly dereasing from 10% in the �rst

generation, down to 4% in the �nal generation. Eah of the three kinds of interrupt

shedule lines underwent spei� mutation, in order to preserve the sense of its �tness.

The one-shot interrupt lines had a 20% hane of having the IRQ number randomly

permuted, and an 80% hane of having the trigger address shifted +/- 3 instrutions.

Periodi address-triggered interrupt lines had a 10% hane of IRQ number mu-

tation, a 40% hane of trigger address shifting +/- 3 instrutions, and a 40% hane

of period mutation by +/- 0.5% of maximum period.

Periodi time-triggered interrupt lines had a 10% hane of IRQ number mutation,

a 40% hane of trigger time shifting +/- 0.5%, and a 50% hane of period mutation

by +/- 0.5% of maximum period.

The parameters to the geneti searh algorithm have not been losely examined

in these experiments, but were suÆiently suitable that the geneti searh for eah

benhmark yielded an interrupt shedule with as good or better maximal stak height

than manually seleted expert interrupt shedules.

6.3 Deadline Analysis Tools

The seond half of this hapter onerns implementation details for the major tools

used in the deadline analysis phases of ZARBI. Setion 6.3.1 presents the implementa-

tion of graph oloring, while Setion 6.3.2 desribes the multiresolution analysis with

adaptive sliing. Setions 6.3.3, 6.3.4 and 6.3.5 outline the various graph visualization

and debugging mehanisms built into ZARBI.

6.3.1 Coloring Algorithm

The ZARBI algorithm for graph oloring is presented in CTL notation in Fig-

ure 5.6. This setion details the atual implementation of the oloring deision in

pseudoode and explains the oloring traversal.

As the �rst step, all nodes in the graph are olored red, whether they are reahable

or not. This has the natural side e�et that nodes whih annot be reahed via

bakward traversal from the interrupt handler will neessarily be red. As a result,

there are no rules for deiding to olor a node red, beause red nodes will not be

passed through the deision ode.

71

All nodes orresponding to the �rst instrution in the interrupt handler of interest

are olleted into a worklist and olored ultragreen.

A bakward oloring traversal ontinues for as long as the worklist of nodes is

empty. Nodes are taken o� of the worklist one at a time and are onsidered for

oloring. The oloring deision rules are given in Figure 6.2. After the node is given

an initial oloring, all of its inoming edges are visited. If the soure node on an

inoming edge is not marked, the soure node is put on the end of the worklist. After

all of the inoming edges have been visited, the urrent node is marked. (If the

node remains marked, this initial oloring will beome its �nal olor. Nodes are only

unmarked if one of their outgoing edges hanges olor.) The algorithm then iterates

to the next node in the worklist.

When an edge is visited, it is given the initial oloring of its destination node. If

this is a reoloring of the edge, the soure node of the edge is expliitly unmarked so

that it an be re-examined when it is put bak on the worklist.

1. n in �rst node of greenIRQ handler) n 2 UltraGreen

2. (9e 2
(n)):(e 2 UltraGreen)) n 2 Green

3. (8e 2
(n)):(e 2 Green)) n 2 Green

4. (9e 2
(n)):(T imesum(e) ^ (e 2 Green))) n 2 Green

5. (9e 2
(n)):(T imesum(e) ^ (e 2 Blue))) n 2 Blue

6. ((8e 2
(n)):(:Push3(e)_

(Push3(e) ^ (e =2 Red) ^ (e =2 UltraGreen))))^

(9e 2
(n)):(e 2 Y ellow) _ (e 2Magenta)) n 2Magenta

7. (8e 2
(n):(((e 2 Green) _ (e 2Magenta)_

(e 2 Blue)) ^ (:Push3(e)))) n 2 Blue

8. Else) n 2 Y ellow

where
(n) is the set of node n's outgoing edges, and the prediates Push3(n) and

T imesum(n) are true for interrupt and time summary edges, respetively.

Figure 6.2. ZARBI Graph Coloring Deision Rules

The oloring algorithm terminates when all node olors stabilize. Termination is

guaranteed to take plae beause of the preedene of the oloring rules. Nodes that

are olored green are done { will not be reolored to some other olor { as it an be

shown indutively that all downstream edges and nodes are also done in order for a

node to be olored green. Modulo green, magenta nodes are also done { that is, one

a node is magenta, it will either stay magenta or eventually beome green. Similarly,

blue nodes are done modulo green, whih leaves only yellow and red. There is no

rule for judging a node to be reolored red, so the oloring algorithm will eventually

onverge and terminate.

72

6.3.2 Adaptive Sliing

repeat

BorderY ellowSet(getBorderY ellow()

for all borderY ellow suh that borderY ellow 2 BorderY ellowSet do

if borderY ellow is a pop node then

if 9edge 2
(borderY ellow) suh that destination(edge) 2 Y ellow then

if destination(e) not in non-green handler then

for all node 2 destination(
(borderY ellow)))) do

maxOutgoingK (max(ontextAt(node); maxOutgoingK)

end for

if maxOutgoingK + 1 > ontextAt(borderY ellow) then

deletionList (all nodes bakward reahable from borderY ellow

without traversing push edges

rebuildList(all nodes one push edge bak from deletionList

delete the deletionList

buildContext(maxOutgoingK + 1

rebuild graph segment with workList(rebuildList

end if

end if

end if

end if

end for

until No hanges have been made in G

Figure 6.3. Adaptive Sliing Algorithm

The ZARBI deadline analysis inludes adaptive sliing, an automated tehnique

for inreasing the resolution of the analysis in areas of the graph where abstration

auses ambiguity. An example is presented in Setion 5.2.4; the details of the imple-

mentation are presented here, with pseudoode shown in Figure 6.3.

In the overall sheme of deadline analysis, multiresolution analysis takes plae

after the initial oloring of the graph with respet to a given handler. The �rst pass

sans bakward from the ultragreen handler to ollet a list of all yellow nodes whih

are one edge away from green or ultragreen nodes. These nodes are the border yellow

nodes and are the primary andidates for both adaptive sliing and time summary

orale assertions.

73

Not all border yellow nodes an be reolored green through adaptive sliing or time

summary orales { some ould be yellow beause of loops and path mergings elsewhere

in the graph. These are upstream yellow nodes, beause their yellow lassi�ation

depends entirely upon strutures elsewhere in the graph. However, regardless of

what perentage of the border yellow nodes is upstream yellow, it is still the ase that

some number of border yellow nodes an be reolored green with the help of sliing

or orales.

The multiresolution analysis next iterates through the list of border yellow nodes

and disards any nodes whih are not pop nodes. Pop nodes orrespond to one of

three opodes in the Z86 assembly language { POP, RET, and IRET. Only the border

yellow pop nodes are of interest for adaptive sliing, beause they are the merge points

in a bakward traversal where stak ontext is lost. In other words, if a green node

in the program has an inoming pop edge from a yellow POP instrution, it is the

impliit merging of the node for the POP instrution with another node in a di�erent

stak ontext whih auses an arti�ial yellow yle to appear in the graph.

While �ltering non-pop nodes out of the list, the analysis also heks eah border

yellow pop node andidate to see that it has at least one outgoing yellow edge that

does not lead to a non-green interrupt handler. Pop nodes that are yellow only beause

of outgoing edges that lead in one step to a non-green interrupt handler annot be

reolored green with additional stak ontext; they will be olored magenta in a later

graph oloring pass.

Finally, for eah remaining andidate border yellow pop node, a maxOutgoingK

tally is made, giving the maximum stak ontext value of any node reahable in one

outgoing edge from the andidate. If a andidate node'smaxOutgoingK is larger than

the andidate's maximum stak ontext minus 1, the andidate is plaed on the �nal

adaptive sliing list. This ondition prevents adaptive sliing from taking plae on

andidates where the stak ontext is already at least one more than all of the outgoing

edge destinations. These nodes annot be suessfully reolored through sliing, as

they already have full preision with regard to the stak information available at all

of their suessor nodes. An important aveat is that these nodes may not be their

�nal olor just beause they were �ltered out in the urrent pass; they may still need

additional stak ontext to be olored green, but not before some outgoing destination

node is itself slied into nodes with greater ontext.

In pratial terms, themaxOutgoingK test also provides an important omponent

to the stopping riteria for the multiresolution analysis. Without this test on andi-

date nodes, the analysis ould loop inde�nitely trying to add greater stak ontext to

a graph segment that is yellow for some other reason.

The multiresolution analysis iterates through the �nal list of nodes seleted for

adaptive sliing. For eah node in the list, two new lists are alulated: the deletion

list is the transitive losure of all nodes that an be reahed by bakward traversal of

non-push nodes; the rebuild list is the set of push nodes bordering the deletion list.

Push nodes an orrespond to PUSH or CALL instrutions. In the ase where the

74

deletion list inludes the �rst instrution of an interrupt handler, the push nodes an

be any instrution from whih that interrupt handler an be reahed in one edge.

The nodes on the deletion list are deleted. The nodes in the rebuild list are used

to seed the initial worklist when the graph builder is alled to reonstrut the deleted

graph segment. Before reonstrution, however, the stak ontext eiling is set to one

item higher than whatever the highest stak ontext number was among all the nodes

in the delete list. After reonstrution, the entire graph is reolored.

The overall stopping riteria for the multiresolution analysis is expensive to al-

ulate. Adaptive sliing on any given run an push bak the green frontier to expose

new border yellow pop nodes that were not andidates in the previous san. Thus,

the entire proess must be repeated { the entire loop in Figure 6.3 { until the list of

�nal sliing andidates is of zero size.

The adaptive sliing algorithm is not optimal in that a lot of work is dupliated

during the analysis. In pratie, large segments of graph an be built, deleted, rebuilt

with greater stak ontext, deleted again, and rebuilt with even more stak on-

text. A leaner algorithm ould instead update existing nodes with greater ontext,

rather than ompletely realulating ontrol ow eah time. However, this would add

substantial omplexity to the implementation, as the adaptive slier would need a

di�erent graph building engine, distint from the main graph builder.

The omplexity of the multiresolution analysis is surprisingly large, due both to

the omplexity of the stopping riteria, and the omplexity of ompletely reoloring

the graph after eah sliing. Knowing when to stop looking for andidates for sliing

requires global knowledge of the graph, and thus annot be inexpensively implemented

in a system that fouses on per-node operations.

6.3.3 Colordot

One of the daunting pratial problems in deadline analysis of real interrupt-driven

programs is �nding ways to make sense of the enormous amount of data available.

When a user is in the proess of running the tool to disover yellow loops that re-

quire orale assertions, even a small ommerial example an present thousands of

lines of ode, and potentially hundreds of thousands of nodes and edges to examine.

ZARBI provides several output modes whih organize the analysis data into di�erent

perspetives.

The olordot output tool takes advantage of the key observation that like-olored

nodes tend to our in ontiguous zones. A olordot dump of the analysis prints out

dots for eah ombination of PC and IMR that exists in the program; the olor of the

dot is an attempt to summarize the olors of the possibly many nodes in the graph

with mathing PC/IMR values.

The rationale behind providing this graphial representation is that with relatively

little pratie, users of ZARBI an quikly learn to identify trouble spots in the graph

that will require greater attention.

75

imr = 00

L000C ||

L000F ||

L0012 ||

imr = 00 81

L0015 ||

L0017 ||

L0019 ||

L001B ||

L001E ||

L0020 ||

imr = 00 81 83

L0023 ||

L0026 ||

L0028 ||

L002A ||

imr = 00 81 83 01 03

L002B || ||

L002C ||

imr = 00 81 83 01 03

Figure 6.4. Colordot Output for FSE03

The olordot output for FSE03, (desribed in Figure 5.2,) with the green interrupt

de�ned as IRQ1, is shown in Figure 6.4.

The format of the output an be read as a two-dimensional table, with exeutable

ode labels printed in asending order down the vertial axis, and IMR values printed

at regular intervals along the horizontal axis in the order in whih they were enoun-

tered.

Thus, the program in Figure 6.4 begins with the instrution at label \000C", with

an IMR value of \00". Sanning linearly down the exeutable addresses, the �rst

non-zero IMR value of \81" appears at label \0015", and so on.

A new horizontal legend (starting with \imr = ...",) is printed eah time a new

IMR value is enountered, or every 25th line of output, if no hanges take plae.

A third important axis in the olordot output is not visible in Figure 6.4; as the

name implies, the dots in the display are olored. (Also, they are not dots. ASCII pipe

haraters proved to be more easily visible in long dumps, but the name \olordot"

76

imr = 00

L000C BB

L000F BB

L0012 BB

imr = 00 81

L0015 MM

L0017 MM

L0019 MM

L001B YY

L001E YY

L0020 GG

imr = 00 81 83

L0023 GG

L0026 BB

L0028 BB

L002A BB

imr = 00 81 83 01 03

L002B BB GG

L002C XX

imr = 00 81 83 01 03

B = Blue; M = Magenta; Y = Yellow; G = Green; X = Ultra Green

Figure 6.5. Colordot Output for FSE03 with Colors Abbreviated

was already entrenhed in the doumentation.) Figure 6.5 reasts the output of

Figure 6.4 with the bars replaed by olor desriptions.

In a olor display, the olordot output an be quikly interpreted to see that label

1E is the transition point between well-behaved green nodes and the rest of the graph.

Furthermore, it an quikly be seen that the initialization setion prior to label 15

probably needs no additional attention.

In the example above, eah pair of dots is the same olor. That is, for any given

PC/IMR ombination, there are two idential dots. While this is true of all of the

toy examples shown in previous hapters. it is not generally true for many nodes in

the ommerial benhmarks.

In omplex graphs where a PC/IMR pair may ontain hundreds of nodes di�er-

entiated only by stak ontext, there may be several di�erent olors of nodes present.

In these ases, the olordot tool outputs two di�erent olored dots for the high and

77

low olors of the many nodes at that loation. Thus, a PC/IMR pair that has both

green and yellow nodes would have a green and a yellow dot in the assoiated dump.

This information is espeially useful when sanning the analysis dump looking for

subroutines whih are alled from ontexts of several di�erent olors.

The olordot output format is but one possible view of the formidable data avail-

able during the ZARBI deadline analysis. It has proven useful in pratie for quikly

identifying segments of the graph whih require additional time summary orale as-

sertions. However, the olordot output format has several weaknesses whih make it

neessary to rely on other auxiliary display formats during serious deadline analysis.

Colordot does not show ontrol ow edges, and is therefore diÆult to interpret

in program areas where dominant ontrol ow is not in a straight line.

Colordot gives no indiation of how many nodes are olleted together under a

given PC/IMR pair, thereby disguising program \hot spots" whih often warrant

additional manual attention.

The high/low olor sheme is not well de�ned, as there does not appear to be

any ordering of the node olors whih allows the high/low sheme to provide the best

summary information in all desirable ontexts. In ases where nodes of more than

two olors must be represented, it is not obvious whih olor should be hidden. Slight

perturbations of the olordot high/low preferenes an substantially alter the overall

appearanes of the more omplex graphs.

The olordot tool has no provisions for displaying graphs with more IMR values

than an onveniently �t aross the viewable text terminal. In pratie, this has not

proven to be a signi�ant limitation.

Despite these shortfalls, olordot has proven to be a quik and e�etive tool for

visualizing the deadline analysis data in the ZARBI prototype.

6.3.4 Graph Crawler

When more detailed visualization of the deadline analysis graph is required than

an be provided with the olordot tool, ZARBI provides a graph rawler.

The rawler is a ommand-line interfae that allows the user to navigate the

nodes and edges of the graph in omplete detail. The rawler state mahine moves

through the graph based upon ommands from a ommand-line interfae, as shown

in Figure 6.6

A typial rawler interation on the FSE03 benhmark is shown in Figure 6.7.

The partial transript in the �gure starts at the nexus for label \0023", and

displays the orresponding assembly language for referene. The user selets \P" to

print the urrent nexus out, but there is only one node to display. Choosing the only

available node, the orresponding graph notation for the node is displayed. The users

requests \O" for outgoing edges, and the three outgoing edges from this node are

displayed. By seleting one of the edges, the rawler will move on to the destination

node of the hosen edge.

78

Nexus
to new
Jump

 Nexus
Display

Display
 Edges

Jump
to new
Node

Choose
Node

Parent

Incoming

Outgoing

Choose
Edge

Display
Jump

Nexus
Menu

Menu
Node

Figure 6.6. Crawler State Mahine

The ommand-line interfae displays nodes and edges in full olor, orresponding

to their �nal status in the deadline analysis.

The primary disadvantage of the rawler is that it is diÆult to visualize the

state of nodes that are nearby, but more than one edge away from the urrent node.

Also, the listing of nodes and edges an be many times longer than the available

text window in omplex graphs; these long listings appear to the untrained eye to be

largely idential, making navigation a slow, \rawling" proess.

Despite its drawbaks, the rawler makes it possible to drill down into the heart

of omplex graphs while still being able to visualize the status of adjaent nodes and

edges. Experimentally, the rawler has proven essential both during the debugging

stages of ZARBI development, and when trying to unravel omplex yellow ontrol

ow during deadline analysis.

6.3.5 Graph File Format

ZARBI has a at ASCII �le format into whih it an dump the �nal graph, as

given by the grammar in Figure 6.8. This format has proven amenable as input to

other prototype model heking utilities and visualization tools.

79

Current Nexus is L0023: JP TRUE, L0023

P Print urrent Nexus

J Jump to Nexus

? p

0 [0x0023,0x83,{}℄

? 0

? Current Node is [0x0023,0x83,{}℄

I Print urrent Node inoming edges

N Go to parent Nexus

O Print urrent Node outgoing edges

? o

0 [0x0023,0x83,{}℄ -> [0x0023,0x83,{}℄ = (12,0x00,0x0000)

1 [0x0023,0x83,{}℄ -> [0x002B,0x03,{0x0023}℄ = (24,0x13,0x0023)

2 [0x0023,0x83,{}℄ -> [0x002C,0x03,{0x0023}℄ = (24,0x13,0x0023)

Figure 6.7. Crawler Interfae

Goal() ::= (Edge())* EOF

Edge() ::= Vertex() ! Vertex() = Value()

Vertex() ::= [Word() , Byte() , f Word() (, Word())* g (, Pair())* ℄

k [Word() , Byte() , f g (, Pair())* ℄

Value() ::= \(\ Byte() , Byte() , Word() (, Byte())* \)"

Pair() ::= Byte() : Byte()

Byte() ::= An 8-bit quantity.

Word() ::= A 16-bit quantity.

Figure 6.8. ZARBI Graph File Format

While not used in the urrent prototype, the format inludes provisions for arbi-

trary pairs of bytes to be appended to eah node. This is intended to support sliing

and unrolling of loops; urrent loop nodes would be dupliated and annotated with

80

information of the form, \rx : y", where x would be the loop register, and y would

be the preise values it ould be unrolled into.

The graph �le format output of FSE03, used as the running example throughout

Chapters 5 and 6, is shown in Figure 6.9.

6.4 Summary

The Zilog Arhiteture Resoure-Bounding Infrastruture is just that { a olletion

of tools and data strutures that provide general support for ontrol ow graph-based,

resoure-bounding analyses of Zilog-based miroontroller systems. The urrent pro-

totype is targeted to the Z86E30, but the bakend analysis tools operate on the CFG

abstrations presented in Chapter 3 and are less dependent on Z86 assembly syntax.

Components within ZARBI inlude parsers, a partial ompiler, a graph building

engine, a simulator, general traversal tools, several kinds of data visualization tools,

not to mention the atual stak-size and deadline analysis engines.

Many of the omponents have been onstruted with modularity and future ex-

pansion in mind.

81

[0x000C,0x00,{}℄ -> [0x0026,0x00,{0x000F}℄ = (20,0x12,0x000F)

[0x000C,0x00,{}℄ -> [0x000F,0x00,{}℄ = (00,0x40,0x0000)

[0x0026,0x00,{0x000F}℄ -> [0x002A,0x00,{0x000F}℄ = (00,0x40,0x0000)

[0x0026,0x00,{0x000F}℄ -> [0x0028,0x00,{?,0x000F}℄ = (10,0x11,0x0000)

[0x000F,0x00,{}℄ -> [0x0026,0x00,{0x0012}℄ = (20,0x12,0x0012)

[0x000F,0x00,{}℄ -> [0x0012,0x00,{}℄ = (00,0x40,0x0000)

[0x002A,0x00,{0x000F}℄ -> [0x000F,0x00,{}℄ = (14,0x22,0x000F)

[0x0028,0x00,{?,0x000F}℄ -> [0x002A,0x00,{0x000F}℄ = (10,0x21,0x??)

[0x0026,0x00,{0x0012}℄ -> [0x002A,0x00,{0x0012}℄ = (00,0x40,0x0000)

[0x0026,0x00,{0x0012}℄ -> [0x0028,0x00,{?,0x0012}℄ = (10,0x11,0x0000)

[0x0012,0x00,{}℄ -> [0x0015,0x81,{}℄ = (10,0x00,0x0000)

[0x002A,0x00,{0x0012}℄ -> [0x0012,0x00,{}℄ = (14,0x22,0x0012)

[0x0028,0x00,{?,0x0012}℄ -> [0x002A,0x00,{0x0012}℄ = (10,0x21,0x??)

[0x0015,0x81,{}℄ -> [0x0017,0x81,{}℄ = (10,0x00,0x0000)

[0x0015,0x81,{}℄ -> [0x002B,0x01,{0x0015}℄ = (24,0x13,0x0015)

[0x0017,0x81,{}℄ -> [0x0019,0x81,{}℄ = (10,0x00,0x0000)

[0x0017,0x81,{}℄ -> [0x0015,0x81,{}℄ = (12,0x00,0x0000)

[0x0017,0x81,{}℄ -> [0x002B,0x01,{0x0017}℄ = (24,0x13,0x0017)

[0x002B,0x01,{0x0015}℄ -> [0x0015,0x81,{}℄ = (16,0x23,0x0015)

[0x0019,0x81,{}℄ -> [0x001B,0x00,{}℄ = (06,0x00,0x0000)

[0x0019,0x81,{}℄ -> [0x002B,0x01,{0x0019}℄ = (24,0x13,0x0019)

[0x002B,0x01,{0x0017}℄ -> [0x0017,0x81,{}℄ = (16,0x23,0x0017)

[0x001B,0x00,{}℄ -> [0x001E,0x00,{}℄ = (10,0x00,0x0000)

[0x002B,0x01,{0x0019}℄ -> [0x0019,0x81,{}℄ = (16,0x23,0x0019)

[0x001E,0x00,{}℄ -> [0x0020,0x00,{}℄ = (10,0x00,0x0000)

[0x001E,0x00,{}℄ -> [0x001B,0x00,{}℄ = (12,0x00,0x0000)

[0x0020,0x00,{}℄ -> [0x0023,0x83,{}℄ = (10,0x00,0x0000)

[0x0023,0x83,{}℄ -> [0x0023,0x83,{}℄ = (12,0x00,0x0000)

[0x0023,0x83,{}℄ -> [0x002B,0x03,{0x0023}℄ = (24,0x13,0x0023)

[0x0023,0x83,{}℄ -> [0x002C,0x03,{0x0023}℄ = (24,0x13,0x0023)

[0x002B,0x03,{0x0023}℄ -> [0x0023,0x83,{}℄ = (16,0x23,0x0023)

[0x002C,0x03,{0x0023}℄ -> [0x0023,0x83,{}℄ = (16,0x23,0x0023)

Figure 6.9. ZARBI Graph File Format Dump of FSE03

82

7 SUMMARY AND FUTURE WORK

7.1 Summary

Stati heking an provide safe and tight bounds on stak usage and exeu-

tion times in interrupt-driven systems. This dissertation presents algorithms for re-

soure bound analyses; also presented is ZARBI, a prototype implementation whih

statially omputes stak size and exeution time bounds for a benhmark suite of

ommerially-deployed, interrupt-driven systems. Advaned knowledge of resoure

bounds enables real-time system designers to eliminate whole lasses of errors from

their software before testing begins, thereby reduing the testing e�ort neessary to

ahieve on�dene in their system.

Despite the ubiquity of hardware interrupts in real-time systems, little prior re-

searh has dealt with interrupt-driven software. The ommerial benhmark suite

examined here inluded proprietary Z86-based miroontrollers programmed in as-

sembly language, with multiple vetored interrupt soures, a shared system stak,

extensive use of unstrutured loops, and no formal loop annotations.

The stak analysis presented by this dissertation bounds the maximum stak size

to within one byte of the true maximum in all but one of the ommerial benhmarks.

The deadline analysis found �rm worst-ase latenies in 30% of the ases; in the

remaining 70% of the ases, the analysis redued the size of the testing problem by

an average of 98%. While the testing e�ort still required for these systems is large,

it is several orders of magnitude smaller than the testing problem without deadline

analysis.

This dissertation presents novel algorithms for bounding stak height and maxi-

mum interrupt lateny. This is the �rst suh work on tratable ontrol-ow analysis

in the presene of vetored interrupt handling.

A seondary ontribution of this dissertation is a proof-of-onept implementation

of the novel analyses. The implementation is one of the �rst tools to give an eÆient

and useful stati analysis of assembly ode, and the �rst to analyze interrupt-driven

assembly ode. The prototype presented here is also among the �rst to inorporate

stati analysis with testing orales in an interative fashion.

The analysis algorithms also hek for several lasses of semanti errors in the

Z86 program, inluding using simple types to detet stak manipulation errors. In

addition, ZARBI ontains omponents for enhaned visualization and debugging of

ontrol-ow graph \problem areas" during the interative proess of interrupt lateny

analysis.

The urrent inarnation of the tool uses a Z86 front end, but the abstrations used

in the graph analysis are appliable to a wide range of other proessors whih use bit-

83

maskable, vetored interrupt handling. Examples inlude the Motorola 68000 family

[60, 61℄, the Intel 8051 family [45℄, the National Semiondutor COPS8 family [64℄,

as well as several families of speial purpose hips.

7.2 Future Work

The suess of the analyses presented here paves the way for many areas of po-

tential future work. Other researhers have already begun to referene the paper [14℄

on ZARBI's stak analysis, and to build this tehnology into their own analysis

tools [63, 82℄. Related papers have examined the omplexity of the stak analysis

�rst presented here [18℄, or have rephrased the model heking approah as a type-

heking problem [73℄.

The existene of an analysis infrastruture than an answer questions aboutWCET

in interrupt-driven software enables many new questions to be asked. Many proes-

sors used in real-time appliations have hardware wath-dog timers { a sort of software

dead-man's swith, whih resets the proessor state if a partiular opode is not exe-

uted within a given period. Wath-dog timers are deployed in most of the systems

in the ZARBI test suite, but little prior work has addressed the kind of errors that

this feature an ause. The tehniques presented in this dissertation ould be applied

to the wathdog timer question; rather than alulating worst-ase interrupt lateny,

the analysis ould searh for ode segments that are more than x yles away from a

WDT instrution, where x is the maximum wath-dog period.

Real-time software without interrupts has been analyzed in great depth, and re-

soure bounds an now be alulated for some systems where pipeline and ahe

e�ets ontribute signi�antly to WCET analysis. With ZARBI as a baseline, it may

be possible to extend these tehniques to aount for pipeline and ahe e�ets in

systems with vetored interrupt handling.

Combining the urrent analysis with meta-information about minimum interrupt

periods and interrupt priority ould result in an analysis that would be able to bound

resoures in more omplex systems, or eliminate more magenta nodes in the urrent

systems. Automati disovery of internal and data-dependent loop bounds would

improve the tool's ease of use by inferring many of the assertions that are urrently

provided to the time summary orales.

Reursion is unommon in real-time systems, but not unheard of [25℄. Extensions

to the analysis algorithms to allow reursive funtions would also apply to iterative

loops with non-zero stak behavior, as found in \FAN005", the one member of the

ommerial benhmark suite whih has de�ed analysis thus far.

Any omplex analysis of real systems an produe opious amounts of data, as

is the ase with the deadline analysis presented here. While ZARBI inludes several

tools to assist the user in visualizing and omprehending this data, better visualization

tehniques are possible. Work is in progress on a three-dimensional representation

of the deadline analysis CFG output, with the goal of making border yellow nodes

easier to identify and eliminate.

84

The dream of building a \push-button" resoure-bounding tool for real-time sys-

tem designers remains beyond the reah of researh this author is familiar with.

Real-time systems are inherently omplex, and the questions a designer would like to

ask of an analysis are often highly spei� to the given system. Even so, the prototype

implementation shown here demonstrates that a general purpose framework an be

built whih allows someone with expertise in real-time systems to use stati analysis

without having to beome an expert in stati analysis. The prototype presented in

this dissertation is not industrial strength, but the priniples it demonstrates may one

day inuene real tools. Better tools for bounding resoure usage in real-time systems

would bene�t system designers, and ultimately, onsumers of embedded, reative, and

interrupt-driven systems.

LIST OF REFERENCES

85

LIST OF REFERENCES

[1℄ Agere Systems, In. APP550 Student Training Guide. 1905A Kramer Lane

Suite 100, Austin, Texas 78758, May 2003.

[2℄ Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Priniples,

Tehniques and Tools. Addison-Wesley, 1985.

[3℄ Martin Alt, Christian Ferdinand, FlorianMartin, and ReinhardWilhelm. Cahe

behavior predition by abstrat interpretation. In Proeedings of SAS 96: Inter-

national Stati Analysis Symposium, volume 1145 of Leture Notes in Computer

Siene, pages 52{66. Springer, 1996.

[4℄ Peter Altenbernd. On the false path problem in hard real-time programs.

In Proeedings of ERTS 96: Eighth EuroMiro Workshop on Real-Time

Systems, pages 102{107, June 1996. URL http://iteseer.nj.ne.om/

altenbernd96false.html.

[5℄ Rajeev Alur and David L. Dill. A theory of timed automata. Theoretial Com-

puter Siene, 126(2):183{235, 1994. URL http://iteseer.nj.ne.om/

alur94theory.html.

[6℄ Rajeev Alur and Thomas A. Henzinger. Logis and models of real time: A

survey. In J. W. de Bakker, Cornelis Huizing, Willem P. de Roever, and Grze-

gorz Rozenberg, editors, Real-Time: Theory in Pratie, volume 600 of Leture

Notes in Computer Siene, pages 74{106. Springer-Verlag, 1992.

[7℄ George S. Avrunin, James C. Corbett, and Laura K. Dillon. Analyzing partially-

implemented real-time systems. IEEE Transations on Software Engineering,

24(8):602{614, August 1998.

[8℄ Iain Bate, Guillem Bernat, and Peter Pushner. Java virtual-mahine support

for portable worst-ase exeution-time analysis. In Proeedings of ISORC 02:

Fifth IEEE International Symposium on Objet-Oriented Real-Time Distributed

Computing, page 83, Washington D.C., USA, April 2002.

[9℄ William S. Beebee, Jr. and Martin Rinard. An implementation of soped mem-

ory for real-time Java. In T.A. Henzinger and C.M. Kirsh, editors, Proeedings

of EMSOFT 01: First International Workshop on Embedded Software, volume

2211 of Leture Notes in Computer Siene, pages 289{305, Tahoe City, Cal-

ifornia, Otober 2001. Springer-Verlag. URL http://iteseer.nj.ne.om/

beebee01implementation.html.

[10℄ Guillem Bernat, Alan Burns, and Andy Wellings. Portable worst-ase exe-

ution time analysis using Java byte ode. In Proeedings of 12th Euromi-

ro Conferene on Real-Time Systems, pages 81{88, Stokholm, Sweden, June

2000. URL http://www.omputer.org/Proeedings/euromiro-rts/0734/

0734to.htm.

86

[11℄ G�erard Berry and Georges Gonthier. The Esterel synhronous programming

language: Design, semantis, implementation. Siene of Computer Program-

ming, 19(2):87{152, 1992.

[12℄ Greg Bollella, Ben Brosgol, Steve Furr, David Hardin, Peter Dibble, James

Gosling, Mark Turnbull, and Rudy Belliardi. The Real-Time Spei�ation for

Java. Addison-Wesley, June 2000.

[13℄ Gilad Braha, Martin Odersky, David Stoutamire, and Philip Wadler. Mak-

ing the future safe for the past: Adding generiity to the Java programming

language. In Proeedings of OOPSLA 98: 13th Annual ACM SIGPLAN Confer-

ene on Objet-Oriented Programming Systems, Languages, and Appliations,

pages 183{200, 1998. URL http://www.is.unisa.edu.au/~pizza/gj/.

[14℄ Dennis Brylow, Niels Damgaard, and Jens Palsberg. Stati heking of interrupt

driven software. In Proeedings of ICSE 01: 23rd International Conferene on

Software Engineering, pages 47{56, June 2001. URL http://iteseer.nj.

ne.om/brylow01stati.htm.

[15℄ Dennis Brylow and Jens Palsberg. Deadline analysis of interrupt-driven soft-

ware. In Proeedings of FSE 03: 11th ACM SIGSOFT International Symposium

on the Foundations of Software Engineering, Helsinki, Finland, September 2003.

URL http://esefse.s.helsinki.fi/.

[16℄ Alan Burns and Andy Wellings. Real-Time Systems and Programming Lan-

guages. Addison Wesley, 3rd edition, 2001.

[17℄ Lua Cardelli. Type systems. In Allen B. Tuker, editor, The Computer Siene

and Engineering Handbook, hapter 103, pages 2208{2236. CRC Press, Boa

Raton, Florida, 1997.

[18℄ Krishnendu Chatterjee, Di Ma, Rupak Majumdar, Tian Zhao, Thomas A. Hen-

zinger, and Jens Palsberg. Stak size analysis of interrupt driven software. In

Proeedings of SAS 03: Tenth Annual International Stati Analysis Symposium,

volume 2694 of Leture Notes in Computer Siene, pages 109{126, San Diego,

California, June 2003.

[19℄ Edmund Clarke, Orna Grumberg, and Doron Peled. Model Cheking. MIT

Press, Cambridge, Massahusetts, January 2000.

[20℄ Matteo Corti, Roberto Brega, and Thomas Gross. Approximation of worst-

ase exeution time for preemptive multitasking systems. In Proeedings of

LCTES 00: ACM SIGPLAN Workshop on Languages, Compilers and Tools

for Embedded Systems, volume 1985 of Leture Notes in Computer Siene,

pages 178{198. Springer-Verlag, 2000. URL http://link.springer.de/link/

servie/series/0558/tos/t1985.htm.

[21℄ Patrik Cousot and Radhia Cousot. Abstrat interpretation: A uni�ed lat-

tie model for stati analysis of programs by onstrution or approximation

of �xpoints. In Proeedings of POPL 77: Fourth Annual ACM SIGPLAN{

SIGACT Symposium on Priniples of Programming Languages, pages 238{

252, Los Angeles, California, 1977. ACM Press, New York, NY. URL http:

//www.di.ens.fr/~ousot/COUSOTpapers/POPL77.shtml.

87

[22℄ Karl Crary and Stephanie Weirih. Resoure bound erti�ation. In Proeedings

of POPL 00: 27th Annual ACM SIGPLAN{SIGACT Symposium on Priniples

of Programming Languages, pages 184{198, 2000. URL http://iteseer.nj.

ne.om/rary00resoure.html.

[23℄ Matthew B. Dwyer. Data Flow Analysis For Verifying Corretness Properties of

Conurrent Programs. PhD thesis, University Massahusetts, Amherst, Septem-

ber 1995. URL http://www.is.ksu.edu/~dwyer/papers/thesis.ps.gz.

[24℄ E. Allen Emerson. Temporal and modal logi. In J. van Leeuwen, A. Meyer,

M. Nivat, M. Paterson, and D. Perrin, editors, Handbook of Theoretial Com-

puter Siene (vol. B): Formal Models and Semantis, pages 995{1072. MIT

Press, 1990.

[25℄ Jakob Engblom. Stati properties of ommerial embedded real-time programs,

and their impliation for worst-ase exeution time analysis. In Proeedings

of RTAS 99: Fifth IEEE Real-Time Tehnology and Appliations Symposium,

pages 46{55, Vanouver, Canada, June 1999. URL http://iteseer.nj.ne.

om/engblom99stati.html.

[26℄ Jakob Engblom. On hardware and hardware models for embedded real-

time systems. In Proeedings of RTES 01: IEEE Workshop on Real-Time

Embedded Systems, Deember 2001. URL http://iteseer.nj.ne.om/

engblom01hardware.html.

[27℄ Jakob Engblom and Andreas Ermedahl. Modeling omplex ows for worst-ase

exeution time analysis. In Proeedings of RTSS 00: 21st IEEE Real-Time

Systems Symposium, November 2000. URL http://iteseer.nj.ne.om/

engblom00modeling.html.

[28℄ Jakob Engblom, Andreas Ermedahl, and Peter Altenbernd. Failitating worst-

ase exeution time analysis for optimized ode. In Proeedings of ERTS 98:

Tenth EuroMiro Workshop on Real-Time Systems, Berlin, Germany, June

1998. URL http://iteseer.nj.ne.om/engblom98failitating.html.

[29℄ Jakob Engblom, Andreas Ermedahl, Mikael Sj�odin, Jan Gustafsson, and Hans

Hansson. Worst-ase exeution-time analysis for embedded real-time systems.

Software Tools for Tehnology Transfer, 14, 2000. URL http://iteseer.nj.

ne.om/engblom00worstase.html.

[30℄ Jakob Engblom and Bengt Jonsson. Proessor pipelines and their properties

for stati WCET analysis. In A. Sangiovanni-Vinentelli and J. Sifakis, edi-

tors, Proeedings of EMSOFT 02: Seond International Conferene on Embed-

ded Software, volume 2491 of Leture Notes in Computer Siene, pages 334{

348, Grenoble, Frane, Otober 2002. Springer-Verlag. URL http://link.

springer.de/link/servie/series/0558/tos/t2491.htm.

[31℄ Christian Ferdinand, Reinhold Hekmann, Mar Langenbah, Florian Martin,

Mihael Shmidt, Henrik Theiling, Stephan Thesing, and Reinhard Wilhelm.

Reliable and preise WCET determination for a real-life proessor. In T.A.

Henzinger and C.M. Kirsh, editors, Proeedings of EMSOFT 01: First In-

ternational Workshop on Embedded Software, volume 2211 of Leture Notes

in Computer Siene, pages 469{485, Tahoe City, California, Otober 2001.

Springer-Verlag.

88

[32℄ Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Applying om-

piler tehniques to ahe behavior predition. In Proeedings of LCTRTS 97:

ACM SIGPLAN Workshop on Languages, Compilers and Tools for Real-Time

Systems, pages 37{46, Las Vegas, Nevada, 1997.

[33℄ Erih Gamma, Rihard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Objet-Oriented Software. Addison-Wesley, 1995.

[34℄ David E. Goldberg. Geneti Algorithms in Searh, Optimization and Mahine

Learning. Addison-Wesley, 1989.

[35℄ Jan Gustafsson, Bj�orn Lisper, Nerina Bermudo, Christer Sandberg, and Linus

Sj�oberg. A prototype tool for ow analysis of C programs. In Proeedings of

WCET 02: Seond IEEE International Workshop on Worst Case Exeution

Time Analysis, pages 10{13, Vienna, Austria, June 2002.

[36℄ Samuel Z. Guyer and Calvin Lin. Client-driven pointer analysis. In Radhia

Cousot, editor, Proeedings of SAS 03: Tenth Annual International Stati Anal-

ysis Symposium, volume 2694 of Leture Notes in Computer Siene, pages

214{236, San Diego, California, 2003. Springer-Verlag.

[37℄ Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, and Ashish Gu-

jarathi. Regression test seletion for Java software. In Proeedings of OOPSLA

01: 16th Annual ACM SIGPLAN Conferene on Objet-Oriented Programming

Systems, Languages, and Appliations, pages 312{326. ACM Press, 2001. URL

http://doi.am.org/10.1145/504282.504305.

[38℄ Christopher A. Healy, Mikael Sj�odin, Viresh Rustagi, David B. Whalley, and

Robert van Engelen. Supporting timing analysis by automati bounding of

loop iterations. Journal of Real-Time Systems, 18(2/3):129{156, 2000. URL

http://iteseer.nj.ne.om/healy00supporting.html.

[39℄ Christopher A. Healy and David B. Whalley. Automati detetion and exploita-

tion of branh onstraints for timing analysis. IEEE Transations on Software

Engineering, 28(8):763{781, August 2002.

[40℄ Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsh.

Giotto: A time-triggered language for embedded programming. In T.A. Hen-

zinger and C.M. Kirsh, editors, Proeedings of EMSOFT 01: First Interna-

tional Workshop on Embedded Software, volume 2211 of Leture Notes in Com-

puter Siene, pages 166{184, Tahoe City, California, Otober 2001. Springer-

Verlag. URL http://iteseer.nj.ne.om/henzinger00giotto.html.

[41℄ Thomas A. Henzinger and Christoph M. Kirsh. The embedded mahine: Pre-

ditable, portable real-time ode. In Proeedings of PLDI 02: International

Conferene on Programming Language Design and Implementation, pages 315{

326. ACM Press, 2002.

[42℄ Nat Hillary and Ken Madsen. You an't ontrol what you an't measure, or

why it's lose to impossible to guarantee real-time software performane on a

pu with on-hip ahe. In Proeedings of WCET 02: Seond IEEE Interna-

tional Workshop on Worst Case Exeution Time Analysis, pages 45{48, Vienna,

Austria, June 2002.

89

[43℄ Erik Yu-Shing Hu, Andy Wellings, and Guillem Bernat. A novel gain time

relaiming framework integrating WCET analysis for objet-oriented real-time

systems. In Proeedings of WCET 02: Seond IEEE International Workshop

on Worst Case Exeution Time Analysis, pages 14{20, Vienna, Austria, June

2002.

[44℄ ILOG. CPLEX mixed integer optimizer. URL http://www.ilog.om/

produts/plex/produt/mip.fm.

[45℄ Intel Corporation. MCS 51 Miroontroller Family User's Manual. Mt.

Prospet, Illinois, February 1994. URL http://developer.intel.om/

design/ms51/manuals/272383.htm.

[46℄ Eugene Kligerman and Alexander D. Stoyenko. Real-time Eulid: A language

for reliable real-time systems. IEEE Transations on Software Engineering,

SE-12(9):941{949, September 1986.

[47℄ Yau-Tsun Steven Li and Sharad Malik. Performane analysis of embedded

software using impliit path enumeration. In Proeedings of DAC 95: ACM

32nd Design Automation Conferene, pages 456{461, June 1995.

[48℄ Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee, Sang Lyul

Min, Chang Yun Park, Heonshik Shin, Kunsoo Park, Soo-Mook Moon, and

Chong-Sang Kim. An aurate worst ase timing analysis for RISC proessors.

IEEE Transations on Software Engineering, 21(7):593{604, 1995. URL http:

//iteseer.nj.ne.om/lim95aurate.html.

[49℄ Tim Lindholm and Frank Yellin. The Java Virtual Mahine Spei�ation.

Addison-Wesley, Reading, Massahusetts, 2nd edition, April 1999.

[50℄ Yanhong A. Liu and Gustavo G�omez. Automati aurate time-bound analysis

for high-level languages. In Proeedings of LCTES 98: ACM SIGPLAN Work-

shop on Languages, Compilers and Tools for Embedded Systems, volume 1474 of

Leture Notes in Computer Siene, pages 31{40. Springer-Verlag, 1998. URL

http://iteseer.nj.ne.om/liu98automati.html.

[51℄ Thomas Lundqvist and Per Stenstr�om. Integrating path and timing analy-

sis using instrution-level simulation tehniques. In Proeedings of LCTES

98: ACM SIGPLAN Workshop on Languages, Compilers and Tools for

Embedded Systems, volume 1474 of Leture Notes in Computer Siene,

pages 1{15. Springer-Verlag, 1998. URL http://iteseer.nj.ne.om/

lundqvist98integrating.html.

[52℄ Sharad Malik, Margaret Martonosi, and Yau-Tsun Steven Li. Stati timing

analysis of embedded software. In Proeedings of DAC 97: ACM 34th Design

Automation Conferene, pages 147{152, June 1997. URL http://iteseer.

nj.ne.om/malik97stati.html.

[53℄ David MAllester. On the omplexity analysis of stati analyses. In Proeedings

of SAS 99: International Stati Analysis Symposium, volume 1694 of Leture

Notes in Computer Siene, pages 312{329. Springer-Verlag, 1999. URL http:

//iteseer.nj.ne.om/mallester99omplexity.html.

90

[54℄ Patrik C. MGeer and Robert K. Brayton. Integrating Funtional and Tem-

poral Domains in Logi Design, volume 139 of Kluwer International Series in

Engineering and Computer Siene. Kluwer Aademi Publishers, May 1991.

[55℄ Tulika Mitra and Abhik Royhoudhury. A framework to model branh pre-

dition for WCET analysis. In Proeedings of WCET 02: Seond IEEE In-

ternational Workshop on Worst Case Exeution Time Analysis, pages 68{71,

Vienna, Austria, June 2002.

[56℄ Je�ery C. Mogul, Rihard F. Rashid, and Mihael J. Aetta. The paket �lter:

An eÆient mehanism for user-level network ode. In Proeedings of SOSP 87:

11th ACM Symposium on Operating Systems Priniples, pages 39{51, 1987.

URL http://iteseer.nj.ne.om/mogul87paket.html.

[57℄ Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Rihard Samuels, Fred-

erik Smith, David Walker, Stephanie Weirih, and Steve Zdanewi. TALx86:

A realisti typed assembly language. Tehnial report, Cornell University, 1999.

URL http://iteseer.nj.ne.om/morrisett99talx.html.

[58℄ Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stak-based typed

assembly language. InWorkshop on Types in Compilation, Kyoto, Japan, Marh

1998.

[59℄ Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system

F to typed assembly language. In Proeedings of POPL 98: 25th Annual

ACM SIGPLAN{SIGACT Symposium on Priniples of Programming Lan-

guages, pages 85{97, 1998.

[60℄ Motorola, In. M68000 8-/16-/32 Bit Miroproessor User's Manual, 9 edition,

1993. URL http://ebus.motorola.om/brdata/PDFDB/MICROPROCESSORS/

32_BIT/68K-COLDFI%RE/M680X0/MC68000UM.pdf.

[61℄ Motorola, In. MC68328 DragonBall Miroproessor User's Manual (prelim-

inary), November 1997. URL http://ebus.motorola.om/brdata/PDFDB/

MICROPROCESSORS/32_BIT/68K-COLDFI%RE/M683XX/MC68328P.pdf.

[62℄ Steven Muhnik. Advaned Compiler Design and Implementation. Morgan

Kaufmann, 1997.

[63℄ Mayur Naik and Jens Palsberg. Compiling with ode-size onstraints. In Pro-

eedings of LCTES 02: ACM SIGPLAN Workshop on Languages, Compilers

and Tools for Embedded Systems, joint with SCOPES 02: Software and Com-

pilers for Embedded Systems, pages 120{129. ACM Press, June 2002. URL

http://doi.am.org/10.1145/513829.513851.

[64℄ National Semiondutor Corporation. COP8SBR9/COP8SCR9/COP8SDR9

8-Bit CMOS Flash Based Miroontroller with 32k Memory, Virtual EEP-

ROM and Brownout. Santa Clara, California, April 2002. URL http:

//www.national.om/ds.gi/CO/COP8SBR9.pdf.

[65℄ Gleb Naumovih, George S. Avrunin, and Lori A. Clarke. Data ow analysis for

heking properties of onurrent Java programs. In Proeedings of ICSE 99:

21st International Conferene on Software Engineering, pages 399{410, May

1999.

91

[66℄ Gleb Naumovih and Lori A. Clarke. Extending FLAVERS to hek properties

on in�nite exeutions of onurrent software systems. Tehnial Report TR-

CIS-2000-02, Polytehni University, April 2000. URL http://is.poly.edu/

tr/tr-is-2000-02.htm.

[67℄ George Neula. Proof-arrying ode. In Proeedings of POPL 97: 24th An-

nual ACM SIGPLAN{SIGACT Symposium on Priniples of Programming Lan-

guages, pages 106{119, 1997.

[68℄ George Neula and Peter Lee. The design and implementation of a ertifying

ompiler. In Proeedings of PLDI 98: ACM SIGPLAN Conferene on Program-

ming Language Design and Implementation, pages 333{344, 1998.

[69℄ George C. Neula and Peter Lee. Safe kernel extensions without run-time hek-

ing. In Proeedings of OSDI 96: Seond Symposium on Operating Systems De-

sign and Implementation, pages 229{243, Berkeley, California, 1996. USENIX.

URL http://iteseer.nj.ne.om/artile/neula96safe.html.

[70℄ Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Priniples of Pro-

gram Analysis. Springer, 1999.

[71℄ Jurg Nievergelt and Klaus H. Hinrihs. Algorithms & Data Strutures With

Appliations To Graphis and Geometry. Prentie-Hall, 1993.

[72℄ Peter Notebaert. lp solve: Mixed integer linear program solver. URL ftp:

//ftp.es.ele.tue.nl/pub/lp_solve.

[73℄ Jens Palsberg and Di Ma. A typed interrupt alulus. In Proeedings of

FTRTFT 02: Seventh International Symposium on Formal Tehniques in

Real-Time and Fault Tolerant Systems, volume 2469 of Leture Notes in

Computer Siene, pages 291{310, Oldenburg, Germany, September 2002.

Springer-Verlag. URL http://www.springer.de/gi-bin/searh_book.pl?

isbn=3-540-44165-4.

[74℄ Jens Palsberg and Patrik O'Keefe. A type system equivalent to ow analy-

sis. ACM Transations on Programming Languages and Systems (TOPLAS),

17(4):576{599, July 1995. URL http://doi.am.org/10.1145/210184.

210187.

[75℄ Jens Palsberg and Mihael I. Shwartzbah. Objet-oriented type infer-

ene. In Proeedings of OOPSLA 91: Sixth Annual ACM SIGPLAN Con-

ferene on Objet-Oriented Programming Systems, Languages, and Applia-

tions, pages 146{161. ACM Press, 1991. URL http://iteseer.nj.ne.om/

palsberg91objetoriented.html.

[76℄ Jens Palsberg and Mihael I. Shwartzbah. Safety analysis versus type in-

ferene. Information and Computation, 118(1):128{141, 1995. URL http:

//iteseer.nj.ne.om/palsberg95safety.html.

[77℄ Stefan Petters and Georg F�arber. Making worst ase exeution time analysis

for hard real-time tasks on state of the art proessors feasible. In Proeedings

of RTCSA 99: Sixth International Conferene on Real-Time Computing Sys-

tems and Appliations, pages 442{449, 1999. URL http://www.omputer.org/

proeedings/rtsa/0306/0306to.htm.

92

[78℄ John Plevyak and Andrew A. Chien. Preise onrete type inferene for objet-

oriented languages. In Proeedings of OOPSLA 94: Ninth annual onferene

on Objet-Oriented Programming Systems, Language, and Appliations, pages

324{340. ACM Press, 1994.

[79℄ Andreas Podelski. Model heking as onstraint solving. In Proeedings

of SAS 00: International Stati Analysis Symposium, volume 1824 of Le-

ture Notes in Computer Siene, pages 22{37. Springer-Verlag, 2000. URL

http://iteseer.nj.ne.om/podelski00model.html.

[80℄ Peter Pushner and Christian Koza. Calulating the maximum exeution time

of real-time programs. Journal of Real-Time Systems, 1(2):159{176, September

1989. URL http://www.vmars.tuwien.a.at/.

[81℄ Peter P. Pushner and Anton V. Shedl. Computing maximum task exeution

times - a graph-based approah. Journal of Real-Time Systems, 13(1):67{91,

1997. URL http://iteseer.nj.ne.om/pushner97omputing.html.

[82℄ John Regehr, Alastair Reid, and Kirk Webb. Eliminating stak overow by

abstrat interpretation. In Proeedings of EMSOFT 03: Third International

Conferene on Embedded Software, 2003. to appear.

[83℄ Thomas Reps. Program analysis via graph reahability. Information and Soft-

ware Tehnology, 40(11{12):701{726, November 1998. URL http://www.s.

wis.edu/wpis/papers/tr1386.ps.

[84℄ Thomas Reps. Undeidability of ontext-sensitive data-independene analy-

sis. ACM Transations on Programming Languages and Systems (TOPLAS),

22(1):162{186, 2000. URL http://doi.am.org/10.1145/345099.345137.

[85℄ Debra J. Rihardson, Stephanie Leif Aha, and T. Owen O'Malley. Spei�ation-

based test orales for reative systems. In Proeedings of ICSE 92: 14th Inter-

national Conferene on Software Engineering, pages 105{118. ACM Press, 1992.

URL http://doi.am.org/10.1145/143062.143100.

[86℄ Stuart J. Russell and Peter Norvig. Arti�ial Intelligene: A Modern Approah.

Prentie Hall, 1995.

[87℄ Robert Sedgewik. Algorithms in C, Part 5: Graph Algorithms. Addison-

Wesley, third edition, 2001.

[88℄ M. Sharir and A. Pnueli. Two approahes to interproedural data ow analysis.

In Steven Muhnik and Neil Jones, editors, Program Flow Analysis, Theory and

Appliations. Prentie Hall, Englewood Cli�s, New Jersey, 1981.

[89℄ Alan C. Shaw. Reasoning about time in higher-level language software.

IEEE Transations on Software Engineering, 15(7):875{889, 1989. URL http:

//iteseer.nj.ne.om/shaw89reasoning.html.

[90℄ Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,

CMU, May 1991. CMU{CS{91{145.

[91℄ Kevin Tao, Wanjun Wang, and Jens Palsberg. Java tree builder. Code available

for download, 1997. URL http://www.s.purdue.edu/jtb/.

93

[92℄ David Tennenhouse. Intel developer forum. Keynote address transript, August

2001. San Jose, California.

[93℄ Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and preise

WCET predition by separated ahe and path analyses. Journal of Real-

Time Systems, 18(2/3):157{179, 2000. URL http://iteseer.nj.ne.om/

theiling99fast.html.

[94℄ K. W. Tindell, A. Burns, and A. J. Wellings. An extendible approah

for analysing �xed priority hard real-time tasks. Journal of Real-Time

Systems, 6(2):133{152, Marh 1994. URL http://iteseer.nj.ne.om/

tindell92extendible.html.

[95℄ Frank Tip and Jens Palsberg. Salable propagation-based all graph on-

strution algorithms. In Proeedings of OOPSLA 00: 15th Annual ACM

SIGPLAN Conferene on Objet-Oriented Programming Systems, Languages,

and Appliations, pages 281{293, 2000. URL http://iteseer.nj.ne.om/

tip00salable.html.

[96℄ Sreeni Viswanadha, Sriram Sankar, and Sun Mirosystems. Java ompiler om-

piler. Code available for download, 1997. URL http://www.webgain.om/

produts/java_/.

[97℄ Emilio Vivanos, Christopher Healy, Frank Mueller, and David Whalley. Para-

metri timing analysis. In Proeedings of LCTES 01: ACM SIGPLAN Work-

shop on Languages, Compilers and Tools for Embedded Systems, pages 88{93.

ACM Press, 2001.

[98℄ Joahim Wegener and Frank Mueller. A omparison of stati analysis and

evolutionary testing for the veri�ation of timing onstraints. Journal of Real-

Time Systems, 21(3):241{268, November 2001.

[99℄ Zhihen Xu, Barton P. Miller, and Thomas Reps. Safety heking of mahine

ode. In Proeedings of PLDI 00: ACM SIGPLAN Conferene on Programming

Language Design and Implementation, volume 35, pages 70{82, 2000. URL

http://iteseer.nj.ne.om/xu00safetyheking.html.

[100℄ Zilog, Inorporated. Z86E30/E31/E40 Preliminary Produt Spei�ation.

Campbell, California, 1998. URL http://www.zilog.om/pdfs/z8otp/

e303140.pdf.

APPENDICES

94

APPENDIX A MICRO00 EXAMPLE PROGRAM

Muh of the benhmark suite used throughout this dissertation is either proprietary

ode whih annot be published, or toy examples whih have been presented without

suÆient detail to be atual Z86 programs.

For ompleteness, this appendix presents the \Miro00" benhmark in its entirety.

While still a small toy problem, the ode is omplete { it an be ompiled to Z86 objet

ode, burned to a Z86E30 \one-time programmable" hip, and run on bare hardware.

A.1 Example System Overview

Dev2

Sensor

Output Device

Input Device Input Device

SensorSensor Dev0 Dev1

Z86

Figure A.1. Coneptual Diagram for Miro00 Example

The example system has three external devies and three sensors as illustrated in

Figure A.1. The example hardware is wired as shown in Figure A.2. For larity of

presentation, the text will not dwell on the details of the other three devies in the

system. All that matters is that Devie 0 and Devie 1 have some kind of data that

they regularly pass to the Controller. The Controller forwards this data, along with

some of its own, to Devie 2, whih ould be any kind of output devie.

95

Bus

Z86

P3

P2

P0

Bus

Bus

Dev0

DS

CS

Dev1

CS

DS

Dev2
CS

DS

Figure A.2. Hardware Con�guration for Miro00 Example System

The eletrial protool observed by these devies is simple. When a devie wishes

to relay data to the ontroller, it requests an interrupt with its Data Strobe line. The

ontroller indiates that it is ready by strobing the orresponding devie's Chip Selet

line. The Controller is the \Bus Master", and devies do not speak unless spoken to,

via the CS line.

If atually deployed, this type of on�guration ould be seen in a hierarhial

arrangement of environmental ontrols, where eah separate ontroller relays its sensor

data to a logging entity.

Figure A.3 explains the 12-instrution subset of the Z86 assembly language used

for the Miro00 example software.

Twenty of the Z86's 256 registers have speial purposes, suh as port I/O, timer

ontrol, or stak management. The relevant speial register identi�ers for this example

program are listed in Figure A.4.

When an interrupt arrives, the ontroller lears bit 7 of the IMR register, (the

equivalent of a DI instrution), and jumps to the orret handler. An IRET instru-

tion sets the bit again, (the equivalent of an EI instrution.)

96

AND sr, dst Binary AND the sr and dst, store result in dst.

CALL label Call proedure. Stores return address on stak,

and jumps to label.

DI Disable Interrupts.

DJNZ dst, label Derement, Jump Not Zero. Derements dst register,

and jumps to label if result is non-zero.

EI Enable Interrupts.

IRET Return from Interrupt Handler. Pops ondition odes and

return address o� of stak, ontinues exeution.

JR , label Jump Relative. If ondition ode is true, jumps to label.

If omitted, is assumed true.

LD dst, sr Loads register sr into dst.

POP dst Pops value o� of stak, into dst. (dst = reg[SP++℄)

PUSH sr Pushes sr register onto stak. (reg[{SP℄ = sr)

RET Return from proedure. Pops return address o� of stak,

and ontinues.

TM dst, sr Test Mask. Binary AND's the sr and dst;

a�ets ondition odes, but does not store result.

Figure A.3. Z86 Instrutions Used in Miro00 Example System

Note that there are two return instrutions, \RET" and \IRET". \RET" orre-

sponds to the \CALL" instrution; \CALL" and \RET" proedure alls do not guar-

antee preservation of any registers aross the all. The \IRET" instrution, however,

does not orrespond to an expliit \CALL" instrution. The Z86 has true vetored

interrupt handling, whih means that ontrol an transfer to any interrupt handler

after any opode, given that the interrupts are enabled. Interrupt handlers preserve

the proessor ondition ode register on the stak, but otherwise do not guarantee

any other register to be preserved aross the all. This means that programmers must

work arefully to ensure that their interrupt handlers do not orrupt state information

during deliate omputations in the non-interrupt ode.

A.2 Example System Program

The overall struture of the example program is illustrated by the partial all graph

in Figure A.5. The �gure does not show ontrol-ow transfers due to interrupts.

Figures A.6, A.7 and A.8 show the Miro00 example program. The program makes

ommuniation between the ontroller and the three devies possible. After a brief

initialization segment from lines 17 - 23, the program enters an in�nite loop, from

whih it oasionally breaks in order to relay sensor data from Port 3 (line 27) to

Devie 2.

97

IMR Interrupt Bits 0-5 individually enable eah of the

Mask 6 interrupt soures. Bit 7 enables vetored interrupt

Register proessing. Bit 7 normally enabled with the EI

instrution, and disabled with DI.

IRQ Interrupt When interrupt signals arrive, the orresponding bits

Request in the IRQ register are set. This allows interrupts

Register to be handled via polling, and makes visible pending,

disabled interrupts.

P0 Port 0 In the example, Port 0 onnets to Chip Selet lines

on eah of the three external devies.

P2 Port 2 In the example, Port 2 is the 8-bit data bus onneting

the ontroller to all of the external devies.

P2M Port 2 Mode P2M allows eah of the lines on P2 to be on�gured

Control as input (data in to Z86), or output (data out of Z86.)

P3 Port 3 In the example, Port 3 is onneted to the Data Ready

strobes for the external devies. This means that

Devie 0 an raise Interrupt Request 0, and

Devie 1 an raise IRQ1.

RP Register Pointer Selets register bank for loal addressing mode.

SPL Stak Pointer Stores Stak Pointer value to be used for internal stak.

Figure A.4. Z86 Speial Registers Used in Miro00 Example System

When the main loop alls SEND (line 28), SEND in turn alls DEVOUT (line

35), whih alls PULSE (line 40). In the PULSE proedure, interrupts are globally

disabled with the DI instrution (line 55) prior to initiating the Chip Selet pulse to

the output devie. This operation must not be interrupted, beause this ould result

in onfusing signals being sent to the output devie. After the pulse is omplete,

interrupts are re-enabled by DEVOUT (line 42), and the main loop ontinues on its

merry way.

In the bakground, vetored interrupt handlers IRQ0 and IRQ1 wait for data to

ome in from either of the other two devies. When it does, the appropriate handler

saves all of the important state registers on the stak, and alls the SEND proedure

to relay the data to Devie 2.

Note that IRQ1 defers to IRQ0 in lines 76 and 77, dropping the data from Devie

1 if Devie 0 already has data waiting.

A ursory analysis of the ontrol ow of the ode shows that when the EI at line

42 is reahed, any one of the four possible ombinations of IRQ0 and IRQ1 ould be

enabled. Even in this small example, it is not immediately lear whether or not the

orret ombination is always present. The SEND proedure an be alled from the

main loop, or from IRQVC0 or from IRQVC1; further, under ertain irumstanes,

it an be alled from IRQVC0 from within IRQVC1, or from IRQVC1, from within

98

Init

Start

CommonSend

DevOut DevIn

Pulse

IRQVC0

IRQVC1

Figure A.5. Partial Call graph for the Miro00 Example Program

IRQVC0. To make things worse, the double interrupt ase an take plae when the

main program is already several CALL levels down into the SEND sequene.

As though stati analysis of this example ode were not diÆult enough to begin

with, testing the maximal stak size by simulating interrupts is not straight forward

either. Interrupt handlers an have subtle additive and subtrative interations. As

shown by IRQ1 deferring to IRQ0 at line 77, simulating all interrupts �ring as often

as possible does not neessarily yield the maximum stak size. In pratie, interrupts

often represent error onditions of some kind, and their handlers an at to slow down

normal omputation or adjust the stak size arbitrarily.

In short, reliable, preise analysis of the maximal possible stak size, even in

relatively small programs, makes for a hallenging problem.

A.3 ZARBI results

The ZARBI stak height analysis returns the results shown in Figure A.9 for the

Miro00 benhmark.

99

01 ; Constant Pool (Symbol Table).

02 ; Bit Flags for IMR and IRQ registers.

03 IRQ0 .EQU #00000001b

04 IRQ1 .EQU #00000010b

05 ; Bit Flags for external devies on Port 0 and Port 3.

06 DEV0 .EQU #00000100b

07 DEV1 .EQU #00001000b

08 DEV2 .EQU #00010000b

09

10 ; Interrupt Vetors.

11 .ORG %00h

12 .WORD #IRQVC0 ; Devie 0

13 .WORD #IRQVC1 ; Devie 1

14

15 ; Main Program Code.

16 .ORG 0Ch

17 INIT: ; Initialization setion.

18 LD SPL, #0F0h ; Initialize Stak Pointer.

19 LD RP, #10h ; Work in register bank 1.

20 LD P2M, #00h ; Set Port 2 to all outputs.

21 LD IRQ, #00h ; Clear any interrupt requests.

22 LD IMR, #(IRQ0 ^| IRQ1)

23 EI ; Enable Interrupts 0 and 1.

24 START: ; Start of main program loop.

25 DJNZ r2, START

26 PUSH r1 ; If our ounter expires,

27 LD r1, P3 ; send this sensor's reading

28 CALL SEND ; to the output devie.

29 POP r1

30 JR START

31

Figure A.6. Miro00 Example Program

100

32 SEND: ; Send Data to Devie 2.

33 PUSH r0 ; Save r0 on Stak.

34 LD r0, #DEV2 ; Selet ontrol line for Dev 2.

35 CALL DEVOUT ; Send out to Devie.

36 POP r0 ; Restore r0 to value before

37 RET ; SEND was alled.

38 DEVOUT: ; Send data out to a Devie.

39 LD P2, r1 ; Output data.

40 CALL PULSE ; Pulse devie ontrol line to

41 ; inform devie data awaits.

42 EI ; Reativate interrupts,

43 RET ; if disabled.

44 DEVIN: ; Reeive data from a Devie.

45 DI ; Disable interrupts.

46 LD P2M, #0FFh ; Set Port 2 lines to all inputs.

47 CALL PULSE ; Pulse ontrol line to inform

48 ; devie ontroller awaits data.

49 LD r1, P2 ; Input data.

50 LD P2M, #00h ; Set Port 2 lines to all outputs.

51 EI ; Reativate interrupts.

52 RET

53 PULSE: ; Pulse ontrol line of a devie.

54 PUSH IMR ; Remember interrupt mask.

55 DI ; Musn't interrupt during pulse.

56 LD P0, r0 ; Control line determined by r0.

57 LD P0, #00h

58 POP IMR ; Reativate interrupts.

59 RET

60

Figure A.7. Miro00 Example Program (ontinued)

101

61 IRQVC0: ; Interrupt for Devie 0.

62 PUSH IMR

63 AND IMR,#^C IRQ0 ; Ensure interrupt is not re-fired.

64 PUSH r0 ; Save registers from squashing.

65 LD r0, #DEV0

66 COMMON: PUSH r1

67 LD r2, #00h ; Reset ounter in main loop.

68 CALL DEVIN

69 CALL SEND

70 POP r1 ; Restore all the saved registers,

71 POP r0 ; inluding the IMR,

72 POP IMR ; to their pre-interrupt values.

73 IRQDN: IRET ; Interrupt Handler is done.

74

75 IRQVC1: ; Interrupt for Devie 1.

76 TM IRQ, #IRQ0 ; If Interrupt 0 already pending,

77 JR NZ, IRQDN ; Canel this handler.

78 PUSH IMR

79 AND IMR,#^C IRQ1 ; Ensure interrupt is not re-fired.

80 PUSH r0 ; Save registers from squashing.

81 LD r0, #DEV1

82 JR COMMON

83 .END

Figure A.8. Miro00 Example Program (ontinued)

102

Max Stak Height = 37 at [0x004A,0x80,{0x80}℄

(Guessing path)

[0x004A,0x80,{0x80}℄

[0x0048,0x80,{0x0038}℄

[0x0035,0x80,{0x0030}℄

[0x002D,0x80,{?}℄

[0x0029,0x80,{0x0066}℄

[0x0063,0x80,{?}℄

[0x005C,0x00,{?}℄

[0x0077,0x00,{0x02}℄

[0x0072,0x02,{0x0047}℄

[0x0047,0x82,{0x0063}℄

[0x0060,0x02,{?}℄

[0x005C,0x02,{?}℄

[0x0058,0x02,{0x03}℄

[0x0053,0x03,{0x001C}℄

[0x001C,0x83,{}℄

Coloring graph, IRQ=0: [OK ℄

Edges = 619 Green Yellow Magenta Blue Red

Nodes = 339 191 0 17 131 0

Perent = 56% 0% 5% 38% 0%

Figure A.9. Miro00 Example Program Stak Height Results

103

APPENDIX B SIMPLIFIED Z86 GRAMMAR

The ZARBI Simpli�er takes as input the Z86 Assembly Language desribed in [100℄

and emits syntax ompliant with the grammar below. The many other ZARBI tools

parse in this striter grammar, thereby avoiding dupliated work like symbol table

resolution.

Goal() ::= Line() Goal()

Goal() ::= Code() EOF

Code() ::= LabelDef() Line() Code()

k .END

Line() ::= Diretive()

k Instrution()

LabelDef() ::= Label() :

Instrution() ::= CLR()

k LD()

k LDL()

k LDC()

k POP()

k PUSH()

k ADC()

k ADD()

k CP()

k DA()

k DEC()

k DECW()

104

k INC()

k INCW()

k SBC()

k SUB()

k AND()

k COM()

k OR()

k XOR()

k CALL()

k DJNZ()

k IRET()

k JP()

k JR()

k RET()

k TCM()

k TM()

k LDCI()

k RL()

k RLC()

k RR()

k RRC()

k SRA()

k SWAP()

k CCF()

k DI()

k EI()

k HALT()

k NOP()

k RCF()

k SCF()

k SRP()

105

k STOP()

k WDH()

k WDT()

IRET() ::= IRET

RET() ::= RET

CCF() ::= CCF

DI() ::= DI

EI() ::= EI

HALT() ::= HALT

NOP() ::= NOP

RCF() ::= RCF

SCF() ::= SCF

STOP() ::= STOP

WDH() ::= WDH

WDT() ::= WDT

INC() ::= INC G IA Operand()

INCW() ::= INCW rr De Reg Pair()

CALL() ::= CALL Label()

k CALL � rr De Reg Pair()

k CALL � CharSymbol()

CLR() ::= CLR G IA Operand()

COM() ::= COM G IA Operand()

DA() ::= DA G IA Operand()

DEC() ::= DEC G IA Operand()

DECW() ::= DECW rr De Reg Pair()

POP() ::= POP G IA Operand()

PUSH() ::= PUSH G IA Operand()

RL() ::= RL G IA Operand()

RLC() ::= RLC G IA Operand()

106

RR() ::= RR G IA Operand()

RRC() ::= RRC G IA Operand()

SRA() ::= SRA G IA Operand()

SWAP() ::= SWAP G IA Operand()

SRP() ::= SRP # CharSymbol()

JP() ::= JP Condition() , Label()

k JP Condition() , rr De Reg Pair()

k JP Condition() , CharSymbol()

JR() ::= JR Condition() , Label()

DJNZ() ::= DJNZ r De Reg() , Label()

AND() ::= AND AND Operand()

OR() ::= OR AND Operand()

XOR() ::= XOR AND Operand()

ADD() ::= ADD AND Operand()

SUB() ::= SUB AND Operand()

ADC() ::= ADC AND Operand()

SBC() ::= SBC AND Operand()

CP() ::= CP AND Operand()

TCM() ::= TCM AND Operand()

TM() ::= TM AND Operand()

LD() ::= LD AND Operand()

k LD � r De Reg() , r De Reg()

k LD � CharSymbol() , r De Reg()

k LD � r De Reg() , CharSymbol()

k LD � CharSymbol() , CharSymbol()

LDL() ::= LDL rr De Reg Pair() , Label()

k LDL CharSymbol() , Label()

LDC() ::= LDC r De Reg() , � rr De Reg Pair()

k LDC r De Reg() , � CharSymbol()

107

LDCI() ::= LDCI � r De Reg() , � rr De Reg Pair()

k LDCI � r De Reg() , � CharSymbol()

k LDCI � CharSymbol() , � rr De Reg Pair()

k LDCI � CharSymbol() , � CharSymbol()

G IA Operand() ::= r De Reg()

k CharSymbol()

k � r De Reg()

k � CharSymbol()

AND Operand() ::= � r De Reg() , # CharSymbol()

k � CharSymbol() , # CharSymbol()

k r De Reg() , � r De Reg()

k r De Reg() , � CharSymbol()

k CharSymbol() , � r De Reg()

k CharSymbol() , � CharSymbol()

k r De Reg() , # CharSymbol()

k CharSymbol() , # CharSymbol()

k r De Reg() , r De Reg()

k r De Reg() , CharSymbol()

k CharSymbol() , r De Reg()

k CharSymbol() , CharSymbol()

Condition() ::= F

k C

k NC

k Z

k NZ

k PL

k MI

k OV

k NOV

108

k EQ

k NE

k GE

k GT

k LE

k LT

k UGE

k ULE

k ULT

k UGT

k TRUE

Diretive() ::= . WORD # Label()

k . ASCII # CharSymbol()

CharSymbol() ::= % Hex h()

k % Bin b()

k % De d()

Label() ::= An identi�er.

De Reg() ::= A register in deimal notation.

De Reg Pair() ::= A register pair in deimal notation.

Bin b() ::= An integer in binary notation.

De d() ::= An integer in deimal notation.

Hex h() ::= An integer in hexadeimal notation.

109

APPENDIX C INTERRUPT SCHEDULE FILE FORMAT

The ZARBI Simulator aepts as input three kinds of interrupt sequenes that an

be spei�ed in an interrupt shedule �le. This appendix gives an example of the

interrupt shedule �les used for the geneti algorithm searh used to �nd lower bounds

on maximum stak heights.

The �rst kind of interrupt sequene that an be spei�ed indiates that a partiular

interrupt will �re just before a ertain address in the program is exeuted. The

interrupt will �re eah time this address is about to be exeuted.

The other two kinds if interrupt sequenes are periodi. They will start �ring

a spei�ed time after the start of the program or just before a ertain address is

exeuted. Besides an initial �ring point, these interrupt sequenes speify a period in

lok yles.

An interrupt shedule �le ontains an arbitrary number of single-shot interrupt

sequenes and periodi interrupt sequenes, as illustrated by Figure C.1.

Single-shot interrupt sequenes are in the �rst blok of Figure C.1. IRQ means

interrupt and ADDR means address. All addresses are in hexadeimal. The �rst line

says interrupt number 5 will be �red eah time the simulator is about to exeute the

instrution at address 00E4.

The seond blok in Figure C.1 ontains the periodi interrupt sequenes that are

started just before a spei�ed address is exeuted. The number after EACH spei�es

the number of yles before the interrupt should be �red again. The �rst of these

interrupt sequenes spei�es that interrupt 5 will �re just before address 04BC is

exeuted the �rst time, and then subsequently every 35,721 lok yles after that.

The third blok in Figure C.1 ontains the periodi interrupt sequenes that are

started a �xed number of yles after the ontroller begins program exeution. The

�rst of these interrupt sequenes says that interrupt 1 will �re after the �rst 703,529

yles of exeution, and will subsequently �re again every 700,748 yles.

110

IRQ 5 � ADDR 00E4

IRQ 5 � ADDR 05D6

IRQ 1 � ADDR 0298

IRQ 4 � ADDR 03D5

IRQ 4 � ADDR 0710

IRQ 5 � ADDR 04BC EACH 35721

IRQ 4 � ADDR 00D5 EACH 511911

IRQ 1 � ADDR 0620 EACH 617499

IRQ 0 � ADDR 0B2A EACH 254317

IRQ 4 � ADDR 0A1D EACH 366248

IRQ 1 � TIME 703529 EACH 700748

IRQ 1 � TIME 418949 EACH 754244

IRQ 2 � TIME 701474 EACH 978065

IRQ 4 � TIME 424882 EACH 601242

IRQ 2 � TIME 193234 EACH 317528

Figure C.1. Example Interrupt Shedule

111

APPENDIX D FLOW ORACLE GRAMMAR

The ZARBI graph builder uses a \ow orale" to answer questions about the very

small number of indiret jumps ontained in the ommerial benhmarks. The gram-

mar aepted by the ZARBI Flow Orale is shown in Figure D.1.

Goal() ::= Line() Goal()

k EOF

Line() ::= Reg() � Label() : Info()

Info() ::= Item() , Info()

k Item()

Item() ::= Range()

k Loop()

k Atom()

Atom() ::= Label()

k Hex()

Loop() ::= Hex() TO Hex()

k Hex() DOWNTO Hex()

Range() ::= Hex() .. Hex()

Label() ::= The syntax of a Z86 program label

Hex() ::= 8-bit, unsigned integers in hexadeimal

Reg() ::= Z86 assembly syntax for a register

Figure D.1. Flow Orale Input Grammar

In pratie, the urrent version of the ow orale is used only to provide lists

of possible target addresses for indiret jump instrutions. Only one of the seven

ommerial benhmarks, \Fan005", used indiret jumps at all. In Fan005, the register

with the jump target was loaded only with immediate onstants, and no pointer

arithmeti was performed on its values. Calulating all possible indiret jump targets

for a Z86 program is an infeasible data ow analysis problem in the general ase, but

beomes feasible when the expressive power of the language is suÆiently onstrained.

Beause data ow analysis is tangential to the primary thrust of this dissertation,

the urrent version of ZARBI takes a shortut around the problem, and allows \man-

ual" data ow analysis to be spei�ed through the ow orale. Figure D.2 shows the

only ow information used in the experiments presented in this dissertation.

112

%AEh � L0AC8: {L0ACB, L0ADD, L0AF6, L0B08, L0B67, L0B7E, L0B88}

Figure D.2. Flow Orale Input Example

The ow information provided by Figure D.2 states that register pair \%AEh"

will ontain one of the seven address labels to the right of the olon at program point

\L0AC8". This ow information is provided to the graph builder for the Fan005

benhmark, whih allows the proper edges to be onstruted when the analysis reahes

the indiret all instrution at address 0x0AC8 in the program.

Information provided by the ow orale must be safe in order for the entire deadline

and stak-size analyses to be safe. Automating onservative data ow analysis of this

kind is beyond the sope of this dissertation.

The ow orale's syntax was designed to allow ow information for loop variables

to be passed to the graph builder for automated loop unrolling, but this has not been

implemented in the urrent version of ZARBI. Automated unrolling of internally-

bounded loops ould eliminate up to two thirds of the time orale assertions provided

for deadline analysis, as setion 5.2.3 desribed.

The syntax provided by the ow orale would allow ow information of the form

shown in Figure D.3, whih states that the loop variable in register 12 at instrution

345 goes from 5 down to 1.

%12h � L0345: 05 DOWNTO 01

Figure D.3. Flow Orale Loop Bound Syntax

The ow orale interfae has allowed manual data ow analysis to be used in the

prototype system, but would permit automated analyses to interat with the graph

builder in the same fashion.

113

APPENDIX E TIME ORACLE GRAMMAR

The ZARBI graph builder uses a \time orale" to answer questions about maximum

lateny while building the deadline analysis graph. The grammar aepted by the

ZARBI Time Orale is shown in Figure E.1.

Conrete examples of input to the time orale are provided throughout setion 5.4.

Goal() ::= Line() Goal()

k EOF

Line() ::= GraphNode() ! GraphNode() = Int()

GraphNode() ::= [Label(), Mask(), StakList() ℄

Mask() ::= Var()

k Hex()

StakList() ::= Var()

k f Label() g

k f Hex() g

Label() ::= 16-bit, unsigned integers in hexadeimal

Hex() ::= 8-bit, unsigned integers in hexadeimal

Var() ::= alphabeti variable name

Figure E.1. Time Orale Input Grammar

VITA

114

VITA

Dennis William Brylow was born in Milwaukee, and grew up in Greendale, Wisonsin.

Under the tutelage of Gordon Kraemer and his suessors at the Greendale High

Shool eduational aess TV station, Dennis learned about television prodution,

audio and video tehnology, eletronis and omputers. He designed and fabriated

his �rst iruit boards the summer of 1989.

Dennis graduated from Rose-Hulman Institute of Tehnology in 1996 with Bah-

elor of Siene degrees in omputer siene and eletrial engineering. As an under-

graduate, his side jobs inluded lab assistant, doumentation manager, and system

administrator. In his spare time, he worked for the institute's solar rae ar projet,

where he speialized in embedded radio telemetry systems. He spent the summer of

1996 studying abroad in Kanazawa, Japan.

Returning to Ameria, Dennis worked full time for Greenhill Manufaturing, Ltd.

Having spent four previous summers at the small ompany, he quikly beame an

R & D engineer, partiipating in all faets of planning, designing, prototyping, pro-

gramming, fabriating and testing of embedded ontrol systems.

Dennis began graduate study at Purdue University in 1997, where he spent

semesters as a teahing assistant, ourse oordinator, and eventually primary in-

strutor for introdutory programming ourses. In his spare time, he integrated

Linux workstations into the department omputing infrastruture and designed ir-

uit boards for speialty instrutional laboratories.

As a researh assistant under Jens Palsberg, Dennis earned his Master of Siene

in 1999, and his Dotor of Philosophy in omputer siene in August of 2003.

His interests inlude real-time, embedded, and interrupt-driven systems, software

engineering, type systems, and UNIX system administration.

