
Scalable Sequence Clustering for Large-Scale
Immune Repertoire Analysis

1st Prem Bhusal
Dept. of Computer Science and Engineering

Wright State University
Dayton, OH, USA

remp.bhusal@gmail.com

2nd AKM Mubashwir Alam
Department of Computer Science

Marquette University
Milwaukee, WI, USA

mubashwir.alam@marquette.edu

3rd Keke Chen
Department of Computer Science

Marquette University
Milwaukee, WI, USA

keke.chen@marquette.edu

4th Ning Jiang
Department of Bioengineering

University of Pennsylvania
Philadelphia, PA, USA
jnjiang@seas.upenn.edu

5th Jun Xiao
ImmuDX LLC

Austin, TX, USA
julianxiao@gmail.com

Abstract—The development of the next-generation sequencing
technology has enabled systems immunology researchers to
conduct detailed immune repertoire analysis at the molecular
level that allows researchers to understand the healthiness of a
patient’s immune system. Recent studies have shown that the
single-linkage clustering algorithm can give the best results for
B cell clonality analysis – a critical type of immune repertoire
sequencing (IR-Seq) analysis. Large sequence datasets (e.g.,
millions of sequences) are being collected to comprehensively
understand how a specific person’s immune system evolves over
different stages of disease development. However, the classical
single-linkage clustering algorithm does not scale well to such
large sequence datasets. Surprisingly, no study has been done
to address this scalability issue for immunology research and
development. We study three different strategies to scale up the
single-linkage algorithm for sequence data. They include (1) the
approximate single-linkage algorithm enhanced with the non-
Euclidean indexing methods, (2) the Spark-based single-linkage
algorithm (SparkMST) that was originally designed for vector
data and now modified for sequence data, and (3) a new tree-
based sequence summarization approach – SCT that aims to
reduce the data for single-linkage clustering with well-preserved
clustering quality.

We have implemented these approaches and experimented
with real sequence datasets for B cell clonality analysis. (1)
The index-enhanced hierarchical clustering algorithm (e.g., VPT-
HC using the Vantage-Point tree for indexing) preserves the
clustering quality very well while significantly reducing the time
complexity. (2) The SCT approach serving as a preprocessing
step can effectively reduce data size for clustering. The overall
clustering, SCT followed by VPT-HC, is the fastest among the
evaluated single-machine algorithms. However, this approach also
slightly affects the clustering quality. (3) The SparkMST parallel
algorithm scales out nicely and also gives exact single-linkage
clustering results. However, SparkMST is tied to the single-
linkage algorithm and cannot be extended to general hierarchical
clustering algorithms. Although this study focused on the specific
application area: the B cell clonality analysis, we believe other
sequence data analysis problems may find the developed scalable
techniques useful.

This research was partially funded by NIH 1R43AI136357-01A1.

Index Terms—clustering, sequence data, scalability, parallel
processing, summarization, indexing

I. INTRODUCTION

The human immune system works amazingly well in de-
fending the body against attacks by “foreign” invaders. One
of the essential mechanisms is adaptive immunity that can
respond to many types of infections automatically. The core
of this mechanism is that the B cells, a subtype of white blood
cells, can adaptively generate various antibodies that fight
different antigens, e.g., bacteria or viruses. Without infection,
the B cells already carry genes for producing about ∼ 107

unique immunoglobulin (Ig) molecules that determine the
types of antibodies. Upon activation (e.g., infection), these
naive B cells will further diversify through a process called
somatic hypermutation to handle new kinds of antigens. It
has been observed that in healthy human adults, about 7%
of B cells are mutated [1], which means each activation may
generate about 106 new types of Ig molecules. The mutation
rate and the B cell clonality distribution may vary due to aging
[2] and disease [3], [4]. Profiling a person’s B cell clones
can help us understand the healthiness level of their immune
system.

Profiling B cell clones at the molecule level was an impos-
sible mission until the next-generation sequencing technique
[5], [6] was available, which is often referred to as the
Adaptive Immune Receptor Repertoire sequencing (AIRR-seq)
approach. The next-gen technique can profile such a large scale
of mutations at a low cost. For example, Illumina MiSeq costs
only about $500 for sequencing 1 Giga base pairs 1. A typical
sequence for studying B cell mutation has about 100-300 base
pairs, and one experiment may generate millions of sequences.
Thus, AIRR-seq has become a popular tool for molecule-
level immune systems research, including B cell clonality

11 Giga base pairs (Gb) = 109 base pairs; one base pair of DNA/RNA is
represented by one of the four characters “ACGT”.

analysis. In the VDJ recombination process (Figure 1), B
cells randomly assemble different gene segments – known as
variable (V), diversity (D), and joining (J) gene segments, to
generate unique antibodies. The AIRR-seq method profiles
this VDJ segment to understand the diversity and similarity
between mutations. Researchers have been studying the clus-

Fig. 1. Antibody repertoire generation and diversification during activation

tering structures of VDJ segments in a person’s B cells to
identify the B cell clones, e.g., with the sequences extracted
from the person’s blood samples. In particular, the hierarchical
clustering structure gives good clues about the B cell evolving
patterns – how one VDJ mutates into another. Gupta et al.
[7] have shown that the single-linkage hierarchical clustering
algorithm gives the best results among other algorithms for
B cell clonality analysis. Recently, we have also applied this
clustering analysis method to understand the patterns of B
cell clones and how they evolve for malaria patients [2]. The
critical challenge of this clustering analysis is the number
of profiled sequences can be very large, from hundreds of
thousands to millions. However, the optimal single-linkage
clustering methods still take O(N2) time complexity for N
sequences (and other types of hierarchical clustering are even
more expensive, O(N2 logN)).) – in practice, it may take
several days to get the clustering results for merely hundreds
of thousands of sequences, which is inconvenient for domain
experts. With the increased scale of studies in the foreseeable
future that will generate much more sequences, any significant
development of faster and scalable hierarchical clustering
algorithms will benefit the whole systems immunology re-
search community. It will also help other biomedical research
domains that heavily depend on clustering analysis of large-
scale sequence data.

We have developed an AIRR-Seq analysis pipeline (Section
III), of which clustering analysis is an essential component.
The framework takes sequencing results, cleans the data,
assembles sequences, clusters them, and extracts the mutation
information. The sizes of datasets for clustering analysis are
around hundreds of thousands for current research problems

[2] that involves only four time-points per patient. We expect
larger datasets with more time points per patient to be gener-
ated, which may reach about a million sequences per person.
To understand the costs of handling that scale of datasets,
we have experimented with several strategies to speed up
and improve the scalability of the single-linkage clustering
methods for sequence datasets. This empirical study will adapt
the existing approaches proven successful in other domains to
the problem of clustering sequence data in AIRR-seq analysis.
Specifically, we have developed the following strategies.

First, we will experiment with non-Euclidean indexing
methods to reduce the complexity of key components in
bottom-up agglomerative algorithms. Most existing agglom-
erative algorithms require the pairwise distance matrix as the
input, which is not scalable. It is possible to avoid comput-
ing the entire distance matrix computation with an indexing
structure for sequences, which can reduce the time complexity
of the initialization stage from O(N2) to O(N logN) and
space complexity from O(N2) to O(N). Many such indexing
methods are only designed for the Euclidean space [8], often
on low dimensional (2 or 3 dimensions) datasets for fast
nearest neighbor search due to the curse of dimensionality
[9]. It’s unknown how effective the non-Euclidean indexing
methods are for sequences, which use the similarity measures,
such as edit distance, Hamming distance, and alignment-based
distance [10], [11]. Our first strategy will investigate non-
Euclidean indexing methods to speed up certain stages of
hierarchical clustering and thus reduce the overall complexity.

Second, parallel processing can be effective for specific
algorithm settings. There have been several efforts to de-
velop the parallel or distributed version of the single-linkage
algorithm. Olson [12] shows that using the parallel random
access memory (PRAM) architecture, the overall complexity
can be reduced to O(N) with N processors for N sequences.
Most recently, Jin et al. [13] have implemented the minimum-
spanning-tree (MST) algorithm with Apache Spark. Since
single-linkage clustering is equivalent to the MST problem,
the SparkMST works equivalently as a parallel single-linkage
algorithm. As Gupta et al. [7] has shown that single-linkage
clustering is the best for B cell clonality analysis, we consider
that the SparkMST is a promising scalable multi-node solution
for our application.

Third, we also explore the tree-based summarization ap-
proach as a preprocessing step for reducing the size of
sequence data. The idea is to maintain a height-balanced
multi-way tree in a stream-processing style, which scans
the sequence dataset once and absorbs each record into the
summarization tree. BIRCH [14] has shown such a tree works
for numeric vector data on Euclidean distance space. However,
no study has shown that this idea can also work for sequence
data in non-Euclidean spaces and generate results comparable
to single-linkage clustering for B cell clonality analysis.

We summarize our unique contributions in this important
application of scalable hierarchical clustering techniques as
follows.
• We have developed the Sequence Condensation Tree

(SCT) structure and algorithms for scanning the dataset
once and absorbing sequences into a hierarchical sum-
marization structure. It includes a novel design of node
and tree structures and related algorithms, which can
recursively summarize similar sequences under each tree
branch. We show that this algorithm is highly scalable
and resource-efficient (i.e., using only a single machine)
if a slight quality loss is acceptable.

• We have experimented with a framework for integrating
cluster indexing methods and cluster-level representative
sequences with single-linkage clustering. It allows any
non-Euclidean indexing method to work as a plugin, such
as the VP-Tree [15], [16]. The result shows that this
approach can preserve the clustering quality perfectly
with good performance gain. If only a single machine
is available, it can also be a good choice.

• We have modified and evaluated SparkMST [13] for
processing sequence data in parallel. Our experimental
result shows that SparkMST scales well to both the size
of sequence data and the size of Spark cluster. It’s a
good candidate solution for users who can provide a
large-scale Spark cluster. However, so far, the Spark-
based algorithm is only available for single-linkage, not
for other hierarchical clustering methods

The remaining sections of the paper are organized as follows.
In Section 2, we give the basic notations and definitions.
Section 3 briefly introduces our AIRR-Seq framework and
shows that the sequence clustering analysis is the critical
component of the framework. Section 4 describes the detailed
strategies for fast and scalable sequence clustering, focusing
on optimizing the single-linkage clustering method. Section 5
shows the experimental evaluation results. Finally, Section 6
covers some related work on sequence clustering, and Section
7 concludes our work.

II. NOTATIONS AND DEFINITIONS

A sequence in our study is a string of characters formed
from the nucleobases, namely {A, C, T, G}. The specific pairs
of nucleobases can be bonded chemically, i.e., AT and CG,
forming the two complementary strands in DNA. Sequencing
techniques utilize this bonding mechanism [5], [6]. Therefore,
the sequence length is often called the number of “base pairs”.
The typical sequence length for immune repertoire analysis
is around 100-300, depending on the specific experimental
design and study objectives. To unify the notations, we will
use lower cases, e.g., m or n, to denote the sequence length
and N to represent the number of sequences.

The similarity of sequences is defined with a certain mea-
sure. We list a few popular choices of similarity measures.

Edit Distance: Edit distance, also known as Levenshtein
distance, is a standard metric for defining the dissimilarity
between two strings by computing the minimum number of
operations (insertion, removal, and substitution) required to
transform one string to the other. It’s a popular choice for
strings of unequal length. However, it’s pretty expensive for

long sequences. For two sequences of lengths m and n,
respectively, the overall complexity of edit distance is O(mn).

K-mer Based Distance: K-mer [10] refers to the substring
of length k from the given string. Each sequence can be
mapped to a set of core k-mers. The k-mer distance between
any two sequences is defined as the number of unique k-
mers shared by them. K-mer based distance can be used for
approximate distance computation as it is computationally less
expensive than other exact distance computations like edit
distance and sequence alignment.

Sequence Alignment Based Distance: Sequence alignment
is the process of arranging the DNA or protein sequences,
which can also be used to define the sequence similarity.
After an alignment, the sequence distance is defined as the
number of mismatches between the two sequences. The popu-
lar alignment algorithms, such as Smith-Waterman [17] (with
complexity O(mn), are also expensive for long sequences.

Hamming Distance: Hamming distance is measured be-
tween two equal-length sequences with complexity O(n) for
the length n. It is defined as the number of positions at which
corresponding characters differ. If we focus on small mutations
typically seen in immune systems, i.e., base substitutions,
Hamming distance can be a valid choice [7], which can
significantly reduce the computational costs.

III. AN AIRR-SEQ ANALYSIS FRAMEWORK

We have developed a complete immune repertoire sequenc-
ing analysis framework and used it in several applications [2],
[18]. Fig 2 gives the overall structure and different compo-
nents of the IR-seq analysis framework. It consists of four
stages, namely (1) Sequence Reads Processing, (2) Sequence
Annotation, (3) Lineage Formation, and (4) Analyses.

The algorithms used in stages (1) and (2) are not very
complex, and they scale well with the dataset. Reads pro-
cessing has some well-known modules, such as read 1 and
2 alignments for paired-end sequencing, barcode removal,
consensus building, and sequence truncating, which we skip
the details [2]. Typically, the algorithms work on pairs of reads
or individual sequences and are simple linear-complexity al-
gorithms (e.g., key-based aggregation for consensus building).
Similarly, sequence annotation works on individual sequences.
It’s straightforward to scale up the processing with simple
parallel processing models like MapReduce [19]. After Lin-
eage Formation, the lineage-level analyses [20] involves only
thousands or tens of thousands of lineages, where scalability
and speed are not an issue yet2.

Among all the components, Lineage Formation uses a
clustering algorithm to find groups of similar sequences and
then generate the lineage, i.e., the representative sequence for
each group. It has become the bottleneck for large sequence
datasets (in hundreds of thousands to millions). So far, the
most effective algorithm for finding the B cell clones is
single-linkage hierarchical clustering that generates the closest

2The scale may increase in the future for possibly different study objectives
and depths.

Fig. 2. Overview of our AIRR-Seq analysis framework

domain-specific clustering structures as shown by Gupta et al.
[7]. Yet, its best complexity is O(N2) [12], which significantly
restricts the scale of sequence datasets to be processed. Our
goal is to investigate the methods that give (possibly approx-
imate) single-linkage clustering structures with much faster
processing time.

IV. STRATEGIES FOR SCALABLE SINGLE-LINKAGE
CLUSTERING ANALYSIS OF AIRR-SEQ DATA

Since single-linkage clustering gives the best results for B
cell clonality analysis, our strategies for developing a scalable
clustering algorithm will focus on this algorithm. However,
we can also extend some strategies to general hierarchical
clustering methods that biomedical researchers use in other
domains. First, we will keep the agglomerative framework
and optimize its key steps with indexing structures. The
progressively merged subclusters will be organized with a non-
Euclidean indexing structure. This indexing structure supports
fast nearest neighbor searches. The index-enhanced framework
will be compared with a recently developed ESPRIT-tree [21]
indexing for 16sRNA Sequence-based microbial community
analysis. Second, we focus on the parallel implementation of
minimum spanning trees, based on the SparkMST algorithm
[13], as single-linkage clustering is equivalent to finding
minimum spanning trees. Jin et al. have experimented with
the Spark-based implementation for vector data up to two
million records. However, there is no current study about
its scalability on sequence data. We adopt the Spark MST
algorithm and extend it to sequence data. Finally, we examine
the idea of tree-based summarization as the preprocessing step
and develop the SCT approach for processing the sequence
data in one scan, which will be highly scalable even with
only a single machine. We can then extract a smaller number
of summary nodes for clustering. We will evaluate how close
the generated clustering structure is to the ideal result.

In the following, we will give more details of the three
strategies and conduct theoretical analyses to determine the
potential performance gain.

A. Speeding up Sequence Clustering with Indexing and Clus-
ter Representatives

Consider the general sequence-based agglomerative cluster-
ing framework (Algorithm 1). There are two steps: Step 2 and
Step 8 involving the nearest neighbor search.

Algorithm 1 Basic Sequence Agglomerative Clustering (S, t,
δ)

1: input: sequence set S, the distance threshold t for stopping
merge, and the distance function δ(si, sj) for any pair of
sequences.

2: consider each sequence si ∈ S as a cluster and find its nearest
neighbor si.NN, which results in a tuple (si, si.NN, di)

3: initialize a priority queue q with the tuples (si, si.NN, di), sorted
by di.

4: while the merged cluster has distance < t or the number of
clusters > 2 do

5: (s, s.NN, d) ← q.dequeue;
6: s′ ← merge s and s.NN;
7: update the tuples in q, whose nearest neighbor is s or s.NN;
8: s′.NN ← find the nearest neighbor of s′ that has the distance

d′;
9: insert (s′, s′.NN, d′) into q;

10: end while
11: return the remaining clusters in q.

Therefore, we consider using a sequence-based indexing
tree to speed up the nearest neighbor search steps. There are
two key requirements on the desired indexing structure (1) it
works on non-Euclidean metric space, and (2) it can also index
clusters of sequences. For the first requirement, we consider
adopting existing indexing methods for general metric spaces,
such as the Vantage-Point tree (VP tree) [15], [16] and Cover
Tree [22]. For the second requirement, we use a representative-
sequence method to approximately sketch the boundary of a
cluster. Specifically, for single linkage clustering, the distance
is defined as the minimum pairwise distance between two
sets of representative points from the two compared clusters,
respectively. We describe the key algorithm for maintaining
the representative sequences when merging two clusters.

Maintaining Representative Sequences in Merging. In the
above framework, the indexing algorithm will build an index

on cluster objects, the distances between which have to be de-
fined. The cluster objects start from one sequence and grow af-
ter the merging operations. We use representative sequences in
each cluster for approximate but faster general cluster-cluster
distance computation (not only for single-linkage), which has
preserved clustering quality satisfactorily. Traditionally, the
cluster distance in hierarchical clustering is defined based on
the pairwise distances between pairs of members from the two
clusters, e.g., the minimum, average, and complete linkage
definitions, which are quite expensive. We try to extract the
representative sequences likely around the exterior boundary
of the cluster by the following recursive method working
with the single-linkage merging steps. Assume we use k
representatives to describe a cluster. (1) If the cluster contains
one sequence, the sequence becomes a representative sequence
and the center sequence automatically. (2) Assume two clusters
C1 and C2 are merged, the representative sequence sets of
which are R1 and R2, respectively. Let the set sizes be
|R1| = n1 and |R2| = n2. If n1 + n2 > k, compute the total
sum of squared distances, τi, for each candidate sequence ri
in the union set R1 ∪R2.

τi =
∑
j 6=i

distance2(ri, rj)

This total sum of squared distances for ri can approximately
capture the “virtual” location of the sequence inside the
cluster: the ones with the largest sums are around the boundary
of the cluster. We will maintain the top k candidates with
the largest total sums as the representative sequences in the
merged cluster. Similarly, we also keep track of the center
sequence of the cluster that has the smallest total sum among
all candidates. The overall update cost is O(k2).

The distance between a cluster C and a sequence s
can be approximately computed, based on the distances
between representatives and the sequence. Specifically, for
the single-linkage algorithm, it’s minri∈RofC distance(ri, s).
Similarly, the distance between clusters is translated to
minri∈R1,rj∈R2

distance(ri, rj) for all reprentatives ri from
C1 and rj from C2. After merging a pair of clusters C1 and
its nearest neighbor C2, C1 and C2 are moved from the index
and the merged cluster C1,2 with its updated representatives
are inserted back to the index using the cluster-sequence and
cluster-cluster distance computation methods.

Cost Analysis. Ideally, the initial index building time is
about O(N logN), and the initial setup of nearest neighbors
costs O(N logN) distance computations. The steps in the
clustering loop involve (logN) nearest neighbor search and
O(k2 logN) distance computations to update the index. Thus,
with the help of indexing, we can reduce the number of overall
expensive distance computations to O(k2N logN). We will
evaluate the costs in Section V with the VP-tree as the indexing
structure and compare with another index-enhanced sequence
clustering method ESPRIT-tree [21] developed for 16s rRNA
sequence analysis.

B. Parallel Single-Linkage Clustering

The second candidate solution is to scale up the processing
with a parallel processing computing cluster, e.g., the Spark
[23] based approach. The hope is to develop an algorithm
that speeds up reasonably with the increased size of the Spark
cluster. There have been several efforts to design parallel or
distributed versions of the single-linkage hierarchical cluster-
ing algorithm in the past [12]. However, they work on the
traditional shared memory systems, not the cheap commodity
servers or virtual machines, available in the public clouds for
most users. Recently, Jin et al. [13] have developed a parallel
minimum spanning tree (MST) with Spark, which can be used
to generate equivalent single-linkage hierarchical clustering
results.

The MST method can be parallelized in two stages in
SparkMST. In the first stage, the whole dataset is randomly
partitioned into p smaller subsets. The complete graph is
formed with each small subset, where nodes are the records
and edge weights are the distances between the connected
records. In total, there are p complete graphs and O(p2)
bipartite graphs between the complete graphs. To avoid com-
puting all edge weights, the first stage of SpartMST uses
Prim’s algorithm to find the MSTs of the subgraphs. In the
second stage, Kruskal’s algorithm works efficiently with only
the extracted edges from the MSTs generated in the first stage.

Cost and Scalability Analysis. The complexity of the
basic Prim’s algorithm is O(N2 logN) for dense graphs
(E = O(N2)) with the help of priority queue for N se-
quences 3. With p partitions, both the complete graph and
the bipartite graph MST algorithms have the same complexity
O((N/p)2 log(N/p)). Assume there are w parallel workers in
the Spark cluster. We will need to schedule O((p2 + p)/w)
rounds to process the graphs. Thus, the overall parallel running
time for the first stage is O((p2 + p)/w(N/p)2 log(N/p)) =
O(N2/w log(N/p)), which ideally will linearly scale out
with the number of parallel workers, w. The output of
Prim’s algorithm will contain O(N/p) edges for both the
complete graph and the bipartite graph cases, respectively.
Thus, there are O(p2) of such edge sets. With Kruskal’s
algorithm, we can progressively merge pairs of edge sets in
the second stage. There are O(p2) merges, each of which costs
O((N/p) log(N/p)). With w workers, the second stage costs
about O(Np/w log(N/p)), clearly less expensive than the first
stage. Overall, the algorithm should scale nicely to the number
of working nodes w.

We have revised the SparkMST algorithm to work with
the sequence data. As the MST algorithm generates the same
result of single-linkage clustering, the quality of clustering is
fully preserved compared to other methods in our study. The
experimental evaluation also shows its good scalability. While
the performance gain might be minor with a small number of
computing nodes, a larger Spark cluster does help reduce the
cost. The only limitation is that it only works as single-linkage

3With Fibonacci heaps, the cost can be further optimized to O(N2+logN)

clustering. To our knowledge, no parallel solutions for general
hierarchical clustering yet.

C. Sequence Condensation Tree (SCT) – a fast sequence
summarization algorithm

We develop the SCT fast sequence summarization algorithm
that scans the dataset only once and sketches the small clusters
in the dataset, based on the idea of BIRCH [14] that works
only for vector data, however. The SCT tree is a multi-way
balanced tree. It grows from a single root node to multiple
layers with the inserted sequence. The SCT sequence insertion
algorithm quickly routes a new sequence along the right path
on the SCT tree to the expected node that absorbs the sequence
via a series of node-sequence similarity computations. Thus,
the cost of processing one sequence is fast, at the level of
O(logN).

The algorithm starts with one empty root node. The tree
grows incrementally with inserted sequences. When a new
sequence comes, it follows the root node down to the leaf by
comparing the similarity between the sequence and the node.
Each time the child node with the highest similarity (or lowest
distance) is selected to move down until it reaches the leaf.
The leaf entries are checked to find the similar one (within a
threshold t, distance(leaf entry, sequence) < t) to absorb the
sequence. If no leaf entry can absorb, a new entry is created to
contain that record. Creating a new entry may cause the node
to split when the predefined maximum number of entries for
the node is reached. Node split may be propagated level-by-
level up to the root to balance the tree, a similar process used
by multi-way balanced trees. The core similarity computation
is defined between node and sequence. If we treat a node
as a cluster, we can use the representative-sequence method
defined previously in Section IV-A. While a new sequence
is inserted into the leaf node, we use the total sum method
to check whether this sequence can be a new representative
sequence for that node. Based on the existing representative
sequences, we have defined the following methods for node-
sequence similarity computation.

• Center based: A center record is dynamically maintained
with the previously described method. The center-based
node-sequence similarity is defined as the distance be-
tween the center and the sequence.

• Average/Min: Alternatively, we consider using the av-
erage or minimum distance among all pairs of repre-
sentative sequences and the inserted sequence to define
the node-sequence distance. Min performs similar to the
single-linkage merging criterion.

A simple structure of SCT is illustrated in Figure 3. The SCT
has three levels with leaf nodes at Level 0, the root node at
Level 2, and intermediate/non-leaf nodes at Level 1. Sequences
at leaf nodes are absorbed into a leaf entry according to a
predefined threshold t. Typically, in B cell clonality analysis,
we don’t need to separate very similar sequences, e.g., those
with their similarity higher than 95% of the sequence length
merged into one leaf entry.

Fig. 3. Structure of Sequence Condensation Tree (SCT)

As a preprocessing and data reduction method, SCT has
several unique advantages for clustering sequence data.
• The whole sequence dataset is scanned only once and

thus scalable to large sequence sets.
• The cost of processing one sequence is determined by

the tree’s height, which is O(logf N) for N sequences,
where f is the number of entries per node. For large f ,
e.g., f=10 or 20, the height grows slowly.

• The tree can serve as a preprocessing tool for quickly
filtering out singletons and characterizing major groups,
e.g., the size, scale (defined by the representative se-
quences), and the center).

• Thresholds can be applied to select the nodes for fast
post-processing, e.g., generating single-linkage hierarchi-
cal structures based on the selected nodes.

V. EXPERIMENTS

The goals of the experimental evaluation include: (1) the
scalability of single-machine processing methods: the index-
enhanced single-linkage approach, and the impact of SCT
data reduction, (2) the clustering quality of the single-machine
approximate methods, and (3) the scalability of multi-node
Spark-based method: SparkMST.

A. Setup

We have implemented all the discussed algorithms for
sequence data. VP-tree is used as the indexing method for
the index-enhanced single-linkage approach, denoted as VPT-
HC. The VPT-HC can be applied to the SCT reduced datasets,
and we name this approach SCT-VPT-HC. We compare this
approach with a somewhat close approach ESPRIT-Tree [21]
developed for clustering microbial rRNA sequences in analyz-
ing the microbial communities. The ESPRIT-Tree implemen-
tation is available as a compiled binary from C++ source code.
We implemented all our algorithms with Scala.

The single-machine algorithms are evaluated on a Linux
server equipped with Intel(R) Core(TM) i7-4790K CPU @
4.00GHz and 32GB memory. For parallel processing, we have
used a standalone cluster with 11 powerful nodes (1 head node
+ 10 slave nodes), each of which has 16 cores and 250 GB
memory. Thus, we can set up a Spark cluster with up to 160
parallel workers.

B. Quality Measures and Baseline Establishment

Since the recent study [7] has shown that the single-linkage
algorithm is the best option for B cell clonality analysis, we
have adopted the standard single-linkage results as the baseline
for quality evaluation. However, most standard packages (e.g.,
in R or Python) cannot handle the scale of our sequence data,
e.g., requiring the whole distance matrix as the input. We have
used our implemented SparkMST algorithm to generate the
baseline.

The ground truth clusters are defined based on the minimum
spanning tree generated with SparkMST. Systems immunology
researchers [7], [18] have adopted the distance-to-nearest-
neighbor method for finding the heuristic distance threshold
for cutting the hierarchical clustering result. Specifically, in B
cell clonality analysis, the histogram of sequences’ distances
to their nearest neighbors has shown an approximate bimodal
pattern in Figure 4, where the x-axis is the normalized dis-
tances, i.e., distances/max sequence length, in the range [0, 1]
and the y-axis is the number of sequences having the certain
distance to their nearest neighbors. The first mode is mapped
to the sequences within their clusters, and the second mode
implies the outliers (or singletons). The ideal distance cut is
located at the valley between the first two modes. Previous
studies show the values are around 0.07-0.15 for normalized
distances, although different datasets have slightly different
values. For simplicity, we have used 0.12 in experiments to
establish the baseline clusters. Note that this heuristic is used
for B cell clonality analysis only, which may not fit other
applications of hierarchical clustering.

Fig. 4. Threshold determination by distance-to- nearest-neighbor method
(Credit [7]).

With the baseline labeled clusters set up, we use Normalized
Mutual Information(NMI) for determining the quality of a
given clustering result. Let the ground truth cluster labels
be the “true labels” drawn from a random variable T , and
the clustering algorithm assignments be the “predicted labels”
randomly drawn from another random variable P . Let H(T)
and H(P) be the entropy of the label distributions, respec-
tively, and I(T ;P) be the mutual information between the
two random variables. NMI(T ;P) is defined as

NMI(T ;P) =
2I(T ;P)

H(T) +H(P)

C. Datasets

We have evaluated the algorithms with two datasets:
• Dataset 1: This dataset is shared by Gupta et al. [7]. It

contains 1.1 million sequences of variable length. The
dataset is available on the Sequence Read Archive 4 un-
der Bio- Project accession numbers SRX2018085 under
PRJNA338795 (study of B cell repertoire in myasthenia
gravis). The average length is about 100 base pairs. Large
groups of equal-length sequences are used in experiments.

• Dataset 2: This dataset is used in studying the B cell clon-
ality of Malaria patients [2]. The blood samples are from
one patient at four time-steps: first-year-pre-malaria, first-
year-acute-malaria, second-year-pre-malaria, and second-
year-acute-malaria. The dataset consists of around 164
thousand sequences with an equal length of 270 base
pairs.

D. Result and discussion

Clustering Quality. We first show the clustering quality
of the single-machine approximation methods based on the
NMI measure, using the SparkMST result as the reference.
As SparkMST generates the exact result of single-linkage
clustering, we don’t need to evaluate the clustering quality and
instead focus on its scalability in later discussion. The VP-Tree
enhanced single-linkage algorithm (VPT-HC) generates the
clustering dendrogram, and then we use the bimodal distance
threshold to cut the dendrogram and get the clusters. SCT
is used to generate the summary tree with leaf thresholding
of ≤ 0.05 normalized distance for absorbing highly similar
sequences and the fanout 10 to achieve a relatively flat tree.
For simplicity, we collect only the SCT leaf nodes for single-
linkage clustering, which we use VPT-HC. The quality results
for all the algorithms are present on Table I for Dataset 1 and
on Table II for Dataset 2. “SCT-VPT-HC center/avg/min”
represent different node-sequence distance computation meth-
ods used by the SCT method. Each table has two columns
corresponding to different sequence distance methods for SCT-
VPT-HC and VPT-HC, while ESPRIT-Tree uses a k-mer based
similarity measure [21].

Both Table I and Table II show that VP-Tree enhanced
algorithm (VPT-HC) has the highest NMI score. For Dataset2,
the quality of VPT-HC is almost perfect. The ESPRIT-Tree and

4https://www.ncbi.nlm.nih.gov/sra

TABLE I
NMI SCORES ON DATASET 1. 0 <= NMI <= 1. THE LARGER, THE

BETTER.

Method Edit Dist. Hamming Dist.
VPT-HC 0.96 ±0.04 0.97± 0.04

SCT-VPT-HC(center) 0.93±0.03 0.94± 0.03
SCT-VPT-HC(avg) 0.93 ±0.04 0.94±0.04
SCT-VPT-HC(min) 0.92 ± 0.03 0.94± 0.02

ESPRIT-Tree 0.93 ± 0.04 (with k-mer similarity [21])

TABLE II
NMI SCORES FOR DATASET 2

Method Edit Dist. Hamming Dist.
VPT-HC 0.995 ± 0.003 0.996± 0,002

SCT-VPT-HC(center) 0.92 ± 0.01 0.95± 0.01
SCT-VPT-HC(avg) 0.93 ±0.09 0.95± 0.01
SCT-VPT-HC(min) 0.90 ± 0.01 0.93± 0.01

ESPRIT-Tree 0.95± 0.00

SCT-VPT-HC methods of different settings have similar per-
formance, slightly lower than VPT-HC’s. Another interesting
observation from this result is that Hamming distance works
equally well as Edit distance, which is consistent with the
conclusion of the previous study [7]. Thus, in the following,
we will use Hamming distance for scalability experiments.

Scalability of single-machine algorithms. To evaluate the
computational costs of the single-machine algorithms and their
scalability, we sampled both datasets to get different sizes
ranging from 10 thousand to 60 thousand. Hamming distance
is used for clustering. In Figure 5 and 6, the x-axis represents
the sequence size in thousands, and the y-axis represents
the time cost in seconds. We used SCT-VPT-HC (center) for
this evaluation. For the same size of data, Dataset2 is more
expensive due to its longer sequences. The result shows that
VPT-HC and ESPRIT-Tree have a similar growth pattern,
slightly higher than linear complexity. In comparison, SCT-
VPT-HC is much faster because SCT helps significantly reduce
the data size by about 62% for Dataset 1 and 51% for Dataset
2. This size reduction is achieved at a low cost. Figure 7 shows
that the SCT summarization part occupies a relatively small
portion of the overall cost of SCT-VPT-HC. With carefully
tuned cutting strategies to get an even smaller number of non-
leaf nodes, we think the overall SCT-VPT-HC cost can be
further reduced. However, as we have known earlier, the fast
speed also comes at the expense of slightly reduced clustering
quality.

Scalability of SparkMST on sequence data. We study the
scalability of SparkMST in two settings: how the algorithm
scales with the increasing number of sequences for a fixed
number of computing nodes and how it scales with the
increasing number of computing nodes for the same data size.
We use a ten-node cluster setup for the first experiment. Then,
we vary the Spark cluster configuration with 2, 4, 6, 8, and 10
nodes in the second experiment. Again, Hamming distance is
used in clustering.

Figure 8 shows the costs for processing different sizes
of data by comparing SparkMST and SCT-VPT-HC. The
previously evaluated SCT-VPT-HC is used for reference. With
a 10-node cluster, SparkMST has significantly lower costs and
scales much better than SCT-VPT-HC. Next, we study how
the algorithm scales with the increasing number of computing
nodes while the data size remains unchanged. It allows us
to understand whether the algorithm can scale out nicely
by adding more computational nodes. We get 160 thousand
sequences from each dataset for this study. Figure 9 shows that
the algorithm scales out pretty well. The classical “speedup”
measure is defined as “the time cost with one node / the time
cost with n nodes”. Ideally, for n nodes, the speedup is n. By
looking at Figure 10, we can also clearly see the speedup
increasing steadily with the increased nodes. From two to
six nodes, the speedups are almost ideal. In general, for a
larger number of nodes, one can expect that higher extra costs
are spent on scheduling and communications, which normally
reduce the speedup. The speedup stays at about eight for ten
nodes, which is still considered excellent scalability in parallel
processing.

Discussion. Based on the evaluation results, we can con-
clude that all the three approaches work as expected with
different levels of performance gain. First, the index-enhanced
methods can effectively reduce the cost of the original single-
linkage clustering for the single-machine setting. However, we
observed that the current implementations are still quite expen-
sive – processing 60k sequences takes about three hours. We
will experiment with other non-Euclidean indexing structures,
such as Cover Tree [22], to improve the performance of this
method. In comparison, the SCT summarization method can
effectively reduce the data size, thus significantly reducing
the cost of clustering. However, the clustering quality is also
slightly lower than the indexing-enhanced methods on the
whole dataset. We will investigate the SCT’s post-processing
algorithms to reduce the cost further while maintaining good
clustering quality. Second, SparkMST gives exact single-
linkage clustering results. It is still expensive for small-scale
Spark clusters. For example, Figure 9 shows its costs on the
two-node cluster are still around 4000 seconds for Dataset1
and 8000 seconds for Dataset2. However, the algorithm scales
well for an increasing number of computing nodes. SparkMST
on a ten-node cluster runs much faster than SCT-VPT-HC
and scales better for large data sizes. Therefore, our recom-
mendation is to use SparkMST if the user has an abundant
budget for a large Spark cluster. If only a single server is
available, one can use either the SCT method for fast prepro-
cessing but slightly lower clustering quality or index-enhanced
single-linkage with more time but a better quality guarantee.
However, we think the SCT summarization method may have
broader applications for other more sophisticated clustering
algorithms such as spectral clustering. Finally, the Spark-
based solution is only available for single-linkage, not other
hierarchical clustering algorithms. In contrast, the indexing-
enhanced method can be easily extended for different types of
hierarchical clustering.

10 20 30 40 50 60
0

2,000

4,000

6,000

8,000

10,000

12,000

Sequences in thousand

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

) ESPRIT-Tree
VPT-HC

SCT-VPT-HC

Fig. 5. Cost comparison between different methods
on data sampled from Dataset1 for single-machine
algorithms.

10 20 30 40 50 60
0

5,000

10,000

15,000

20,000

25,000

30,000

Sequences in thousand

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

) ESPRIT-Tree
VPT-HC

SCT-VPT-HC

Fig. 6. Cost comparison between different methods
on data sampled from Dataset2 for single-machine
algorithms.

10 20 30 40 50 60
0

2,000

4,000

6,000

8,000

Sequences in thousand

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

) SCT-VPT-HC
SCT Summarization

Fig. 7. The cost of SCT summarization occupies
a small portion in the overall SCT-VPT-HC cost
(Dataset2).

20 40 60 80 100 120 140 160
0

500

1,000

1,500

2,000

Sequences in thousand

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

) SparkMST
SCT-VPT-HC

Fig. 8. Scalability of SparkMST on a ten-
node Spark cluster with increased data size on
Dataset 1.

2 4 6 8 10

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Number of computing nodes

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

) Dataset 1
Dataset 2

Fig. 9. Scalability of SparkMST with the in-
creased number of computing nodes and a fixed
data size

2 4 6 8 10

2

4

6

8

10

Number of computing nodes

Sp
ee

du
p

R
at

e

Ideal Speedup
Dataset 1
Dataset 2

Fig. 10. Scalability of SparkMST: speedups
according to the number of nodes

VI. RELATED WORK

Many well-known fast sequence clustering algorithms, such
as CD-HIT [10], UCLUST [24], DNACLUST [11], are based
on simple threshold-based grouping, which does not give the
ideal clustering structures. CD-HIT [10] first sorts sequences
by length so that the longest sequence is selected as the first
seed cluster. Each of the remaining sequences is compared
with the existing seed clusters – either merged to the seed
clusters if the distance to the seed is less than a predefined
threshold or becomes a new seed cluster if not existing ones
can absorb it. It also uses k-mer based filtering for fast pro-
cessing. The algorithm has O(Nn) complexity where n < N ,
n is the number of seed sequences, and N is the total number
of sequences. With tight thresholds, n is often very large, e.g.,
up to thousands, leading to slow processing. The core idea of
UCLUST [24] is similar to CD-HIT [10] and thus has similar
complexity. It uses a fast sequence search heuristic to find
the closest seed sequence, which helps when n grows large.
DNACLUST [11], another similar threshold-based approach,
uses edit distance as the similarity measure. This category of
methods only works as rough grouping methods to aggregate
very similar ones (e.g., with a threshold > 95% of sequence
length). With a relaxed threshold, the algorithms do not give
ideal clusters, and the clustering result is also highly dependent
on the order of processed sequences.

Dendrograms generated from hierarchical clustering have
been one of the most intuitive methods for clustering anal-
ysis in biomedical research. However, the general hierar-
chical clustering algorithms optimized with heap still have

O(N2 logN) complexity, which does not scale well for large
sequence datasets. Biomedical researchers have been using
the expensive algorithms, enduring long running times, until
data size grows to an unacceptable level. Recently, Cai et al.
proposed the ESPRIT-Tree [21] method, aiming to address
the performance issues with million-level sequence sets. It
uses k-mer based distance computation and a leveled tree to
organize sequences. Each layer in the tree has a specific lay-
based distance threshold: the distances between nodes are all
larger than the threshold, while records covered by the node
have distances to the node center less than the threshold. The
tree is used for the nearest neighbor search for a hierarchical
clustering algorithm. It worked well on the microbial RNA
sequences. However, our experiment shows that it does not
give top-quality clustering results, and its C++ implementation
is constantly slower than our Scala-based VPT-HC.

The general agglomerative hierarchical clustering frame-
work does not have good inherent parallelism, as each decision
of cluster merging has to depend on previous merging results.
HPC-CLUST [25] tried a multi-threading approach to achieve
parallelization in the distance calculation step, which does
not address the scalability bottleneck in the clustering steps.
For the specific type of hierarchical algorithms: the single-
linkage algorithm, Olson [12] has shown that the O(N)
complexity can be achieved with O(N) nodes under a shared
memory PRAM architecture or with a O(N/ logN)-node
butterfly network. However, such particular architectures are
not accessible to most biomedical researchers. Recently, Jin
et al. [13] proposed a parallel MST-based graph clustering
algorithm, equivalent to single-linkage clustering, that can be

implemented with a Spark cluster on commodity servers. We
have investigated its scalability on sequence datasets and found
the scaling-out performance is not so satisfactory.

The tree-based summarization methods have been applied in
data streaming processing, e.g., the BIRCH method for vector
data in Euclidean space [14], [26] and the HE-Tree method
for categorical data [27]. However, to our knowledge, no work
is reported on sequence data. We design the SCT approach
for sequence data and show that it has low processing costs
and is highly scalable for large datasets. Downstream analytics
tasks, such as clustering, can work with a much smaller set of
summary nodes than the original dataset.

VII. CONCLUSION

Recent studies have shown that single-linkage clustering is
the best method for B cell clonality analysis. However, the
scale of sequence data for B cell clonality analysis is rapidly
increasing to a level that the classical single-linkage algorithm
cannot comfortably handle anymore. We have studied three
strategies to scale up/out the single-linkage clustering algo-
rithm for large sequence datasets: the index-enhanced single
linkage, the SparkMST parallel algorithm, and the SCT fast
sequence summarization algorithm for reducing data in prepro-
cessing. We have done an extensive experimental evaluation
on two real B cell repertoire sequence datasets. The result
shows that the index-enhanced single linkage can preserve the
clustering quality almost perfectly. The SCT-assisted approach
can significantly speed up the clustering process if only a
single server is available. The SparkMST can scale well if
one can afford a large computing cluster, but does not apply
to other hierarchical clustering algorithms that users in other
domains may want to try. Our study is an excellent practical
example showing how big data techniques can help address
real scalability problems in scientific applications and make it
possible for scientists to discover new knowledge faster from
larger datasets.

VIII. ACKNOWLEDGMENTS

This research was partially supported by the National In-
stitute of Allergy and Infectious Diseases under award num-
ber 1R43AI136357-01A1. The content is solely the authors’
responsibility and does not necessarily represent the official
views of the National Institutes of Health.

REFERENCES

[1] Y.-C. Wu, D. Kipling, and D. Dunn-Walters, “Age-related changes in
human peripheral blood igh repertoire following vaccination,” Frontiers
in immunology, vol. 3, p. 193, 07 2012.

[2] B. S. Wendel, C. He, M. Qu, D. Wu, S. M. Hernandez, K.-Y. Ma,
E. W. Liu, J. Xiao, P. D. Crompton, S. K. Pierce, P. Y. Ren, K. Chen,
and N. Jiang, “Accurate immune repertoire sequencing reveals malaria
infection driven antibody lineage diversification in young children,” in
Nature Communications, 2017.

[3] S. D Boyd et al., “Measurement and clinical monitoring of human lym-
phocyte clonality by massively parallel v-d-j pyrosequencing,” Science
translational medicine, vol. 1, 12 2009.

[4] A. Logan, H. Gao, C. Wang, B. Sahaf, C. D Jones, E. L Marshall,
I. Buño, R. Armstrong, A. Z Fire, K. I Weinberg, M. Mindrinos,
J. Zehnder, S. D Boyd, W. Xiao, R. Davis, and D. B Miklos, “High-
throughput vdj sequencing for quantification of minimal residual disease
in chronic lymphocytic leukemia and immune reconstitution assess-
ment,” Proceedings of the National Academy of Sciences of the United
States of America, vol. 108, 12 2011.

[5] A. Mori, S. Deola, L. Xumerle, V. Mijatovic, G. Malerba, and V. Mon-
surrò, “Next generation sequencing: New tools in immunology and
hematology,” Blood research, vol. 48, pp. 242–249, 12 2013.

[6] E. Mardis, “The impact of next-generation sequencing technology on
genetics,” Trends in Genetics, vol. 24, pp. 133–141, 04 2008.

[7] N. T. Gupta, K. D. Adams, A. W. Briggs, S. C. Timberlake, F. Vigneault,
and S. H. Kleinstein, “Hierarchical clustering can identify b cell clones
with high confidence in ig repertoire sequencing data,” Journal of
immunology, vol. 198, no. 6, pp. 2489–2499, 2017.

[8] R. Sibson, “Slink: An optimally efficient algorithm for the single-link
cluster method,” The Computer Journal, vol. 16, no. 1, pp. 30–34, 1973.

[9] J. Kogan, Introduction to Clustering Large and High-Dimensional Data.
Cambridge University Press, 2006.

[10] W. Li and A. Godzik, “Cd-hit: a fast program for clustering and
comparing large sets of protein or nucleotide sequences,” Bioinformatics,
vol. 22, no. 13, pp. 1658–1659, 2006.

[11] M. Ghodsi, B. Liu, and M. Pop, “Dnaclust: accurate and efficient
clustering of phylogenetic marker genes,” in BMC Bioinformatics, 2011.

[12] C. F. Olson, “Parallel algorithms for hierarchical clustering,” Parallel
Computing, vol. 21, no. 8, pp. 1313–1325, 1995.

[13] C. Jin, R. Liu, Z. Chen, W. Hendrix, A. Agrawal, and A. Choudhary, “A
scalable hierarchical clustering algorithm using spark,” in Proceedings of
the IEEE Conference on Big Data Computing Service and Applications,
2015, pp. 418–426.

[14] R. R. Tian Zhang and M. Livn, “BIRCH: an efficient data clustering
method for very large databases,” in ACM SIGMOD Conference on
Management of data Pages 103-114, 1996.

[15] P. N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” in ACM-SIAM Symposium on Discrete
Algorithms (SODA), 1993.

[16] T. Bozkaya and Z. Ozsoyoglu, “Indexing large metric spaces for
similarity search queries,” ACM Trans. Database Syst., vol. 24, pp. 361–
404, 09 1999.

[17] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, pp. 195–197,
1981.

[18] N. Jiang et al., “Lineage structure of the human antibody repertoire
in response to influenza vaccination,” Science Translational Medicine,
vol. 5, no. 171, 2013.

[19] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in OSDI, 2004, pp. 137–150.

[20] K. Chen, V. S. A. Gogu, D. Wu, and J. Ning, “Colt: Constrained
lineage tree generation from sequence data,” in IEEE Conference on
Bioinformatics and Biomedicine (BIBM), 2016, pp. 102–106.

[21] Y. Cai and Y. Sun, “Esprit-tree: hierarchical clustering analysis of
millions of 16s rrna pyrosequences in quasilinear computational time,”
Nucleic Acids Research, vol. 39, no. 14, 2011.

[22] A. Beygelzimer, S. Kakade, and J. Langford, “Cover tree for nearest
neighbor calculations,” 2006.

[23] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
USENIX Conference on Hot Topics in Cloud Computing. Berkeley,
CA, USA: USENIX Association, 2010, pp. 10–10.

[24] R. C. Edgar, “Search and clustering orders of magnitude faster than
blast,” Bioinformatics, vol. 26, no. 19, pp. 2460–2461, 2010.

[25] J. F. Matias Rodrigues and C. von Mering, “Hpc-clust: distributed hierar-
chical clustering for large sets of nucleotide sequences,” Bioinformatics,
vol. 30, no. 2, pp. 287–288, 2014.

[26] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for
clustering evolving data streams,” in International Conference on Very
Large Databases, 2003, pp. 81–92.

[27] K. Chen and L. Liu, “HE-Tree: a framework for detecting changes in
clustering structure for categorical data streams,” VLDB Journal, vol. 18,
2009.

