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Abstract —Big graphs, such as user interactions in social networks and customer rating matrices in collaborative filters, possess great
values for both businesses and research. They are not only big but often keep evolving, which requires a large amount of computing
resources to maintain. With the wide deployment of public cloud resources, owners of big graphs may want to use cloud resources to
obtain storage and computation scalability. However, privacy and ownership of the graphs in the cloud has become a major concern. In
this paper, we study privacy-preserving algorithms for one of the important graph analysis techniques - graph spectral analysis for
outsourced graph in the cloud. The core operation: eigendecomposition of large matrix is also important to many data mining
algorithms. We consider a cloud-centric framework with three collaborative parties: data contributors, data owner, and cloud provider.
Graphs are represented as matrices such as adjacency matrix and Laplacian matrix, the elements of which are encrypted and
submitted by distributed contributors. The data owner then interacts with the cloud-side programs to conduct spectral analysis, while
protecting data privacy from the honest-but-curious cloud provider. For a N ×N graph matrix, we aim to design algorithms with the
cloud handling expensive storage and computation in O(N2) complexity, while data owner and data contributors’ algorithms take only
O(N). To achieve this goal, we develop the privacy-preserving versions of the two approximate eigendecomposition algorithms: the
Lanczos algorithm and the Nyström algorithm, considering two encryption methods: additive homomorphic encryption (AHE) methods
and somewhat homomorphic encryption (SHE) methods. Both dense and sparse matrices are studied, while sparse matrices also
involve a differentially private data submission protocol to allow the trade-off between data sparsity and privacy. Experimental results
show that the Nyströ algorithm with sparse encoding can dramatically reduce data owners’ costs; SHE-based methods have lower
computational time while AHE-based methods have lower communication/storage costs.

Index Terms —Graph Spectral Analysis, Outsourced Computation, Homomorphic Encryption, Differential Privacy, Cloud Computing
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1 INTRODUCTION

With the rise of social networks, mobile applications, and
sensors, there has been a rapid increase of data generation
in areas of commerce, science, and health industries. Among
them graph data has become an important resource [1].
Due to the sheer and continuously growing scale, data
owners may want to adopt the popularly available cloud
resources to achieve both storage and computational scala-
bility. However, there are privacy concerns on collecting and
mining graph data with the cloud. (1) These datasets are
often sensitive, and thus users are reluctant to share them
due to the lack of trust in data owners’ ability to protect
the data in the cloud. (2) On the other side, data owners
also have great interests in preserving the ownership of
these proprietary data, as data have become the determining
factor in business operation or scientific research. The recent
studies [29] and incidents [9] have shown that sensitive data
in the cloud are subject to information theft, eavesdropping,
and insider attacks. Thus, it is urgent to find means to
address both users’ and data owners’ concerns in cloud-
centric data mining.

Protecting data privacy in the cloud is not straight-
forward, as encryption alone can limit cloud’s usage in
computation. The traditional method is to store encrypted
data (e.g., using Advanced Encryption Standard (AES))

in the cloud; to protect the privacy in computation, data
owners need to download, decrypt, and process data locally.
However, when the size of data increases to a certain scale,
data owners cannot afford doing this anymore for non-linear
complexity (e.g., O(N2) for N -node graphs) algorithms.

Another approach is to develop novel encryption meth-
ods to allow the cloud to work with encrypted data. Re-
searchers have been studying the fully homomorphic en-
cryption (FHE) [16] and garbled circuits (GC) [35] based
methods. Theoretically, it is possible to construct any data
mining algorithms to work with FHE or GC. However,
implementing a FHE-based method for complex algorithms
will require many levels of denoising/re-encryption to
maintain the utility of encrypted data [7], which requires
high computational costs and larger ciphertexts. In contrast,
the GC-based methods require huge communication costs
between data owners and the cloud [26] and thus are
impractical for outsourcing large datasets.

A practical design is to let the cloud process the O(N2)
(or higher complexity) operations in parallel, while the data
owner contributes constant- or O(N)-cost computation to
assist the cloud. To our knowledge, there is no general
framework that achieves this practical cloud-client work
allocation while providing strong security notions (e.g.,
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semantic security) for complex data mining algorithms such
as graph analysis.

Research Scope and Contributions. In this paper, we
study a cloud-centric graph spectral analysis framework
that protects privacy from curious cloud providers. Graph
spectral analysis has many applications such as network
partitioning [25], spectral clustering [15], and web ranking
[4]. The basic operation - eigendecomposition of big matri-
ces has even broader applications such as dimensionality
reduction [19] and kernel-based learning methods [30].

The cloud-centric framework consists of three major
parties: the cloud, the data contributors, and the data owner
(or data curator), who collaboratively finish the mining
task. Under certain incentives, the data contributors will be
willing to contribute their sensitive data to the data owner
and trust the data owner to properly protect their data
privacy. On the other hand, the data owner wants to use
the public cloud resources to manage and mine the ever-
increasing user data, but does not trust that cloud providers
will properly ensure data privacy. As we consider only the
privacy issues, we exclude the case that malicious cloud
providers will actively tamper the data or do not conduct
the operations asked by the data owner, which are being
addressed by the orthogonal line of research on data and
computation integrity. Instead, we can assume that cloud
providers will follow protocols to honestly conduct the
computations they are asked for. Therefore, the assumption
“honest-but-curious” cloud providers will be appropriate
for our study.

The proposed framework aims to achieve the practical
work partitioning between the cloud and the client sides
while preserving the privacy of data and analysis result. The
cloud will host the big encrypted graph matrix of N × N
dimensions (dense or sparse). In mining data, the cloud will
conduct the expensive (e.g., O(N2)) operations with parallel
algorithms, the data owner (and data contributors who
may also participate) will take tasks of O(N) complexity,
which justifies the use of cloud for scalable and economical
processing.

We consider two approximate algorithms for spectral
analysis - the Lanczos method [10] and the Nyström method
[15]. Both can be possibly re-designed and cast to the
cloud-centric framework to achieve the practical work par-
titioning. The core of the Lanczos method: matrix-vector
multiplication (an O(N2) operation), and the core of the
Nyström method: matrix-matrix multiplication (an O(mN2)
operation) should be done by the cloud. Both involve only
one level of multiplication, i.e., any element of matrix and
vector involves in only one multiplication, and multiple
levels of additions. We study the application of two types of
homomorphic encryption methods: additive homomorphic
encryption (AHE) and somewhat homomorphic encryption
(SHE), which satisfy this special requirement and are more
efficient than the earlier mentioned FHE and GC.

Our research addresses several challenges in applying
the SHE and AHE methods under the cloud-centric frame-
work. (1) SHE allows one level of homomorphic multi-
plication and thus it is straightforward to implement the
cloud-side operations. However, their costs are not fully
understood yet. (2) AHE methods have smaller ciphertext
size, which makes storage and communication efficient, but

they maintain only handicapped homomorphic properties
- one of the two operands have to be plaintext. Thus, the
challenge to apply AHE is twofold: to protect the privacy
of the exposed operands, while make sure that data owners’
costs stay in O(N). Specifically, our research has four unique
contributions.

(1) Two data masking algorithms for protecting the ex-
posed operands in matrix-vector and matrix-matrix multi-
plications, respectively, for AHE-encrypted data, while also
maintaining the client-side cost to stay in O(N). The first
data masking algorithm is based on the security guarantee
provided by the Learning-with-Error (LWE) problem [28],
designed for the matrix-vector multiplication protocol. The
second algorithm is based on matrix perturbation that is
resilient to ciphter-text only attack, which is sufficient for
one-time use of perturbation matrix.

(2) We designed the AHE-based and SHE-based Lanczos
algorithms and Nyström algorithms that use the two data
masking algorithms, respectively. The Nyström algorithms
are specifically designed to benefit from sparse graphs. Both
achieve the practical work allocation between the cloud and
the client.

(3) We identify the privacy risk of submitting sparse
graph matrices and design an efficient local differentially
private method for inserting fake edges that have indistin-
guishable encrypted values E(0) (an important benefit by
probabilistic public-key encryption) and do not affect the
accuracy of analysis.

(4) A thorough experimental evaluation has been con-
ducted on AHE- and SHE-based Lanczos and Nyströ algo-
rithms. Two most popular encryption schemes are used in
the evaluation: the Paillier method [27] for AHE and the
Ring-LWE (RLWE) method [7] for SHE. Our results show
that the RLWE-based methods have lower computational
costs for data owners, while the Paillier-based methods have
lower communication costs.

The remaining part of this paper is organized as follows.
In Section 2 we establish the background knowledge about
spectral analysis of large graph matrices and introduce
different AHE and SHE schemes. In Section 3 we give a
detailed description of our framework and the AHE- and
SHE-based algorithms for privacy-preserving outsourced
graph spectral analysis, including the analyses on privacy
guarantee and costs. We also present the differentially pri-
vate solution for sparse graph data submission. Section 4
presents the comprehensive cost evaluation on three social
graph datasets. Section 5 gives some related work.

2 PRELIMINARY

This section will setup the notations and give the back-
ground knowledge about the eigendecomposition problem
for large matrices, the homomorphic encryption schemes we
will use, the integer conversion method, and differential
privacy that will be used for privacy-preserving sparse
matrix submission. For clear presentation, we will use Greek
letters for scalars, lower-case letters for vectors, and capital
letters for matrices, submatrices or sets.

2.1 Spectral Analysis

The core operation of graph spectral analysis is eigende-
composition of graph matrix, which yields eigenvalues and
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corresponding eigenvectors. Eigenvalues and eigenvectors
provide valuable information about the structure of matrices
and have been used in many data mining algorithms such
as social community detection [25], spectral clustering [15],
web ranking [4], dimensionality reduction [19], and kernel-
based methods [30]. Specifically, for a symmetric matrix A of
size N×N , we want to find the decomposition A = UΛUT ,
where the matrix U consists of the eigenvectors and Λ is a
diagonal matrix with eigenvalues on the diagonal.

A complete eigendecomposition of a N × N matrix
possesses a remarkable time complexity of O(N3). Hence,
approximate eigendecomposition algorithms are often used
for big N , including the power-iteration Lanczos [10] and
matrix sampling based Nyström methods [15]. These al-
gorithms reduce the cost to O(kN2), k ≪ N and return
only the top-k eigenvectors/values. The core and most
expensive operation in these algorithms are matrix-vector
multiplication (for power-iteration methods) and matrix-
matrix multiplication (for sampling methods). See Algo-
rithm 1 and 2 for the fundamental steps of Lanczos and
Nyström methods respectively. These algorithms reduce the
complexity with some sacrifice in accuracy. Greater number
of Lanczos iterations and greater sampling rate for Nyström
account for better accuracy, which however, increase the
computation cost.

Algorithm 1 Lanczos Method

1: b0 ← random N -dimensional vector;
2: for i← 1 to t do
3: bi ← Abi−1; // the most expensive step
4: αi ← bTi bi−1;
5: wi ← bi − αibi − βi−1bi−2, bi = 0 for i < 0;
6: βi ←‖ wi−1 ‖;
7: bi ← wi−1/βi;
8: end for
9: αi and βi form a tridiagonal matrix Tt×t, the top-k eigen-

values and eigenvectors of which are the approximation of
A’s.

Algorithm 2 Nyström Method

1: s← generate random index set such that ‖s‖ = m < N ;
2: CN×m ← sample m column vectors from A;
3: Wm×m← matrix with rows and column indices in s;
4: decompose Wm×m to get top k eigenvalues Λk×k and eigen

vectors Um×k ;
5: compute CN×mUm×kΛ

−1

k×k ;

2.2 Additive Homomorphic Encryption

Additive homomorphic encryption has the following prop-
erty. For two integers α and β, the additive homomorphic
operation is represented as below.

E(α + β) = E(α) + E(β) (1)

As one of the most efficient implementations of AHE
schemes, we will use Paillier encryption [27] as the repre-
sentative to describe our AHE based protocols. The additive
homomorphic encryption enables a set of pseudo homomor-
phic operations that make the foundation of our protocols.
With one operand, either α or β, unencrypted, we have

E(αβ) =

β
∑

i=1

E(α) =
α
∑

i=1

E(β). (2)

For Paillier encryption, multiplication can be implemented
more efficiently as E(αβ) = E(α)β mod n2, where n is
the public key. We name it pseudo homomorphic multiplica-
tion as one operand is not encrypted. Based on these two
important properties, we can derive pseudo-homomorphic
dot-product of vectors, matrix-vector multiplication, and
matrix-matrix multiplication, all of which have one operand
in plaintext. The key challenge of AHE-based applications
is to protect the plaintext operand.

2.3 Somewhat Homomorphic Encryption

Somewhat homomorphic encryption (SHE) schemes have
been developed during recent years to achieve one (or a few)
levels of homomorphic multiplications in addition to AHE.
For example, (α1 + α2)(α3 + α4) + (α5 + α6)(α7 + α8) can
be computed on encrypted values E(αi) without decrypting
them. Note that any one of the values involves in only one
multiplication. In contrast, α1α2α3 involves two levels of
multiplication. The SHE schemes are often used to compute
the degree-2 functions in a homomorphic manner. There
are three well-known SHE schemes: the Ring-LWE (RLWE)
scheme [7] based on the ring learning-with-error problem
[28], the Boneh-Goh-Nissim (BGN) scheme [5], based on
pairing of groups and elliptic curves, and the Catalano et
al. [8] based on an extension of AHE scheme.

Among them, we will adopt the RLWE scheme in
evaluation, as the other two have cost issues. The BGN
scheme’s decryption depends on computing discrete log,
which costs O(

√
q) for plaintext values in [0, q]. We find

the cost of decrypting a 20-bit value has taken more
than 1 second (using the element dlog brute force function
(crypto.stanford.edu/pbc/)), which can be certainly im-
proved with some optimization [23]. The Catalano et al. [8]
scheme was excluded because of its ciphertext expansion.
For matrix-vector multiplication on a N × N encrypted
matrix and a N dimensional encrypted vector, the result
will include O(N2) encrypted elements, too expensive to
be delivered to the client. Due to the space limitation, we
exclude the details of these schemes.

2.4 Integer Conversion

For practical problems, the values are normally in floating-
point representation. However, all the discussed encryption
schemes work on big integers. Thus, there are additional
steps to convert the data to integers for encryption and
recover from the result integers to floating-point numbers
within acceptable precision losses. Since the homomorphic
matrix-vector operations we use include only multiple addi-
tions plus one multiplication at maximum, we consider the
following simple conversion. For a floating point value x,
x ∈ R, if we would like to preserve the precision of n-digit
after the decimal point, we have

v = ⌊10nx⌋ mod q

where q is a large integer so that 10nx ∈ (−q/2, q/2).
The modulo operation maps the values to [0, q), where the
negative values are mapped to the range (q/2, q). It is easy
to check that x is recoverable: if v > q/2, x ≈ (v − q)/10n;
otherwise, x ≈ v/10n. It’s also easy to check that, if q is large
enough to accommodate the operational results, the results,
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including both sign and floating-point values, of addition
and multiplication operations on the converted values fol-
lowed by mod q are preserved, and thus recoverable. We
skip the details. Aliasgari et al. [2] has a thorough discussion
on this topic.

2.5 Differential Privacy

Differential privacy [14] is a standard notion in data privacy,
which protects individual’s privacy from the query-based
privacy attacks. For two datasets A1 and A2 that differ in
exactly one record, let M(Ai) be the mechanism that outputs
noisy statistics r ∈ R of the datasets, then ǫ-differential
privacy is satisfied if the following condition holds:

Pr[M(A1) = r] <= expǫ Pr[M(A2) = r], (3)

where ǫ is the privacy parameter - the smaller it is, the
better the preserved privacy. It has been popularly applied
to preserve data privacy in querying databases, where any
users are allowed to submit limited types of queries and a
limited number of repetitive queries subject to the ǫ setting.
The mechanism M is defined as the additive perturbation
of a specific query function, such as the COUNT function:
M(A) = COUNT(A) + random noise. The noise in the
output is engineered to approximately preserve the util-
ity of the query function, yet prevent distinguishing any
individual records in the database. Laplacian noise is one
of the popular choices, where a noise is drawn from the
Laplace distribution Lap(0, b), the density function of which

is 1
2b exp(−

|x|
b
). The parameter b is determined by the user-

specified parameter ǫ and the sensitivity of query function:
∆ = max |M(A1)−M(A2)|, and b = ∆/ǫ. For example, the
COUNT function has the sensitivity ∆ = 1, and thus the
parameter b is set to 1/ǫ. In general, the smaller the ǫ setting
is, the larger the ∆ value will be to provide a higher level of
protection.

3 FRAMEWORK AND CORE ALGORITHMS

First, we will describe the privacy-preserving cloud-centric
framework for graph spectral analysis, the threat model,
and security expectations. Second, we describe the AHE-
based Lanczos algorithm for dense matrices. Third, as many
graphs are sparse, we study the privacy issues with sparse
representation, and design the privacy-preserving sparse-
graph submission protocol for data contributors. Fourth,
we develop the AHE-based Nyström method to benefit
from the sparse representation. Finally, we will also de-
scribe the Lanczos and Nyström algorithms based on the
SHE schemes, and analyze the costs associated with all the
schemes. The cloud-side parallel processing will be briefly
discussed due to the simplicity of the related operations.

3.1 Framework

The involved parties in our framework are: 1) a data owner,
denoted as “Owner”, who owns the matrix data, 2) data
contributors, denoted as “Contributors”, who agree on the
data owner’s privacy declaration and provide private data
voluntarily (with or without rewards from the data owner),
3) a public cloud provider, denoted as “Cloud”, in a service
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Fig. 1: A framework for cloud-centric privacy-preserving
spectral analysis.

level agreement to provide scalable computation and stor-
age, who is honest in providing services, but curious about
observed data.

Our aim here is to design practical privacy-preserving
eigendecomposition algorithms for graph matrices where
the public cloud learns nothing from the stored data, the
computations that occur within its infrastructure, and the
interactions with other parties. One of the key ideas is
to let Owner and Contributors take a small amount of
computation and storage responsibility of O(N) complexity,
while Cloud takes more expensive O(N2) parts that can be
implemented in parallel and scalable algorithms.

Specifically, Cloud stores the big encrypted matrix E(A)
and conducts the expensive homomorphic matrix-vector
multiplication. Owner interacts with Cloud and assists in
the computation. When collecting data, Owner employs an
asymmetric AHE or SHE encryption scheme and publishes
a public key for Contributors. Contributors encrypt their
submissions and use a web service or a mobile app to
upload the encrypted data. Examples of such user data may
include interactions between social network users, which
are used for detecting social network communities, or user
ratings on products for training a recommender system.
This cloud-centric framework is particularly important for
handling continuously evolving matrix E(A), for which the
analytic models should be periodically updated, which are
too expensive to be maintained locally by data owners.

3.2 Security Model

We make practical threat assumptions and only focus on the
privacy threats from honest-but-curious cloud providers. 1)
The data contributors operate through secure systems and
no information is leaked to attackers. 2) The data owner’s
infrastructure is secure. Our framework cannot protect pri-
vacy from an insider attack issued by the data owner’s
organization. 3) All communication channels are secure and
data in transit is always protected. 4) Our framework is not
meant to ensure the integrity of data that is orthogonal to
our work.

Let’s model a graph spectral analysis algorithm as a se-
cure protocol GSA = (Enc,Prepare,Query), consisting
of three polynomial-time protocols. After the initial stages
Enc and Prepare, the main body is a series of Query-
Answering interactions between Owner and Cloud: Owner
queries Cloud and Cloud returns the result to Owner.
Combined with Owner’s local processing, it achieves the
algorithmic goal.

(K,EG)← Enc(1h, G): is a multi-party protocol among
three parties: Owner takes a security parameter h and
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generates a key-pair K = (Pk, Sk); Contributors take Pk
and output an encrypted graph EG to Cloud.

(H) ← Prepare(m): is a multi-party protocol among
the three parties: Owner takes some parameter m and works
with Cloud (and Contributors) to get a helper data H . It’s
a one-time setup for securely processing queries later. For
some algorithms, this step might be skipped, or some parties
may not participate.

(R) ← Query(K, q,EG): is a two-party protocol be-
tween Owner that holds the keyK and a query q, and Cloud
that holds the encrypted graph EG. Cloud processes q and
returns the query result R, which can be encrypted vectors
or matrices depending on the specific algorithm.

Security Definition. We define security guarantee as
follows. (1) For graph encryption, the strongest definition is
that given the encrypted graph, no adversary can learn any
information about the graph, which is used by the dense-
matrix encryption method. (2) We also define a weaker
notion for the sparse-matrix encryption method, which does
not exactly protect each edge’s privacy, but uses differ-
ential privacy to protect each data contributor from re-
identification [36]. (3) The Prepare procedure does not leak
any information. (4) With either the dense or the sparse
method, the protocol interactions do not leak any additional
information. Specifically, given the view of a polynomial
number of Query executions for an adaptively generated
sequence of queries q = (q1, . . . , qn), no adversary can learn
any partial information about either G or q.

We adopt the idea of simulation-based security [12], [23]
to formally define the Query protocol security. The semi-
honest adversary A who compromises Cloud observes the
interactions between A (i.e., Cloud) and the challenger C
(i.e., Owner), and tries to infer any useful information. A
knows the encrypted graph EG and the public key, but
not the private key of K. S is a simulator that simulates
views of A in the ideal world corresponding to the views
of A during the protocol execution in the real world. The
following formalizes the security definition based on the
Ideal and Real experiments.

IdealA,S(1
h): A possesses the encrypted graph EG re-

ceived from Users. If A were malicious it may also gen-
erate a fake graph G, run Enc(1h, G) with the public key
provided by Owner and generate EG. However, we only
consider the semi-honest scenario. A generates a polyno-
mial number of adaptively chosen queries (q1, . . . , qm) with
an intent to compromise the security of the Ideal GSA’s
Query functionality. We can envision a simulator S which
runs Prepare to get the helper data. For each query qi, S
presents to A a view as the execution of Query(K, qi, EG).

RealA,C(1
h): A possesses an encrypted graph EG. C

runs Prepare protocol to get the helper data. A gener-
ates a polynomial number of adaptively chosen queries
(q1, . . . , qm). For each qi, A and C interactively execute
Query(K, qi, EG).

In both the settings, A uses the observed views to
compute a bit b that is the output by the experiment. We
say that the protocol is adaptively semantically secure if
for all adversaries with probabilistic algorithms running in
polynomial time (i.e., PPT), there exists a PPT simulator S

such that

|Pr(RealA,C(1
h) = 1)− Pr(IdealA,S(1

h) = 1)| = negl(h).

where negl(h) is a negligible function [21]. In proofs, we
only need to show such a simulator exists for each proposed
protocol.

3.3 AHE-based Lanczos Construction for Dense Matrix

We first present the AHE-based Lanczos method (Lan-AHE)
for dense matrix. The core operation: Query implements
the privacy-preserving matrix-vector multiplication with
client-cost O(N) and cloud-cost O(N2). Section 2 shows
that the most expensive operation in the Lanczos iteration is
bi+1 ← Abi1. Thus, the core of the algorithm is that Owner
uses Query to compute Abi1, which is combined with some
O(N) local processing to implement the Lanczos algorithm.
It also uses an IND-CCA secure AHE such as Paillier to
encrypt each element of the graph matrix in the dense form.
The Prepare procedure will generate some helper data for
Owner quickly hiding bi and recovering the result Abi, so
that the desired security and efficiency goals are achieved.
Cloud will take the expensive task of computing Abi on the
encrypted A. One key challenge is to compute E(Abi) with
E(A) and plaintext bi that needs to be protected to achieve
the security guarantee - leaking the set {bi} will allow the
adversary to approximately reconstruct the matrix.

The basic idea is to submit a masked vector b̄i. The
masking technique needs to address two goals: (1) the
masked vector does not leak any information to adversaries,
i.e., b̄i cannot be distinguished from any uniformly random
noise vector; (2) it is possible to recover Abi from the result
of Ab̄i efficiently, i.e., no more than O(N) complexity. The
design of the noise vector to meet these two goals is the
key of this protocol. We describe this protocol in detail as
follows.

PrepareLan−AHE(h) :. This step consists of two sub-
steps. (1) The data owner selects h N -dimensional random
vectors, {sj , j = 1..h}, where h is a constant related to
the security of the masking technique (e.g., h = 80), and
sends them to cloud in plaintext. These random vectors
will be used to protect the vector bi in each iteration. The
cloud will compute E(Asj) and send back the results to
the data owner, who will decrypt the results to get the
vectors cj = Asj , j = 1..h. After the initial setup, the
masking results {cj} will be incrementally updated when A
is evolving. (2) The data owner also generates a uniformly
random vector b0 and distributes E(b0) to data contributors.
b0 serves as a secret, which is critical to the security of
the whole protocol as shown in Section 3.5. Each data

contributor i computes E(Aib0) =
∑N

j=1 AijE(b0j)), where
b0j is the j-th element of b0 and Aij is the j-th element of the
row vector Ai, using pseudo homomorphic multiplication,
and sends back the single encrypted scalar E(Aib0) to the
data owner. It follows that the costs for data owner and data
contributors in this step are O(N).

QueryLan−AHE(K,q,EG) : this protocol has two
steps: the LWE-based masking to generate the query q (i.e.,
b̄i), and the efficient recovery method to get Abi from the
query result. Let q be the perturbed vector b̄i given as

b̄i = bi + ri mod p (4)
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where bi is the vector to be protected, ri is a noisy vector,
and p is a big random prime large enough to contain all
values and computation results in the application domain
and guarantee the security of perturbed vectors (i.e., the
brute-force enumeration is computational intractable). The
key of this perturbation is to guarantee ri cannot be distin-
guished from any uniformly random vectors and still allow
the efficient recovery of Abi from the result of Ab̄i.

We design ri as follows to meet the two goals. Its
security will be discussed later in Section 3.5 based on the
intractability of the Learning-with-Error problem in lattice
[28]. ri, i ≥ 0, is derived from the seed vectors {sj, j = 1..h}
and existing {bj, j = 0..i− 1} as:

ri =
h
∑

l=1

αilsl +
i−1
∑

j=1

βijbj + b0 mod p, (5)

where αil and βij are randomly drawn from Zp. This
approach protects bi and its security depends on the ran-
domness of ri. Note that {sl} is already known by the
cloud in the preparation phase, which, however, does not
compromise the security of ri due to the learning-with-error
(LWE) based security [28], as long as bj, j = 0..i − 1 are
secret.

The recovery of Abi is performed at data owner as Ab̄i
from the cloud is the result of Ab̄i = Abi + Ari since b̄i =
bi + ri. Also, because we can compute

Ari =
h
∑

k=1

αik(Ask) +
i−1
∑

j=1

βjk(Abj) + (Ab0) mod p

with known ck = Ask and Abj , j < i in complexity O(N),
Abi can be recovered with a O(N) cost. The correctness of
this algorithm is easy to verify.

Algorithm 4 in Appendix gives the detail of the privacy-
preserving Lanczos algorithm. The cost and security analy-
sis will be discussed later.

3.4 Construction of Secure Nystr öm with Differential
Privacy and AHE for Sparse Matrix

Many graphs are actually sparse, which has not been fully
explored by the Lan-AHE algorithm yet. This sparsity can
be utilized to reduce the cloud data storage, cloud-side
computation, and the cost of contributors submitting data.
For a matrix that has only M non-zero elements on average
per row, where M ≪ N , with sparse representation the
submission cost is reduced to O(M) for each contributor, the
cloud storage is reduced to O(MN) from O(N2), and the
cost of the core matrix-vector computation is also reduced to
O(MN). This saving can be huge, as N is probably around
millions while M is only hundreds. However, straightfor-
ward sparse encoding may leak private information for
graphs. In the following, we will analyze this privacy risk,
then present the specific Enc procedure for sparse matrix,
and finally develop the secure Nyström algorithm to take
advantage of the sparse matrix.

3.4.1 Privacy Leak on Sparse Graph Matrices and Our
Protection Method
Let’s consider a typical graph matrix for spectral analysis:
the normalized Laplacian graph matrix. For an undirected

graph, let D be the diagonal matrix with node degrees on its
diagonal - Dii represents the degree of node i, i = 1..N . Let
W be the adjacency matrix with Wij =1 if and only if the
edge (i, j) exists, and Wij = 0 otherwise. For undirected
graphs, W is a symmetric matrix, where each row(column)
of W represents the corresponding node’s adjacency edges.
The normalized graph Laplacian matrix L is L = I−D−1W ,
where I is the N by N identity matrix. The eigenvectors of L
can be used for graph spectral clustering [32]. The matrix L
is apparently sparse due to the sparsity of W . In traditional
sparse encoding, the zero entries are skipped, while the non-
zero ones are encoded as (i, j, v) for entry index (i, j).

However, simply encrypting the non-zero entries does
not preserve the privacy of the matrix for several reasons.
(1) The number of non-zero entries per row is the node degree
of the corresponding node. (2) The presence of a non-zero
entry also implies the existence of the corresponding edge.
Both node degree and edge existence information can be
used in privacy attacks on social graphs [36].

Our method is to blend in fake edges to disguise both
exact node degrees and edge existence. As the encryption
methods we use are all probabilistic, each time encrypting a
value (or evan the same value encrypted multiple times) will
result in a different ciphertext that cannot be distinguished
from a uniformly random value. Therefore, the fake edges
(i.e., the zero entries in the matrix) cannot be distinguished
from other entries as well. Apparently, the added zero
entries will not affect the result of matrix-vector operations.
The key question is to design a theoretically justified method
for users to select the number of fake edges, for which we
apply the Laplace mechanism of differential privacy.

The problem setting and data encoding method distin-
guish our method from previous studies [36] on privacy-
preserving graph publishing in several aspects. (1) Previous
studies aim to share data and models with curious parties
but preserve node and edge privacy. In contrast, we prevent
data and models sharing from curious parties. (2) Most
existing methods change the authenticity of graph data by
adding or removing nodes and edges. Our method will
completely preserve the authenticity of data as we add
edges only and the edges are encoded with indistinguish-
able E(0)s. (3) In our framework, data disguising is done
individually by each data contributor who only knows a lit-
tle bit of global information (i.e., a histogram of node degree
distribution generated from sample nodes and distributed
by the data owner). Many existing methods have to work
on the entire graph to determine the graph perturbation
scheme [36], which is impractical for big data hosting in
the cloud.

3.4.2 Sparse Encoding for Graph Matrices

We briefly describe the sparse encoding method that pre-
serves the eigen-structure and allows the injections of en-
crypted zero entries. The following discussion will be spe-
cific to sparse Laplacian graph matrices (i.e., the L matrix
defined earlier) for spectral clustering; other types of sparse
matrices may need different encoding methods.

We use the following transformation that preserves the
eigen-structure. Let H = I − L = D−1W . Let the top-
k eigenvectors of H be the eigenvectors corresponding to
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the largest k eigenvalues. Clearly, we have the following
Proposition.

Proposition 1. The top-k eigenvectors of H are the same as the
bottom-k eigenvectors of L.

It is easier for both the Lanczos and the Nyström meth-
ods to obtain the top-k eigenvectors than the bottom-k ones.

Now, let Hi be the i-th row of H and its element hij , j =
1..N is

hij =

{

1/Dii if Wij = 1 and i 6= j
0 otherwise

With integer conversion and sparse encoding, the entries
are encoded as (i, j, E(⌊γ/Dii⌋)), where γ is a large integer
to preserve the desired precision if the edges exist; other-
wise, with some probability pi (to be described) it outputs
(i, j, E(0)), i 6= j.

3.4.3 Bin-Based Differentially Private Graph Perturbation
Algorithm

We will first describe the method to protecting node de-
grees and then discuss why it also protects edge existence.
Under the privacy assumption, the adversaries depend on
counting the submitted entries to estimate node degrees or
the existence of edges. The basic idea is to treat adversaries’
estimation on node degrees and edges as queries on the
encrypted matrix.

In the standard differential privacy definition, the goal
is to disguise any specific person among the entire set of
persons that are related to the database. Thus, the key
factor, the sensitivity of function, is applied to the whole
dataset, which, however, results in very large sensitivity
for functions related to node degree on graph datasets.
As a result, data contributors have to add many fake
items to achieve the desired differential privacy, which
seriously impairs sparsity. Specifically, let the query function
F () about node degree be quite general, say finding the
node degree ranked at k. Let A and A′ be the neighboring
graphs which differ by only one node. Thus, the sensitivity
∆ = max{F (A) − F (A′)} is the difference between the
largest and the smallest node degree. For a graph of N
nodes, this sensitivity can be up to N .

To achieve a better balance between privacy and sparsity,
we use a bin-based method to achieve weaker contributor
indistinguishability, which is reduced from the whole graph
to a subset of nodes in a bin. Specifically, we sort the
nodes by their node degrees and then partition the degree
distribution by bins. The contributors in the same bin select
the number of fake edges with the bin-specific parameter,
where the function sensitivity can be much smaller. The
node degree distribution can be estimated with the node
degrees of randomly sampled nodes. This can be achieved
by the data owner asking some randomly selected data
contributors to submit encrypted node degrees before them
submitting the graph data. The data owner can then build
a histogram to approximate the node degree distribution.
Apparently, this additional cost is quite low.

Specifically, we generate an equi-height histogram with
the sample node degrees, e.g., for a 100-bin histogram, each
bin contains about 1% of the nodes. The number of bins
is chosen so that each bin contains a moderate number of

nodes, for example, a value in (50, 100) to provide satis-
factory indistinguishability. Let Ui be the maximum node
degree in the i-th bin, and Li be the minimum degree in the
i-th bin. Now let A and A′ be the neighboring graphs which
differ from each other by only one node in the bin. We can
derive the sensitivity ∆i = max{F (A)−F (A′)} = Ui −Li,
which should be much smaller than N .

According to the noise design of differential privacy, we
derive that the parameter b of Laplace distribution Lap(0, b)
to be (Ui−Li)/ǫ. However, this noise can be negative, which
asks the contributor to remove some edges and thus destroy
the authenticity of data. To avoid this problem, we add an
offset to the noise to make it positive, which reduces the
overall sparsity but satisfactorily preserves both privacy and
authenticity. For a specific b, we can always identify the
bound p for Pr(x < p) <= 0.01 (p ≈ 3.912 for b = 1
and p linearly scales with b: p ≈ 3.912b ). That means, if
we add an offset |p| to the distribution, we can make sure
the majority of population (> 99%) positive. With such an
offset, the number of fake links, ki,j is chosen as follows

ki,j = |pi|+ δi,j , (6)

where |pi| is the offset and δi,j is a random integer drawn
from Laplace(0, (Ui − Li)/ǫ) to make ki,j > 0. With such a
noise design, the nodes in the same bin satisfy ǫ-differential
privacy on node-degree based functions.

By preserving node-degree differential privacy, edge dif-
ferential privacy is also satisfied. We define A and A′ as
a pair of neighboring graphs, if they only differ by one
edge. The problem of checking the existence of an edge
can be transformed to an edge counting query function.
Let’s look at any arbitrary edge counting functions. Clearly,
the sensitivity of such a function is 1. Thus, Laplace(0, 1/ǫ)
is used to generate the noisy edges. Since the parameter
(Ui−Li)/ǫ used for disguising node degrees is no less than
1/ǫ, the fake links generated for protecting the privacy of
node degrees also protect edge privacy.

Algorithm 3 gives the details of our privacy preserving
sparse submission algorithm. Here, we only discuss two
types of functions for querying node degrees and edges
that are already used to design privacy attacks. However,
our result can be easily extended to other types of query
functions.

Algorithm 3 Privacy preserving sparse submission (H, ǫ,
di,j).

1: input: H: histogram provided by the data owner. ǫ: user
selected parameter for ǫ-differential privacy. di,j : the actual
node degree.

2: find the bin that contains di,j , whose upper bound and
lower bound are Ui and Li, respectively;

3: b← (Ui − Li)/ǫ;
4: p← b ∗ 3.912;// for p ≈ 3.912 for b = 1 the p linearly scales

with b: p ≈ 3.912b;
5: draw a value δi,j from the distribution Laplace (0, b);
6: ki,j ← |p|+ δi,j ;
7: add the di,j real links to the list with the sparse encoding;
8: randomly choose ki,j edges from the rest N−di,j edges and

encode them as the encrypted zero entries;
9: submit the items with index (i, j) for j ≥ i if it is an

undirected graph, otherwise submit all di,j + kij items.
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3.4.4 Construction of AHE-Based Nyström Method for
Sparse Matrix
Note that by using the Lanczos method, data owner does
not gain cost reduction from sparse representation, as the
{b̄i} and {Ab̄i} vectors are always dense. We thus turn to
the Nyström method to see whether it can benefit from the
sparse representation.

Recall the key steps of the Nyström method in Section
2. Under the cloud-centric framework, Cloud will do the
sampling step and the final computation of CV , and Owner
will download E(W ) and decompose W . Typically, the size
of W should be much smaller than the whole matrix but still
incurs a significant cost. In practice, m is often set to 0.1N ,
thus asymptotically still a parameter related to N . For this
reason, the Nyström method does not really fit the goal of
O(N) complexity for data owner processing since W has
a size 0.01N2. However, W might be much smaller with
sparse representations. Thus, we can assume that E(W ) can
be processed with a reasonable cost.

Challenges. Due to the large size C, N×m, it is expected
to compute DN×k = CV in the cloud and return D. Since
k ≪ m, e.g., k = 10, this will save the communication and
computation cost significantly. An cost-effective solution
seems to upload the matrix V in plaintext so that E(CV )
can be computed with pseudo homomorphic operations.
The challenge is to protect V , as V contains the eigenvectors
of W , which can be used to approximately reconstruct the
link structure of the corresponding nodes and thus does not
meet our security goal.

In the following, we describe the Nyström algorithm that
meets our goals. The key idea of our privacy-preserving
Nyström algorithm is a matrix masking method and the
corresponding protocol.

PrepareNy−AHE(m): Owner asks Cloud to randomly
select m columns as E(C) and from E(C) selects the m
rows for E(W ). Owner then decrypts E(W ) and eigen-
decomposes W to get V .

(P,Q)← QueryNy−AHE(K,q,EGsparse): The query
q = (V̄ ,∆) is generated as follows. First, Owner generates a
uniformly random matrix ∆m×k ∈ Z

m×k
p and an invertible

random matrix Rk×k ∈ Z
m×k
p . Then, V is masked by

V̄ = (V +∆)R mod p, (7)

where p is a large non-secret integer, e.g., with 128 bits to
preserve both privacy and precision. Both V̄ and ∆ are
submitted to Cloud, who will compute both P = E(CV̄ )
and Q = E(C∆) and send them back to Owner. Owner then
recovers CV by CV = CV̄ R−1 − C∆ mod q. Algorithm 5
in Appendix shows the detailed steps.

This algorithm has a few important features. (1) The ex-
pensive matrix-matrix multiplications E(CV̄ ) and E(C∆)
of O(Nmk) complexity are conducted in the cloud, which
can be easily parallelized with a framework like MapRe-
duce. (2) The computation by data owner involves much
smaller matrices: the sparse m×m W , and dense yet much
smaller m × k V and ∆. (3) The upload cost is small,
involving only the plaintext V̄ and ∆.

3.5 Security Analysis for AHE-based Constructions

Our security analysis focuses on finding a simulator S to
generate random queries (this is a bit confusing, calling the

random vectors queries) that an adversary cannot (compu-
tationally) tell from real queries. The proofs will be sketchy.
Figure 2 summarizes the interactions in these constructions
for easier understanding.

(a) AHE-based Lanczos (Lan-
AHE)

(b) AHE-based Nyström (Ny-
AHE)

Fig. 2: Interactions among cloud, data owner, and data
contributors for the AHE-based algorithms.

Security Analysis for Lan-AHE. In the Lan-AHE algo-
rithm, Clouds view includes the seed vectors {sj} and the

perturbed vectors {b̂i}. As {sj} is a set of random vectors
that do not leak information, we want to show that each
b̂i cannot be distinguished from any random vectors and
thus any query sequence q is no different from a randomly
generated one. Therefore, the desired simulator S can just

use any random vectors to simulate {b̂i}.
Proposition 2. b̄i, i = 0..t, cannot be computationally distin-
guished from uniformly random vectors by the curious cloud who
knows {sj , j = 1..h}.
Proof. We will prove the b̄0 case, and other cases are sim-
ilar. Let ai = (αi1, . . . , αik)

T be the random parameter
vector for the round i, and S = (s1, ..., sh) be the matrix
consisting of sj , j = 1..h, as the column vectors. We rep-
resent the Equation 4 with matrix operations for i = 0:
b̄0 = Sa0 + b0 mod q, with adversary-known S and b̄0, and
unknown a0 and b0. If S, a0, and b0 are drawn uniformly
at random, the problem of distinguishing < S, b̄0 > from
uniformly random samples over Z

N×m
p × Z

N
p is exactly the

decision version of the Learning with Errors (LWE) problem
[28]: it says that b̄0 cannot be computationally distinguished
from any uniformly random vectors if b0 is a random vector
and a0 is secret [28]. Therefore, b0 is securely protected. The
same conclusion can be extended to the cases i ≥ 1 with
more unknowns included.

The setting of h determines the security level of the
protocol. According to Regev [28], finding approximate
solutions for the LWE problem costs O(2h). Thus, we con-
sider h = 80 for providing roughly 80-bit security in our
experiments.

Security Analysis for Ny-AHE. As Owner’s query ex-
poses the masked matrix V̄ and the random matrix ∆ of
the masking V̄ = (V + ∆)R mod p to the cloud, we need
to show that the masking algorithm effectively preserves
the desired security of V . We can safely assume V 6= 0 for
practical cases. We address this problem from two aspects:
(1) since the matrix V contains the clustering structure of
W , we show that the masking will surely hide the clus-
tering structure; and (2) we show that it’s computationally
intractable to distinguish V̄ from a randomly generated one
of the same size. Therefore, we can conclude our desired
simulator S in the security model can simply produce
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randomly generated matrices of same size as V̄ as the view
of the adversary A.

First, let’s understand how the noise addition disguise
the clustering structure for the rows of V , in (V + ∆)R.
One of the key use of V is the clustering result of the V
rows indicating the clusters in the graph of W , which is the
basic idea of spectral clustering [32]. Consider each column
vector of V as sample values from a random variable.
Then, the signal (e.g., the distribution and the clustering
structure of V ) is covered by the noise if the noise’s strength
(the mean and variance) is large enough. Typically if the
signal-to-noise ratio is≪ 1, the signal cannot be recovered.
As mentioned in Section 2.4, if we preserve 10 fractional
digits for normalized values in [−1, 1], the values in V are
represented with about 30 bits. In contrast, the values in
∆ are uniformly sampled from [0, q], which has a mean
q/2 and variance q2/12. q can be selected large enough,
e.g., 128 bits, to cover the information in V . In this case,
the signal-to-noise ratio based on variances is around the
scale (230/2128)2 ≪ 1. Thus, the distribution of V + ∆ is
dominated by ∆ and almost uniformly random, which is
not changed by a random transformation (V +∆)R.

Second, we study the complexity of the attack that
distinguishes a uniformly random matrix from a normal V̄ .
The attack is to decide whether there is a valid pair (V,R)
that generates the given V̄ . There are two choices: either
enumerating R candidates or V candidates. For each possi-

ble R, notated by R̂, the estimate of V is V̂ = V̄ R̂−1 − ∆.
The attacker then checks the orthogonality of the column

vectors in V̂ to further screen the candidates. On the other
hand, given a valid orthogonal column matrix V̂ , the test is

done as follows. Let X = V̂ +∆. To check whether there is
a R to fit V̄ = XR, one can first apply linear regression to

find R̂, i.e., R̂ = (XTX)−1XT V̄ . If XR̂ == V̄ , then the test
passes. The complexity of these attacks is determined by the

number of valid R̂ and V̂ . The following proposition shows
that this attack is computationally intractable.

Proposition 3. For values encoded in the h-bit finite field, there
are O(2hk) candidate R or O(2hm) candidate V .

Proof. According to the theory of general linear group of
degree k in a finite field Zp, where p is h-bit, the number
of k × k invertible matrices is Πk−1

i=0 (p
k − pi) [11]. It follows

there are O(2hk) such matrices as the valid candidate R̂ to
be checked. Similarly, according to the theory of orthogonal
matrix group, there are O(pm) orthogonal matrices in Z

m×m
p

[11]. Thus, for h-bit p, there are O(2nm) orthogonal matrices.
As V contains k of m orthogonal vectors, there are also

O(2nm) valid V̂ .

Clearly, for a sufficiently large h i.e., h = 128, the attacks
are computationally intractable.

3.6 SHE-based Constructions

We also consider the SHE-based schemes, as they have been
discussed as practical options for outsourced computation
[17], [24]. The purpose is to understand how they can be
used to construct the solutions and whether they have
advantages over the AHE-based solutions.

SHE-Based Lanczos Method. The core operation
E(bi) = E(Abi−1) can be implemented directly when both

A and bi−1 are encrypted with a SHE scheme with only
one-level of multiplication as we have shown in Section 2.
Due to the limited one-level multiplication, the data owner
needs to help recover the result of E(bi) = E(Abi−1) and
re-encrypt it for the next round. Algorithm 6 in Appendix
gives the detail of the SHE-Based Lanczos Algorithm.

Compared to the AHE-based algorithm, this algorithm
simplifies the interactions. (1) It does not need data distrib-
utors to participate in the computation. (2) It does not have
the Prepare stage and the query, E(bi), passed to Cloud is
encrypted by SHE. However, decrypting, local processing,
encrypting, and uploading E(bi) are now becoming the
major costs for the data owner. The actual costs will be
evaluated in experiments.

SHE-Based Nyström Method. The Nyström method
involves homomorphic matrix-matrix multiplication CV ,
which consists of a set of vector dot-products. Similarly, SHE
schemes can be applied directly to this operation. The SHE-
Based Nyström method is a slight revision of the original
Nyström method since V can be encrypted now. The data
owner has the responsibility to download and decrypt sparse
E(W ), locally decompose W , encrypt and upload the dense
V matrix, and finally download and decrypt the dense
E(CV ). We show the details in Algorithm 7.

Algorithm 7 in Appendix gives the steps of the Nyström
method for SHE schemes. It differs from the AHE-based
algorithm in several aspects. (1) The perturbation and re-
covery steps are gone due to the encrypted V and thus the
client side computation is simplified. (2) The upload cost
will increase due to the increased size of encrypted V . (3)
The download cost depends on the specific SHE method.
The number of download items is reduced but each item’s
ciphertext size may increase.

Security Analysis. Note that for both SHE-based algo-
rithms, the queries {qi} in the operation Query are all
encrypted by SHE. For an IND-CPA [21] SHE like RLWE,
the simulator can choose random queries to encode and thus
the protocols are adaptively semantically secure.

3.7 Cost Analysis

Table 1 compares the asymptotic costs for all the algorithms,
where k is the number of top eigenvectors/values, t is
the number of Lanczos iterations, and m is the number of
samples in the Nyström method. These parameters have
the relationships: k ≪ m < N and k < t ≪ N . h is
the number of seed vectors in LWE-based masking. The
communication costs consider only the encrypted traffics as
other traffics are much smaller. The contributors’ cost O(N)
only occurs in the Lanczos AHE algorithm and not included.
Note that the initial matrix setup costs are the same for all
the methods and thus not included. The dominating compu-
tational costs for data owner are encryption and decryption,
compared to other linear-cost operations on plaintext. The
acceptable m for the Nyström method can be smaller for a
dense matrix that have clearly separated clusters. However,
in reality it has to be considerably large to preserve the
data utility when we do not know the underlying cluster
distribution. As Kumar et al. [22] suggested, m is often set
to 0.05N ∼ 0.1N to get good data utility, which makes
the client-side costs non-linear to N for dense matrices.
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Thus, Ny-* algorithms are not appropriate for dense ma-
trices. Finally, the costs for the same algorithm (AHE or
SHE) implemented with different encryption methods are
asymptotically same, and thus we have to look at the real
costs to see the effects of different encryption methods.

TABLE 1: Cost distribution between cloud and data owner

Algorithm Cloud Data Owner Comm. cost

Lan-AHE O(tN2) O((t + h)N) O((t + h)N)

Lan-SHE O(tN2) O(2tN) O(2tN)

Ny-AHE O(Nkm)) O(m2 + mk2 + Nk) O(2Nk + 2km + m2)

Ny-SHE O(Nkm)) O(m2 + mk2 + Nk) O(Nk + km + m2)

3.8 Cloud-Side Parallel Computation

Data encrypted with the mentioned encryption schemes
are significantly larger than the unencrypted values. For
example, with a 1024-bit key for Paillier encryption, a 64-
bit double-type value becomes a 2048-bit ciphertext, a 32-
time increase. For RLWE, it’s even larger. The encrypted
matrices literally turn a common-size problem to a “big
data” problem, which requires us to exploit the parallel
processing power with the cloud.

In the following, we show the parallel processing algo-
rithm for homomorphic matrix-vector multiplication with
AHE-encrypted data. It is straightforward to extend the
algorithm for data encrypted with SHE schemes and for
matrix-matrix multiplication. For clear presentation, we de-
scribe the algorithm with the MapReduce programming
model [13]. The MapReduce program consists of the Map
and Reduce functions. The Map function takes the masked
vector sent by the data owner as the parameter. It applies
the vector dot-products to the encrypted rows and emits the
results indexed by the row number. The Map outputs are
partitioned and sent to Reducers which automatically sort
the items by their row numbers and write the result to disk.
Readers can check details of MapReduce [13] for a better
understanding of the algorithm.

4 EXPERIMENTS

We have shown that all the developed algorithms provide
privacy guarantee under the assumption of the framework.
The experiments will evaluate various costs associated with
these methods to find out whether any of these algorithms
are more efficient. Specifically, our evaluation has three
aspects: (i) comparing the basic setup costs for the cloud
and data contributors with different encryption methods;
(ii) comparing the costs occurring in executing the AHE and
SHE based privacy-preserving Lanczos algorithms for the
data owner; (iii) the cost-benefit of sparse submission, and
the comparison between the AHE and SHE based privacy-
preserving Nyström algorithms.

4.1 Setup

Resources. Our setup simulates the framework we de-
scribed in Section 3. The data owner’s system has 128 GB
of RAM and four quad-core AMD processors. The cloud
infrastructure consists of an in-house Hadoop cluster with a
16-node setup (1 master node and 15 work nodes: each has
two quad-core 2.6GHz AMD CPUs and 16GB memory).

Datasets. Three graph datasets in the SNAP database
(snap.stanford.edu) are used in our evaluation. They were
originally used to study social circles in the three popular
social networks - Facebook, Twitter, and GPlus. We make
the edges undirected for easier processing in the evaluation.
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Fig. 3: Clustering accuracy and parameter settings for Lanc-
zos and Nyström Algorithms

Evaluation Methods. The costs of proposed algorithms
are inherently linked to the following parameters: the num-
ber of iterations, t, for the Lanczos method, and the sam-
pling size, m, for the Nyström method, respectively, which
both in turn are related the quality of results. To untangle
this intricate relationship, we use spectral clustering [15]
as the application of eigendecomposition to determine the
appropriate setting of these parameters. Specifically, we will
fix the quality criterion to derive the corresponding param-
eter setting, and then evaluate the cost of each algorithm
under this setting. First, we set the number of clusters to
k = 10 and derive the ideal clustering results by running
the spectral clustering algorithm on plaintext data with
the exact eigendecomposition algorithm using functions from
the Armadillo C++ library (arma.sourceforge.net). Then, the
Lanczos method and the Nyström method use different set-
tings of t and m, respectively, to get approximate clustering
results. The clustering accuracy is computed by matching
the approximate result to the ideal result. The settings are
selected as the clustering accuracy becomes stable.

Figures 3a and 3b show how the parameter settings
affect the accuracy of the approximate spectral clustering
algorithm. Table 2 shows the minimum parameter settings,
with which the clustering accuracy becomes stable. They
will be used in the cost evaluation.

TABLE 2: The number of iterations (t) for Lanczos and
sampling size (m) for Nystrom to reach stable clustering
accuracy.

Datasets N Accuracy m t
Facebook 3959 82% 396 30
Twitter 76244 90% 3050 25
Gplus 102100 92% 8168 30

4.2 Implementation

We implemented the Paillier encryption for the AHE-based
algorithms. The core algorithms are implemented with C++
using GMP big integer library and Armadillo linear algebra
library. We also implement the cloud-side MapReduce pro-
gram with Java and Java native library that accesses the C++
encryption libraries. We use the 80-bit security level to setup
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the encryption parameters, and preserve 10 fractional-digit
precision for floating-integer conversion (Section 2.4). The
results generated by the AHE-based algorithms are verified
with those from the normal algorithms on plaintext data. A
demo system can be downloaded1.

We use the HELib library (github.com/shaih/HElib) for
the RLWE scheme. 32-bit plaintext encoding is used, which
is also the maximum number of bits allowed by HELib.
HELib uses the ciphertext packing technique [31], which
can be used for encoding dense matrices efficiently. For 80-
bit security and 32-bit plaintext, one ciphertext can encode
a vector of 630 encrypted values and thus greatly improve
the efficiency. However, sparse matrix cannot use ciphertext
packing and thus the cost for encoding each value will
be 630 times larger. We have also tested the PBC library
(crypto.stanford.edu/pbc/) for the pairing-based scheme.
However, because its decryption involves solving the ex-
pensive discrete logarithm problem, e.g., a 20-bit value en-
crypted will take about 1 second to decrypt, the aggregated
high cost for big matrices will become impractical for the
data owner. Thus, the pairing scheme is not included in
evaluation.

Table 3 summarizes the costs of basic operations. The
Ciphertext-size (C-size), Enc., and Dec. columns represent
the costs for encoding, encrypting, and decrypting one
value, respectively. RLWE-P represents RLWE using cipher-
text packing and the numbers are the average per-element
costs based on 630 elements that are encoded in one ci-
phertext. HELib uses the text format to store the ciphertext.
We also zip the ciphertext to minimize the costs. Since the
size may vary slightly due to the text-based encoding, the
RLWE costs are based on the average of 10 runs. The cost
of homomorphic dot-product (dot-p) is based on vectors
of 630 elements for an easier comparison crossing different
encryption schemes. The dot-p cost can be roughly scaled
up for estimating matrix-vector multiplication and matrix-
matrix multiplication in different sizes. Note that the RLWE-
P costs for encryption and decryption are really low, while
the ciphertext is much larger than Paillier.

TABLE 3: Basic costs for different encryption methods in
80-bit security. C-size: Ciphertext size, B:bytes, and ms:
milliseconds.

Method C-size Enc(ms) Dec(ms) dot-p(ms)
Paillier 256B 1.7 1.6 36.0
RLWE 489.3KB 25.3 120.0 5.5E5

RLWE-P 795.3B 0.04 0.2 875.0

4.3 Results on Dense Matrices

The results are organized in three parts: (1) the basic ini-
tialization costs including the cloud storage and the data
contributors’ costs on encoding and submitting the vectors,
and (2) the related costs for the cloud and the data owner
running the AHE- and SHE-based Lanczos methods. Since
the Nyström methods are mainly designed for sparse data,
they will be discussed later.

4.3.1 Setup Costs
The setup costs include the contributors’ cost and the cloud
storage cost. In our framework, we assume each distributed

1. sites.google.com/site/privategraphdemo/

data contributor submits a row (or a few rows) of the matrix
E(A). Examples may include a social network user who
submits their interactions with others; or a customer that
submits ratings/preferences on products. They will down-
load the public key from the data owner, encrypt their share
of rows with the selected encryption scheme, and transmit
to the cloud. Two costs involved here are the encryption cost
and the transmission cost that is represented by the amount
of encrypted data. As shown in Table 4, data contributor’s

TABLE 4: Contributor’s costs for dense submission

Scheme Encrypt Ai (seconds) Upload E(Ai) (MB)
FB Twitter GPlus FB Twitter GPlus

Paillier 6.7 129.6 173.6 1.0 18.6 24.9
RLWE-P 0.2 3.1 4.1 3.4 58.3 77.9

encryption costs are the lowest for the RLWE-P method,
thanks to the packing technique. However, RLWE-P’s com-
munication cost is several times higher than Paillier’s.

Table 5 lists the basic cloud-side storage costs for the
datasets with different encryption methods. Clearly, the
dense form of matrix is really expensive. For data of this
scale, only cloud infrastructures can handle the storage.

TABLE 5: Cloud Storage Costs for Dense Submissions

Dataset Facebook Twitter Gplus
Paillier 3.7GB 1.4TB 2.5TB

RLWE-P 12.9GB 4.3TB 7.8TB

4.3.2 Privacy Preserving Lanczos Algorithms

We compare the costs of SHE- and AHE-based Lanczos
algorithms to see which one has the cost advantage. For the
AHE-based algorithm, there is an additional setup cost for
data contributors to compute and submit E(Aib0), which is
the same as the cost of initial data submission as shown in
Table 4 and thus skipped in the report. In the following, we
show the accumulated costs of all rounds to have a clearer
comparison.
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Fig. 4: Data owner’s costs for privacy-preserving Lanczos
methods.

Data owner’s costs. Figure 4(a) shows the accumulated
encryption (only RLWE has) and decryption costs for all it-
erations of the Lanczos method. For the AHE-based method,
this also includes the setup cost for the masking matrix
(h = 80). Figure 4(b) shows the total communication costs.
The Paillier-based method takes much less communication
costs, but its computational time is significantly higher.

Table 6 shows detailed data owner’s costs for the most
expensive Gplus dataset. Note that in the AHE-based al-
gorithm, the data owner has no encryption cost. It is clear
that the high decryption time is the major shortcoming of
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Lan-AHE, among which about 80% is used for setting up
the masking matrix. This can be partially addressed by
multi-core computers. Overall, the RLWE-P based method
spends about two times of the Paillier-based method, while
the computational time is much lower. Cloud-side com-

TABLE 6: Data owner’s accumulated costs on the Gplus
dataset. h: hours; GB: Gigabytes

Schemes Enc.(h) Dec.(h) Upload.(GB) Dwnld.(GB)
Paillier(Lan-AHE) - 5.0 0.05 2.7
RLWE-P(Lan-SHE) 0.04 0.16 2.3 2.3

putation. The cloud-side computation can be easily paral-
lelized. The computation of E(Abi) can be decomposed to
dot-products between a matrix row and bi, which can be
directly mapped to a MapReduce program. With sufficient
resources, the computation cost is proportional to the cost
of per dot-product. Figure 5 (a) shows the cost of per dot-
product for the datasets. Pseudo homomorphic multipli-
cation with Paillier has much lower costs than RLWE-P’s.
Figure 5 (b) shows the nice scalability of the MapReduce
implementation for the Paillier-based matrix-vector multi-
plication, where most work is done in the Map phase and
thus the overall cost is proportional to the number of Map
rounds, which implies excellent scalability.
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Fig. 5: Cloud-side processing.

4.4 Sparse Submission and Nystr öm Algorithms

In this section, we focus on the cost savings of the differen-
tially private sparse matrices and the Nyström algorithms
working on the sparse matrices. In the sparse format, the
element will be encoded in the sparse format (i, j, E(.)),
where E(.) is the encrypted non-zero or zero items. The total
number of submitted elements depends on the personalized
privacy parameter ǫ, as described in Section 3.4. We select
the number of bins so that the number of nodes in each
bin is in [50, 100] to provide sufficient indistinguishability
within the bin. With ǫ = 1.0, we have the results in Table
7. The numbers in the column “|E| pert.” are the average
of 10 runs. Apparently, the size of increased edges are quite
manageable.

We have shown that for the same number of elements,
the pairing scheme has about the same ciphertext size as
the Paillier’s and the RLWE has about four times of the
Paillier’s. In the following we show only the Paillier cost
difference between dense and sparse representations if the
vector/matrix is the same for different encryption methods.

Data Contributors’ Costs. Table 8 shows the average
contributors’ costs for sparse submission with different en-
cryption methods. The actual costs for each data contributor

TABLE 7: The perturbation parameters and results. “orig.
|E|”: the number of original edges. “pert. |E|”: the number
of edges after perturbation. “%inc.”: percentage of increase.

Dataset nbins nodes/bin orig. |E| pert. |E| % inc.
Facebook 100 40 84243 99965 18.66
Twitter 1000 76 1242390 1527286 22.93
GPlus 2000 52 12113501 13228599 9.21

should vary according to their original node degree. The
ciphertext packing of RLWE cannot be used for sparse
encoding anymore. Comparing it with the dense submission
costs in Table 4, we can see that sparse encoding for the
Paillier-based method can dramatically reduce the contribu-
tor’s costs, while the RLWE’s costs are about the same with
the RLWE-P’s costs for dense submission.

TABLE 8: Contributor’s Average Cost for sparse submission.

Method Encrypt Ai (seconds) Upload E(Ai) (MB)
FB Twitter GPlus FB Twitter GPlus

Paillier 0.04 0.03 0.22 0.006 0.005 0.032
RLWE 0.64 0.51 3.28 12.1 9.6 61.9

Cloud-side Costs The cloud side storage cost is the sum
of all data contributors’ submitted data. Table 9 summarizes
these costs. The costs are about 100-1000 times less than
the dense-matrix ones for Paillier, while RLWE without
ciphertext packing has slightly less costs than the dense
matrix with packing.

TABLE 9: The cloud storage costs with sparse submission.
(MB: megabytes, GB: gigabytes, TB: terabytes)

Format Facebook Twitter GPlus
Paillier 24.4MB 372.9MB 3.2GB
RLWE 47.8GB 729.8GB 6.3TB

Data Owner’s Costs. Note that for the Lanczos method,
sparse representation does not affect the data owner’s costs,
as in both sparse and dense matrix representations dense
vectors have to be used in data owner’s computation. Thus,
our comparison will be on the Nyström method.

According to the protocol, the data owner’s communi-
cation costs in the AHE-based Nyström method include
downloading E(W ), E(CV̄ ), and E(C∆), and uploading
V̄ and ∆ (in 128 bits per value) in plaintext. The com-
putation cost is dominated by decrypting E(W ), E(CV̄ ),
and E(C∆). In contrast, the communication costs in the
RLWE-based method consist of downloading E(W ) and
E(CV ) and uploading E(V ), where E(W ) are encoded
without packing due to the sparse nature, but E(V ) and
(CV ) can use packing. Similarly, the computation cost is
dominated by encrypting V (packed) and decrypting E(W )
(non-packed) and E(CV ) (packed).

Figure 6 summarizes the comparison. Due to the ran-
domness of the sparse submission results, the numbers
are the averages based on the statistics given by Table 7.
Interestingly, it shows a similar pattern to Figure 4 for the
Lanczos method, i.e., the Paillier-based method has lower
communication costs but higher computational costs for the
data owner. Table 10 shows the detailed comparison on the
data owner’s costs for Lanczos and Nyström on the largest
matrix Gplus. The computational costs of the Nyström
method is about 1/4 to 1/5 of the Lanczos method’s, while
the savings on communication are even larger: reduced
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Fig. 6: Data owner’s costs for the privacy-preserving
Nyström methods.

to about 1/6 for the Paillier-based method and 1/11 for
the RLW-based method. This is consistent with the earlier
complexity analysis (Table 1). For example, in terms of Lan-
SHE and Ny-SHE, with t = 30 and k = 10, Lan-SHE’s
cost is about 5-6 times of Ny-SHE’s. Between the Nyström
algorithms, the Paillier-based method has a lower cost in
communication (501MB vs. 840MB), while the RLWE-based
one has much less computational time (about 1/18 of the
Paillier-based), which seems more appealing for the data
owner. However, the RLWE-based method still needs much
larger cloud storage as shown in Table 9, which might be
improved by a better RLWE storage encoding scheme.

TABLE 10: Data owner’s costs by using Nyström on sparse
data and Lanczos on dense/sparse Gplus data, encrypted
by Paillier and RLWE, respectively. h: hours

Method Ny-Sparse Lanczos-Sparse/Dense
Comm. Compute Comm. Compute

Paillier 501MB 0.9h 2.8GB 5h
RLWE 841MB 0.05h 10GB 0.2h

5 RELATED WORK

There are a few recent studies on the application of garbled
circuits (GC) [18], [35] and RLWE [7] for data mining algo-
rithms. GC and AHE have been used by Nikolaenko et al.
[26] for matrix factorization. However, it comes with high
communication overhead and execution time. As noted in
the paper, the execution time for one iteration of the solu-
tion on 4096x4096 matrix is almost 5000 seconds, and the
communication cost is about 40GB per iteration, making it
almost impractical for datasets of larger sizes as considered
in our work. ML Confidential [17] uses FHE to learn Linear
Means Classifier and Fisher’s Linear Discriminant Classier
from the encrypted data. However, the result shows that
FHE is very expensive for the tasks even for very small
training datasets.

Several matrix computation approaches have been pro-
posed with methods other than encryption to ensure secu-
rity. Atallah et al. [3] present secure outsourcing solutions
that are specific to large-scale systems of linear equations
and matrix multiplication applications with random noise
masking. Their solutions fall short as they leak private
information, depend on multiple non-colluding servers, or
require a large communication overhead. Wang et al. [33]
use an iterative approach for solving linear equations via
client-cloud collaboration and matrix perturbation. How-
ever, there are several problems making it difficult to apply

in practice. First, it requires that the entire unencrypted ma-
trix be present at the client side in the initial setup. Secondly,
the client side must perform a problem transformation step
with a computation cost of O(N2). These weaknesses render
this approach as impractical for big matrices and do not
fully utilize the cloud infrastructures.

Bost et al. [6] consider applying already learned classi-
fiers in an encrypted form (i.e., encrypted classifier parame-
ters) to encrypted data to get classification results. However,
applying classifiers is more about evaluating a function,
which is a small-scale problem. Thus, many expensive op-
erations can be possibly applied, which are impractical for
mining large datasets.

Privacy-preserving graph data publishing [36] is slightly
related to our work. However, it has a totally different
problem setting. Graph data publishing wants to share the
graph data but needs to address the privacy attacks from the
curious data miners. However, the attacks with background
knowledge cannot be thoroughly discovered and under-
stood. Thus, differential privacy for graph analysis becomes
popular in recent years [20], [34]. We do not aim to publish
graph structures. However, since most graph matrices have
special structures (i.e., non-zero entries represent the edges),
simple sparse encoding exposes too much information. Our
method is equivalent to adding fake edges to satisfy differ-
ential privacy [36]. However, this edge addition does not
change data integrity: the added entries are encrypted 0s,
which do not affect the matrix computation.

6 CONCLUSIONS

We present a cloud-centric framework for privacy-
preserving spectral analysis of large matrices, which pro-
vides strong privacy guarantee protecting from honest-
but-curious cloud providers. It allows data contributors to
submit encrypted graph data to the cloud, and the anal-
ysis is done via secure protocols between the data owner
and the cloud. The framework succeeds in outsourcing the
expensive O(N2) computations to the cloud in a secure
manner, and limiting in-house computations to O(N) for
the resource-restricted data owner and data contributors.

We design two privacy-preserving algorithms for spec-
tral analysis: privacy-preserving Lanczos and Nyström al-
gorithms, and study their constructions with somewhat
homomorphic encryption (SHE) methods (e.g., the RLWE
encryption method) and additive homomorphic encryption
(AHE) methods (e.g., the Paillier encryption). The AHE
methods need to protect the plaintext operands from ad-
versaries, for which we designed masking methods that
provide desired privacy guarantee and allow the data owner
to recover in O(N) complexity. The privacy-preserving
Nyström method benefits from sparse big matrices, for
which we have designed the privacy-preserving sparse data
submission algorithm for data contributors to achieve the
balance between data sparsity and privacy. The Nyström
method on sparse data brings significantly cost reductions
to data owner. Among different construction methods, the
RLWE-based methods have less computational costs due to
the ciphertext packing technique, while the Paillier-based
methods save significantly in cloud storage and data own-
ers’ communication costs.
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As a part of the future work, we will focus on improv-
ing the RLWE-based method and investigate the technical
challenges with evolving graphs. We will try to optimize
the algorithms in HELib to reduce the storage and com-
munication costs. We will also study incremental updating
methods for evolving graphs to minimize the overall costs
while preserving the same level of privacy guarantee.
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